Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ректификационные колонны колонны ректификации

    Технологические схемы ректификации каменноугольной смолы в двух-и многоколонных афегатах появились раньше, чем одноколонные схемы, причем наибольшее распространение среди них получили смолоперегонные установки с дву мя ректификационными колоннами - антраценовой (пековой) и фракционной. В антраценовой колонне пары смолы с температурой до 390 С подвергаются ректификации с отбором одной или двух антраценовых фракций и пека. Пары смолы, выводимые с верха антраценовой колонны, подвергаются ректификации во второй фракционной колонне с отбором легкого масла, фенольной, поглотительной и нафталиновой фракций. Обе колонны работают с орошением антраценовая - с орошением поглотительной фракцией, фракционная - с орошением легким маслом. [c.72]


    Если удается достигнуть многократного повторения простой дистилляции и частичной конденсации, то жидкая смесь может быть полностью разделена на составляющие ее компоненты. Такой процесс носит название ректификации, а аппараты для его осуществления называются обычно ректификационными колоннами. При дистилляции молекулы, отрывающиеся с поверхности испарения, сохраняют одно и то же направление движения до достижения поверхности конденсации, ректификация же основана на том, что поток жидкости направляется навстречу поднимающемуся потоку пара. В колонне поток жидкости (конденсата) стекает сверху вниз навстречу потоку пара, а пар проходит в направлении снизу вверх. При соприкосновении жидкости и пара часть пара конденсируется за счет соприкосновения с более холодной жидкостью, а теплота, выделившаяся при конденсации, расходуется на частичное испарение жидкости. Так как испаряется в первую очередь низкокипящий компонент, а конденсируется в первую очередь высококипящий, то в результате многократных встреч жидкости и пара по высоте колонны пар все время обогащается низкокипящими, а жидкость — высококипящими компонентами. Таким образом, основным условием проведения процесса ректификации является отсутствие равновесия между фазами на всем пути движения. По мере продвижения по колонне имеет место процесс массообмена между жидкой и паровой фазой. В верхней часть-колонны непрерывно получается пар, который после конденсации дает готовый продукт — дистиллят из нижней части колонны вытекает менее летучий компонент — кубовый остаток. Конечным продуктом перегонки может служить не только дистиллят, но и кубовый остаток. Чтобы получить на выходе из колонны пар, содержащий в чистом виде низкокипящий компонент, необходимо, чтобы жидкость, с которой соприкасается пар на выходе из аппарата, мало отличалась по составу от пара. Схемы осуществления процесса показаны на фиг. 85. В схеме (фиг. 85, б) конденсатор 1 является одновременно дефлегматором. В нем происходит частичная конденсация пара с образованием флегмы, которая полностью возвращается в колонну. Несконденсировавшийся остаток пара проходит в конденсатор 2, где образуется дистиллят, который выводится из колонны. [c.229]

    Выделение ароматических углеводородов производится по типичной схеме непрерывного процесса экстрактивной ректификации (см. рис. 4,а, стр. 35). В среднюю часть экстрактивно-ректификационной колонны подается углеводородный концентрат, а на некотором расстоянии от верха колонны — разделяющий агент. В качестве дистиллата отбираются неароматические углеводороды, а из куба — раствор ароматического углеводорода в разделяющем агенте, подаваемый в середину отгонной колонны. В последней в качестве дистиллата отбирается ароматический углеводород, а из куба — разделяющий агент, возвращаемый на орошение колонны для экстрактивной ректификации. [c.273]


    Значительная затрата времени на аналитическую четкую ректификацию (например, 120 ч для разделения нефтяной фракции с интервалом кипения от —30 до +260 °С) послужила стимулом для моделирования процесса ректификации с использованием специальной газовой хроматографической аппаратуры [26]. При этом получаются опытные значения концентраций, которые сравнимы с результатами разделения в ректификационной колонне с числом теоретических ступеней разделения 100. Указанным способом можно анализировать как сырые нефти, так и нефтяные фракции соединений с числом атомов в углеродной цепи от 1 до 40. Прибор для одновременной аэрографии и ректификации с помощью небольшого встроенного компьютера позволяет получать кривые температура кипения — концентрация [% (масс.)] . Площади под этими кривыми непрерывно интегрируются и подсчитанные значения через каждые 10 с регистрируются самописцем. На анализ указанной выше нефтяной фракции (от —30 до +260 °С) требуется всего лишь около 1 ч [27]. [c.207]

    Продукты нефтепереработки разделяют главным образом ректификацией в ректификационных колоннах различных типов. Наиболее распространены колонны с барбо-тажными колпачками. Особенностью ректификационных колонн нефтеперерабатывающих установок является то, что они как бы представляют собой несколько поставленных друг на друга простых самостоятельных колонн с отбором по высоте жидкости. Жидкость поступает в расположенные вне колонны от-парные секции и обрабатывается в них паром. При этом получают пары низкокипящих фракций, возвращаемых в колонну, и жидкий нефтепродукт, или дистиллят. Ректификационные колонны работают под повышенным или атмосферным давлением, а также иод вакуумом. [c.59]

    Сырой дивинил с верха десорбера направляется на водную отмывку от аммиака в промывную колонну К-5. Промывная вода поступает на ректификационную колонну К-6, где от нее отгоняется аммиак, возвращенный в систему. Отмытый от аммиака дивинил подвергается дополнительной отмывке от карбонильных соединений на колонне К-7, после чего подвергается ректификации от высококипящих примесей на колонне К-8. [c.304]

    Пары крекинг-дистиллята, пройдя очистную башню, поступают в дополнительную ректификационную колонну 9, куда также стекают из башни и образовавшиеся жидкие полимеры. Полимеры обладают значительно более высокой температурой кипения, чем крекинг-бензин, и поэтому легко от него отделяются вместе с другими высококипящи га фракциями при ректификации. Через верх дополнительной колонны отходят пары крекинг-бензина с требуемым концом кипения, а с низа — полимеры и вы- [c.243]

    Разделительный аппарат одинарной ректификации. На рис. 19-19 показана схема простого цикла с дросселированием, в котором применен разделительный аппарат одинарной ректификации. Аппарат представляет собой обычную ректификационную колонну, куб которой обогревается сжатым воздухом, а исходная смесь подается на верх колонны. Сжатый и охлажденный в теплообменнике 1 воздух проходит по змеевику 2 и, отдавая тепло кипящему в кубе жидкому кислороду, частично конденсируется. Затем воздух дросселируется в вентиле 3 до абсолютного давления 1,2—1,3 ат и подается на верх колонны 4. В результате ректификации в кубе собирается ВК (кислород), из верхней части колонны отводится НК (азот). [c.690]

    Понижение давления в ректификационной колонне путем создания вакуума позволяет снизить температуру в колонне, что бывает необходимо при разделении компонентов, обладающих высокими температурами кипения или термической нестабильностью. Так, например, благодаря созданию вакуума можно при температурах менее 400 °С осуществить ректификацию масляных дистиллятов, температуры кипения которых при атмосферном давлении могут превышать 500 °С, обеспечивая ведение процесса без заметного разложения. В случае ректификации с водяным паром применение вакуума позволяет существенно сократить расход водяного пара. [c.155]

    Низкотемпературная ректификация, при которой предварительно охлажденный газ в смеси с образовавшимся при этом конденсатом разделяется под давлением в ректификационной колонне. Обычно ректификация завершает процесс разделения газообразного топлива и применяется для получения индивидуальных углеводородов высокой чистоты. В этом случае на ректификацию подается только конденсат, выделенный из газа конденсационно-компрессионным методом. [c.198]

    Отсутствие тарелок в испарителях создает наиболее благоприятные условия для достижения глубокого вакуума. Для обеспечения возможно низких температур кипения в нижней часта ректификационных колонн дальнейшая ректификация СЖК также проводится под глубоким вакуумом, создаваемым паро-эжекторными агрегатами [2]. [c.46]


    Эффективность разделительных аппаратов колонного типа с непрерывным контактом фаз, к каковым относятся насадочные и пленочные ректификационные колонны, часто выражают также через высоту единицы переноса — ВЕП и соответственно через число единиц переноса — ЧЕП. В основе этих характеристик лежит рассмотренное выше понятие о движущей силе массообмена, обусловливающей перенос вещества в колонне отсюда и термин единица переноса . Высоте единицы переноса соответствует высота такого участка разделительной части колонны, для воображаемых концов которого разница в составах входящего (выходящего) и выходящего (входящего) потоков одной из фаз равна средней движущей силе на этом участке. Поскольку применительно к ректификации движущая сила в принципе может быть представлена в виде разности [у—у ) или х —л ), то по отношению к соответствующей разности высоту единицы переноса обозначают как (ВЕП)ог/ или (ВЕП)ох. [c.72]

    В технике процесс ректификации проводится в специальных ректификационных колоннах, разделенных по высоте горизонтальными перегородками — тарелками . Каждый отдельный акт конденсации — испарение происходит на отдельной тарелке. Поэтому число тарелок в колонне равно показателю степени в (V.9.3). Это число определяет эффективность данной колонны и называется числом теоретических тарелок. В лабораторных условиях высокая эффективность процесса разделения достигается применением дефлегматоров. [c.145]

    Бутан-бутиленовая фракция проходит предварительно через теплообменник 1, в котором нагревается за счет тепла возвратного водного ацетона, рециркулирующего в процессе. Далее углеводороды поступают в тарельчатую ректификационную колонну 2 для разделения бутан-бутиленовой фракции при помощи ректификации в присутствии ацетона. Колонна 2 имеет 71 тарелку. В ее нижней части поддерживается давление около 8,5 ати и температура 124°. Обогревается колонна водяным паром в выносных кипя- [c.613]

    При разделении воздуха часть процесса ожижения, протекающего в отделителе жидкости и дросселе (показанная штриховой линией), осуществляется совместно с процессом ректификации. Сжатый воздух после теплообменника (точка 3 ) поступает на дросселирование через змеевик, расположенный в испарителе ректификационной колонны. В змеевике сжатый воздух дополнительно охлаждается и ожижается, так как температура его кипения выше температуры в испарителе, где давление над жидкостью лишь немного превышает атмосферное (на значение сопротивления теплообменника потокам, выходящим из колонны). Полученный жидкий воздух (точка 3) дросселируется до давления в колонне (точка 4) и в качестве разделяемой смеси и флегмы подается на верхнюю тарелку колонны. Таким образом, змеевик служит как бы продолжением теплообменника. Тепло испарения Qy передается жидкости в нижней части колонны от воздуха, который за счет этого ожижается. Испаритель, следовательно, играет и роль конденсатора для флегмы. [c.243]

    Регулирование работы ректификационных колонн. Процесс ректификации характеризуется рядом независимых и зависимых параметров. Независимые переменные можно разделить на две группы внешние и внутренние. [c.261]

    Продукты пиролиза выходят из закалочных аппаратов 3 с температурой 400 °С и направляются в низ промывочной ректификационной колонны 11. Здесь они встречаются с охлажденным потоком фракции 150—250 °С (квенчингом), подаваемым в середину колонны 11, охлаждаются до 180 °С и отмываются от твердых частиц углерода. Тяжелый конденсат с низа колонны забирается насосом 12 и подается на ректификацию в колонну 16. Газы и пары, поднимающиеся из нижней части колонны 11, проходят глухую тарелку и дополнительно промываются и охлаждаются до 100 °С, контактируя с флегмой, создаваемой верхним холодным орошением. Конденсат с глухой тарелки забирается насосом 10 и направляется на ректификацию также в колонну 16. Выходящий с верха колонны 11 газ с парами легких [c.33]

    По окончании хлорирования хлористый водород удаляется током азота из реакционной массы она направляется в отделение ректификации и самотеком поступает в куб ректификационной колонны 32. В колонне сначала отгоняются четыреххлористый углерод и промежуточная фракция. Отгонка ведется при температуре 120 °С в кубе колонны и при 30 и 1 ат вверху. Пары четыреххлористого углерода, выходящие из колонны, конденсируются в конденсаторе 33 и собираются в приемник 34-, конденсат возвращается на хлорирование. [c.28]

    Ректификация бутанольной воды, содержащей 8% растворенного бутанола, осуществляется в ректификационной колонне 24. В кубе колонны поддерживается температура 100°С, в верхней части колонны — 92—93 °С. Пары из верхней части колонны поступают в дефлегматор частичной конденсации, из которого конденсат возвращается на орошение колонны, а пары после конденсации разделяются во флорентийском сосуде 27 на бутанольную и водную фазы. Водная фаза подастся в приемник 9, а бутанольная — в приемник 28. [c.26]

    Смесь продуктов каталитического хлорирования из реактора 1 поступает в сборник 2 и затем на ректификацию в куб 3 ректификационной колонны 4. Ректификацию осуществляют в три стадии. На первой стадии при атмосферном давлении в колонне 4 отделяют МТХС и полихлорбензолы. Оставшиеся продукты хлорирования от одной или нескольких операций первой стадии поступают на вторую стадию ректификации в колонну 6, где при остаточном давлении 20—50 мм рт. ст. концентрат МДХФДХС отделяют от кубовых остатков. [c.160]

    На рис. 24 представлена схема ректификации рафината, разработанная Гипрококсом на основе выполненных УХИНом исследований [50]. Первый бензол, как обычно, из сборника 1 поступает в ректификационную колонну 2 для получения фракции БТК и сероуглеродной фракции. Последняя отправляется для переработки на сторону — в централизованный цех для выделения дициклопентадиена и сероуглерода, а фракция БТК подвергается каталитической гидроочистке. Получаемый рафинат подается на колонну 13 для отбора бензоголовочной фракции, которая должна быть отобрана таким образом, чтобы в ней совершенно не содержались кипящие выше чем бензол компоненты. Это заставляет оставлять некоторое количество бензола в донном продукте колонны 13. [c.143]

    Продукты пиролиза выходят из закалочных аппаратов 3 с температурой 400°С и направляются в низ промывочной ректификационной колонны 11. Здесь они встречаются с охлажденным потоком фракции 150—250°С (квенчннгом), подаваемым в середину колонны 11, охлаждаются до 180°С и отмываются от твердых частиц углерода. Тяжелый конденсат с низа колонны забирается насосом 12 и подается на ректификацию в колонну 16. Газы и пары, поднимающиеся из нижней части колонны 11, проходят глухую тарелку и дополнительно промываются и охлаждаются до 100°С, контактируя с флегмой, создаваемой верхним холодным орошением. Конденсат с глз хой тарелки забирается насосом 10 и направляется па ректификацию также в колонну 16. Выходящий с верха колонны 11 газ с парами легких фракций охлаждается в водяном холодильнике 14 до 30°С и направляется в сепаратор 20. С верха сепаратора газ забирается I ступенью турбокомпрессора 26. Конденсат с низа сепаратора 20 насосом 19 подается на орошение в колонну 11 и на ректификацию в колонну 16. Нижний продукт колонны 16 -компонент котельного топлива (фракция 250— 400°С) — забирается насосом 17, прокачивается через теплообменники 1, нагревая сырье, затем охлаждается в аппарате воздушного охлаждения 13 и удаляется с установки. [c.54]

    Гипотеза теоретической тарелки не воспроизводит в точности действительной картины явления, нротекаюш его в контактной ступени, ибо основана на статическом представлении процесса. Тем не менее эта концепция позволяет осуществить анализ и расчет процесса разделения псходной смеси в ректификационной колонне и получить достаточно близкую к действительности картину реального процесса, несмотря на наше неумение вполне компетентно и всесторонне исследовать сложные явления массопередачи, происходящие на практической ступени контакта. Другим обоснованием целесообразности разработки термо-динамической теории ректификации является установившийся, по-видимому, окончательно взгляд, согласно которому ис- I следование и определение эф-фективности практических ступеней разделения оказывается, как правило, задачей менее трудной, чем непосредственное изучение диффузионной картины процесса ректификации в реальной колонне. Таким образодЕ, термодинамическая теория ректификации является пока первой ступенью общей теории ректификации. Для суяедения о направленности самопроизвольных процессов энергообмена и массообмена в отдельно взятой контактной ступени следует рассмотреть ее работу на основе метода теоретической тарелки. [c.123]

    Секцию питания ректификационной колонны, разделяющей бинарную смесь, можно рассчитать и чисто аналитическим путем. Как будет показано в последующем изложении, для установления конкретного режима разделения в колонне необходимо, при заданном составе и энтальпии сырья и рабочем давлении по высоте аппарата, назначить еще четыре определяющих иараметра. Так, можно закрепить желательные концентрации уи и хд НКК в дистилляте и остатке и, например, паровое число или величину подвода тепла в кипятильник ( д/-й и концентрацию одного из потоков тарелки питания. Вместо значения ( д/Л можно принять. чюбой из элементов ректификации, связанный с тарелкой питания, ибо и в этом случае рабочий режим разделения в колонне определится полностью. В самом деле, из материальных балансов, связывающих количества и составы потоков, поступающих на тарелку питания и отходящих с нее, можно получить [c.163]

    Установка представила собой модель исчерпывающей части экстрактивно-ректификационной колонны. Отбираемый из верха колонны пар конденсировался, конденсат смешивался с жидкостью, отбираемой из куба, и эта смесь подавалась в верх колонны. Благодаря этому легко обеспечивалась стабильность режима процесса. При установившемся режиме измерялись расходы материальных потоков и отбирались пробы жидкости и пара с каждой тарелки. Обработка опытных данных производилась графическим методом Мак-Кэба и Тиле, поскольку разделяемая смесь являлась бинарной. Данные опытов показали, что рабочая линия процесса ректификации, выраженная в относительных концентрациях изобутана в углеводородной смесч, во всех случаях близка к прямой. [c.264]

    И. Дорохов с сотр. разработал кинетическ ую модель межфаз-ного переноса вещества с единых позиций неравновесной термодинамики, механики гетерогенных сред с учетом реальной гидродинамической обстановки для расчета тарельчатых ректификационных колонн. Это позволило не прибегать к эмпирическим зависимостям. На основе системного подхода было показано, как строится полное математическое описание процесса ректификации, а также исследуются возможности этого подхода для проверочного и проектного расчетов ректификационных колонн. [c.141]

    Разумеется, для разделения близкокипящих компонентов и неидеальных смесей, не образующих азеотропа, можно подобрать ректификационные колонны эффективностью в 100 и более теоретических ступеней разделения, поскольку насадка с ВЭТС, равной 1—2 см, сейчас не является уже редкостью. Однако вместо применения колонн с 200 или даже 300 теоретическими ступенями разделения (относительная летучесть а = 1,03 — 1,02) такие смеси можно разделить, если воздействовать на фазовое равновесие в направлении повышения значений а и достижения более благоприятных условий разделения. В качестве примера рассмотрим экстрактивную ректификацию смеси близкокипящих компонентов н-гептан — метилциклогексан, для которых разность температур кипения составляет 2,7 °С (а = 1,075). При обычной ректификации с бесконечным флегмовым числом требуется 48 теоретических ступеней, чтобы сконцентрировать смесь от 15,3 до 95,4% (мол.). Если же в смесь добавить 70% (масс.) анилина, то такого же обогащения можно достигнуть при числе теоретических ступеней 12,4 и флегмовом числе V = 35. При этом относительная летучесть возрастает с 1,07 до 1,30 [35]. Если смесь является азеотропной, то чистые компоненты можно получить только с помощью селективного метода разделения. [c.301]

    Стандартные длинногорлые колбы (см. рис. 313) применяют в качестве кубов преимущественно при дистилляции. Благодаря длинному горлу предотвращается унос брызг. Плоскодонные колбы не следует использовать при вакуумной дистилляции, так как они недостаточно прочны. В качестве кубов ректификацион- -ных колонн наиболее подходящими являются круглодонные трех-горлые колбы. Два боковых штуцера со стандартными шлифами N514,5 используют для установки термометра, загрузки и выгрузки веществ, а также для отбора проб, подачи газа или пара через подводящую трубу и ввода капилляра, предотвращающего пульсации давления при кипении. Боковые штуцеры должны составлять с вертикальной осью колбы угол 20°, чтобы оставалось достаточно места для размещения необходимых деталей при установке обогревающего кожуха. Целесообразно снабжать колбы крючками для стягивания пружинами шлифовых соединений. Это необходимо потому, что при ректификации в кубе возникает избыточное давление, которое может при отсутствии стягивающих устройств вытолкнуть детали, вставленные в куб на шлифах. Если в ходе ректификации необходимо часто менять термометры или желательно использовать термометры без шлифов, применяют колбы с термометрическими карманами, в которые для улучшения теплопередачи заливают немного масла (рис. 314). Для ректификации при атмосферном давлении куб заполняют разделяемой смесью на % объема, а для ректификации под вакуумом — на Vj объема. [c.387]

    Одной из бопее труд51ых проблем в лабораторной ректификации является разделение тяжелых нефтяных фракций (мазутов, масел, петролатумов) методом ректифик цйи. В связи с тем, что сопротивление насадок ректификационных колонн во много раз превышает давление, при котором эти продукты должны подвергаться нагреву, работа с такими продуктами в обычных колоннах непрерывного действия невозможна. Процесс ректификации таких продуктов приходится проводить с подачей в колонну инертного компонента (водяного №ра или азота), чтобы понизить парциальное давление нефтяных паров до требуемого. [c.133]

    Метан после очистки в адсорбере 1 смешивают в аппарате 3 с газообразным аммиаком и вводят в трубчатый реактор 4, помещенный в печь 5, в которой нагрев осуществляется топливным газом. Продукты реакции проходят холодильник 6, систему абсорберов 7, Р и ректификационных колонн 8, 10 для улавливания аммиака и выделения синильной кислоты. Непрореагировавший аммиак удйяяется из продуктов реакции в абсорбере 7 разбавленной серной кислотой. Синильная кислота, уносимая с раствором сульфата аммония, отпаривается в колонне 8 и возвращается в главный газовый поток, питающий сернокислотный абсорбер 7. Газы, освобожденные от аммиака, промываются в абсорбере 9 холодной водой, при этом улавливается синильная кислота. Получающийся водный раствор подвергается ректификации в колонне 10, в результате чего выделяется 99,5% синильная кислота, которая собирается в емкостях 11 и 12. Сверху из абсорбера 9 выходит газ, который имеет следующий состав 95,6% (об.) Hj, 3,2% (об.) СН4, 1,2% (об.) Nj. Этот газ собирается в газгольдере 13 и может использоваться либо как топливо для собственных нужд (для обогрева реактора), либо в качестве сырья для гидрогенизационных и других процессов. [c.282]

    Основные технологические параметры ректификации, обеспечивающие выполнение заданных требований к разделению исходной смеси, относительно просто рассчитать лишь для простых ректификационных колонн, разделяющих один поток сырья на два продукта (дистиллят и кубовый остаток). В этом случае для расчета технологических параметров ректификации можно использовать известные корреляционные зависимости, связывающие параметры двух гипотетических (предельных) режимов работы простых колонн режима полноп орошения (флегмовое число равно бесконечности, число тарелок минимально, т. е. R = оо, N = Л тш) И режима минимального орошения (флегмовое число минимально, число тарелок равно бесконечности, т. е. [c.90]

    Пример XI. 8. В тарельчатой ректификационной колонне подвергают ректификации 775,8 кмоль/ч дебутанизированного газойля для получения дистиллята, содержащего 94,3 мольн. % изопентана остаток должен содержать 2,54 мольн. % изопентана. Колонна работает с флегмовым числом Я = 2,80 / мин- Определить действительное число тарелок, если общий к. п. д. т) = 0,70. Состав исходной смеси (в мольн. %) н-бутан — 0,59 изопентан—18,00 н-пентан— 27,5 циклопентан — 0,36 гексан — 53,55. [c.373]

    Ректификация является завер1пающей стадией разделения газовых смесей. Она применяется для получения нндивндуаль-,ных углеводородов высокой чистоты. Поскольку разделение на компоненты смеси газов проводить затруднительно, при существующих схемах газоразделения на ректификацию подают жидкость, выделенную из газа конденсационно-компрессионным или абсорбционным методом. Особенность ректификации сжиженных газов по сравнению с ректификацией нефтяных фракций — необходимость разделения очень близких по температуре кипения продуктов и получения товарных продуктов высокой счепени чистоты. Ректификация сжиженных газов отличается также повышенным давлением в колоннах, поскольку для создания орошения необходимо сконденсировать верхние продукты ректификационных колонн в обычных воздушных и водяных холодильниках, не прибегая к искусственному холоду. Чтобы сконденсировать, например, изобутан при 40 °С, надо поддерживать давление в рефлюксной емкости бутано-вой колонны и, следовательно, в самой колонне не ниже 0,52 МПа. [c.289]

    Ректификационная колонна (рис. 4.14,а) является первой после электродегидраторов в цепи аппаратов неф7епереработки. Колонные аппараты, имеющиеся на установке (отпарные колонны (рис. 4.14,6), фракционирующие абсорберы), оборудованы ректификационными элементами, представляющими собой тарелки различной конструкции колпачковые, желобчатые, с 8-образными элементами, клапанные. Колонные аппараты представляют собой цилиндрические сосуды вертикального типа. Они оборудуются щтуцерами, патрубками, люками-лазами и другими приспособлениями, необходимыми для эксплуатации колонны и проведения ремонтных работ. Ректификационная колонна предназначена для получения дистиллятов светлых нефтепродуктов (бензина, лигроина, керосина). Вследствие негабаритности колонна поставляется двумя частями. Окончательная сборка производится на месте монтажа. На установке обычно устанавливаются лигроиновая и газойлевая отпарные колонны. Оба аппарата предназначены для отделения легких фракций в процессе ректификации. [c.87]

    Ректификация. Ректификацией можно разделить легколетучие соединения с различающимися температурами кипения. Ректификация проводится в сиециальных ректификационных колонна . Упрощенная схема такой колонны изображены на рнс. 15.1. В куб колонны помещается смесь разделяемых веществ. Прп нагревании куба компоненты смесп начинают испаряться, и пары, поднимаясь вверх, достигают тарелки с отверстиями. Пары компонента с более высокой температурой кипения частично копденсируются на ней и стекают обратно в куб, пары более легкокипящего компонента проходят через отверстие в тарелке и поднимаются выше. Чем больн1С таких тарелок в колонне, тем лучше разделяются вещества. Наверху колонны собирается практически один легкокипящий компонент смеси. Пары его конденсируются в холодильнике с водяным охлаждением и жидкий продукт (дистиллят) выводится иа колонны. [c.267]

    Графический метод расчета ректификационных колонн для ректификации бинарнь[х систем ирн помощи диаграммы равновесия имеет существенные недостатки. При построении расчетных диаграмм принимается, что теплота испарения обоих компонентов имеет одну и ту же величину. Вследствие этого устанавливается постоянство количества пара и жидкости для любого сечения колонны. Это положение при измерении весов протекающих в колонне пара и жидкости в кГ соблюдается редко. Поэтому измерение масс ведут в кмоль, а концентраций в % мол. Переход от весового измерения к молевому требует затраты времени и делает расчет неудобным. Кроме того, изложенный в гл. П1 метод расчета не раскрывает роль многих важных факторов, которые характеризуют процесс ректификации с гермодинамической точки зрения. Поэтому представляет большой интерес метод расчета ректификации бинарных смесей при помощи тепловой диаграммы. [c.79]

    При парциальной конденсации паров верхнего продукта ректификационной колонны, т. е. когда дистиллят может быть получен в паровой Ву и жидкой Вь фазах В = + Дг,), при заданных температуре конденсации верхнего продукта и суммарном составе дистиллята хд , полученным в результате выполненного расчета процесса ректификации (см. пп. 5—7), из уравнения (11.49) при 2,- = хог вычисляется доля парового потока дистиллята е = Ву]В п при помощи уравнений (1Ь49) и (11.50) определяются составы жидкого хвы = г) и парового уоу1 = Уд потоков дистиллята. По уравнению (11.49) может быть вычислена [c.71]

    Сложившаяся в ОАО "Орскнефтеоргсинтез технология подготовки сырья для установок каталитического риформинга включает первичную перегонку нефти на установках АТ и АВТ с получением утяжеленной бензиновой фракции с концом кипения до 220°С и ее последующим фракционированием на установке четкой ректификации. Поскольку в составе установок АВТ на ОАО "Орскнефтеоргсинтез" отсутствуют колонны стабилизации бензина, типовая установка четкой ректификации 22-4, гфоектная производительность которой составляет 1 млн. т/год (125 т/ч), была ранее дооборудована ректификационной колонной К-5, предназначенной для физической стабилизации широкой бензиновой фракции с удалением сероводорода и легких газообразных углеводородов (С1-С4). После стабилизации в колонне К-5 широкая бензиновая фракция далее разделяется в трех ректификационных колоннах К-1, К-2 и К-3 на пять фракций с условными пределами выкипания н.к.-62 С, 62-85 С, 85-120°С, 120-180 С и 180°С-к.к. (рис.1). Фракция 180 С-к.к. является компонентом сырья установки гидроочистки керосиновой фракции Фракции 85-120 С и 120-180°С поступают в качестве сырья на установки каталитического риформинга. Фракция 62-85°С и очищенная от сероводорода и меркаптанов фракция н.к.-62°С, после удаления из нее газообразных углеводородов на установке ГФУ используются при приготовлении товарного автомобильного бензина марки А-76 [c.8]

    В работах [2,3] рассмотрены динамические характеристики тарельчатых и насадочных ректификационных колонн на примере отбензиниваюшей колонны К-1 установки ЭЛОУ-АВТ ОАО Орскнефтеоргсинтез и колонны концентрирования фенола без учёта управляющих воздействий. Однако автоматическое регулирование тех или иных технологических параметров является неотъемлемой частью большинства процессов ректификации. Без учёта управляющих воздействий динамическую модель нельзя считать полной. Исходя из этого и с учётом последующего изучения различных закономерностей по влиянию работы отбензинивающих колонн К-1 на работу основных атмосферных колонн К-2, нами была разработана математическая модель для изучения динамики работы атмосферных блоков установок АТ и АВТ [c.44]

    Периодическая ректификация осуществляется в одной ректификационной колонне путем последовательного (во времени) получения в виде дистиллята сначала наиболее летучего компонента смеси, а затем — компонентов с более высокими температурами кипения. Компонент смеси с самой высокой температурой кипения остается в кубе колонны в виде кубового остатка. Разумеется, реально получают не отдельные компоненты, а фракции (порции) с преимущественным их содержанием. Управление таким периодическим процессом существенно сложнее, нежели непрерывньш, когда параметры процесса не изменяются в ходе работы установки. [c.1082]


Смотреть страницы где упоминается термин Ректификационные колонны колонны ректификации : [c.414]    [c.83]    [c.274]    [c.291]    [c.51]    [c.57]    [c.303]   
Основы общей химической технологии (1963) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ методов и разработка алгоритма расчета стр проиесса ректификации в сложных ректификационных колоннах при заданных тепловых нагрузках

Басаргин. К расчету насадочных ректификационных колонн. . Алексеев. Получение единого кинетического уравнения процесса ректификации для одной из секций колонны на базе совместного решения ос

Колонна ректификационная

Общая система уравнений, описывающая процесс ректификации в простых и сложных ректификационных колоннах

Определение основных показателей работы ректификационной колонны. Моделирование процесса ректификации на ЭВМ

Очистка Alb ректификацией на полупромышленной ректификационной колонне

Перегонка и ректификация. Ректификационные колонны

Принцип ректификации. Периодическая ректификация. Непрерывная Кк ректификация I 64. Анализ работы ректификационных колонн

Процесс ректификации и ректификационные колонны

Процесс ректификации и типовые конструкции ректификационных колонн

РАСЧЕТ ПРОЦЕССА РЕКТИФИКАЦИИ НЕФТЯНЫХ СМЕСЕЙ В ПРОСТЫХ И СЛОЖНЫХ РЕКТИФИКАЦИОННЫХ КОЛОННАХ С ОДНИМ ВВОДОМ СЫРЬЯ

Ректификационная колонна двукратной ректификации

Ректификационная колонна колонна

Ректификационная колонна однократной ректификации

Ректификационные колонны Ректификация

Ректификация воздуха ректификационные колонны

Ректификация колонны

Ректификация. Технологический расчет ректификационных колонн непрерывного действия



© 2025 chem21.info Реклама на сайте