Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ионная неэлектролитов

    Член ЪК -f n, т) характеризует имеющие место в растворах конечных концентраций электролита следующие взаимодействия неэлектролит-неэлектролит, ион—ион, ион—неэлектролит. Нужно отметить, что в случае малорастворимых в воде благородных газов первый тип взаимодействия выражен слабо. [c.132]

    Заряд комплексного иона равен алгебраической сумме зарядов его составных частей комплексообразователя и лигандов (аддендов). Если суммарный заряд всех неионогенно связанных частиц молекулы комплексного соединения равен нулю, то это говорит о том, что в данном случае имеется комплексный неэлектролит. [c.139]


    Эти ряды соединений представляют интерес не только с точки зрения валентности и способности к координации в них мы можем отметить переход от положительно заряженного комплексного иона (катиона) через нейтральное соединение (неэлектролит) к отрицательно заряженному комплексному иону (аниону). [c.120]

    Во многих случаях растворимость вещества значительно не изменяется при добавлении к раствору других соединений (в небольших концентрациях). Так, неэлектролит (недиссоциирующее вещество), подобный сахару или иоду, как правило, незначительно влияет на растворимость соли в воде, а соль, подобная нитрату патрия, оказывает небольшое влияние на растворимость иода в воде. Точно также присутствие соли, не имеющей общего иона с солью, растворимость которой рассматривается, оказывает лишь довольно небольшое влияние на растворимость последней, обычно несколько повышая ее такое небольшое повышение является следствием электростатического взаимодействия ионов в растворе, понижающего до некоторой степени их активность, как об этом говорилось в разделе 10 гл. XVI. [c.375]

    Термины электролит и неэлектролит в данном случае являются не абсолютными понятиями, а относительными. Так, например, уксусная кислота, имеющая константу диссоциации 1,75 10- , играет роль неэлектролита в способе опережающего электролита, с помощью которого ее можно вполне удовлетворительно отделить от соляной кислоты. Утверждают, что этот новый метод сильно расширяет применение ионообменных смол и дает возможность в настоящее время осуществлять разделения, которые были бы неэкономичными при проведении их с помощью обычного ионного обмена. [c.116]

    Чтобы исследовать другие методы разделения, мы провели некоторые опыты по применению способа опережающего электролита. В этом случае не требуется регенерации смолы, которая происходит совершенно по другому механизму, чем при обычном ионном обмене. Границы применения способа опережающего электролита определяются многими факторами, а именно скоростью движения жидкости через колонку, объемом разделяемого раствора и соотношением концентраций компонентов, рабочей температурой, величиной зерен смолы и степенью сшивки, степенью диссоциации соединений, подлежащих разделению. Разделение по способу опережающего электролита является в принципе эффективным, если разделяемые компоненты обладают различными степенями диссоциации в этом случае одно из веществ выступает как электролит , а другое — как неэлектролит . [c.132]

    Пример. Глюкоза — неэлектролит в водном растворе и находится в растворе в виде молекул, хлорид кальция СаСЬ — электролит в водном растворе и содержится в растворе в виде ионов и С1 . [c.31]


    Один из распространенных методов определения чисел гидратации состоит в том, что к раствору электролита добавляют неэлектролит, т. е, вещество, которое е переносится током. Чаще всего добавляют сахар. В первом приближении можно считать, что сахар не вступает в сольватную оболочку. Тогда, если одновременно с наблюдением за изменением концентрации электролита проследить за изменением концентрации сахара, можно установить колич ество воды, переносимое ионами. Концентрация сахара либо будет уменьшаться, если количество принесенной воды будет превышать количество унесенной, либо увеличиваться, если будет обратное соотношение. [c.278]

    Если ионит привести в соприкосновение с водным раствором неэлектролита, то неэлектролит будет диффундировать внутрь смолы. После достижения равновесия отношение количества неэлектролита к количеству воды в фазе ионита может быть либо больше ( положительная адсорбция ), либо меньше ( отрицательная адсорбция ), чем в растворе. Сорбция неэлектролитов осложняет многие аналитические разделения, но зато с выгодой используется в некоторых специальных методах [127]. Б этой главе будет приведено несколько типичных примеров такого использования. [c.48]

    Однако возможности хроматографического метода не являются безграничными. В жидкостной хроматографии пользуются различными приемами для выделения чистых компонентов или хотя бы отдельных групп веществ из сложной смеси. В зависимости от разнообразия задач и способов ведения процесса эти приемы связаны, например, с разделением смеси электролит — неэлектролит на ионообменных адсорбентах, с разделением на группы веществ, с применением растворителей и элюирующих растворов для элюирования распределительной и первичной ионообменной хроматограммы, с заменой одних катионов и анионов на другие, с процессами в смешанном слое, с разделением сильных и слабых электролитов, с применением осадителей в колонках (осадочная хроматография), с применением комплексообразующих веществ для элюирования или для маскировки мешающих ионов и т. д. Все эти приемы неизбежно приводят к тому, что для получения чистого компонента из сложной смеси, как правило, требуется осуществить несколько стадий процесса. [c.99]

    Для некоторых комбинаций ионов и полярных молекул проявляются специфические эффекты, которые указывают на дополнительные взаимодействия, механизм которых отличен от вышеизложенного. О некоторых из них можно сделать заключение на основе данных, приведенных на рис. 1.2. Слева (неполярные электролиты) линии, соединяющие значения ks для данной соли, не пересекаются, т.е. расположение солей соответствует в какой-то мере рядам по величинам солевых эффектов. Справа (полярные неэлектролиты) имеется много разнообразных пересечений. Для некоторых из рассматриваемых систем получены нелинейные сеченовские графики (1.27), и их поведение можно объяснить [287] на основе представлений о непосредственном химическом взаимодействии. Если неэлектролит N образует комплексный ион 1 с одним из ионов электролита S, то растворимость слаборастворимого N должна линейно возрастать с концентрацией соли  [c.35]

    Если неэлектролит присутствует в системе в сравнительно низкой концентрации, то применимо уравнение (1.18). Влияние неэлектролита на коэффициент активности соли обычно исследуется при сравнительно высокой концентрации соли, так что имеет место и взаимодействие между ионами самой соли. Этот вк,лад в у следует учитывать особо. Для электролита состава 1 1 уравнение (1.186) удобно в этом случае представить в виде [c.81]

    Для нахождения чисел гидратации часто используют результаты определения переноса ионами воды при электролизе. При этом считается, что перенос ионами воды и, соответственно, числа гидратации наиболее непосредственно могут быть найдены методом Нернста, при котором к раствору добавляется неэлектролит — индифферентное вещество сравнения (например, сахар) и определяется изменение концентрации этого вещества [c.50]

    При контакте ионита с водными растворами электролитов происходит его электролитическая диссоциация, обеспечивающая возможность ионного обмена. Иойный,обмен представляет собой стехиометрическое замещение в обмен на каждый эквивалент одного иона, поглощенного из раствора, ионит отдает в раствор один эквивалент другого иона с зарядом того же знака. Прн адсорбции, в отличие от обменного процесса, адсорбент поглощает растворенное вещество (электролит или неэлектролит), не отдавая в раствор никакого другого вещества. Хотя это различие и кажется достаточно отчетливым, на практике часто трудно провести границу между названными процессами, так как ионный обмен почти всегда сопровождается адсорбцией, а большая часть обычных адсорбентов, например активный уголь, силикагель, оксид алюминия и др., могут действовать как иониты. [c.73]

    Для отделения сильного электролита от слабого или от неэлектролита можно воспользоваться так называемым способом опережающего электролита - [68]. Этот метод использует новый принцип разделения, не связанный непосредственно с ионным обменом. Термины электролит и неэлектролит в данном случае являются не абсолютными понятиями, а относительными. Так, например, уксусная кислота, имеющая константу диссоциации 1,75-10 , в способе опережающего электролита играет роль неэлектролита , поэтому ее можно вполне удовлетворительно отделить от соляной кислоты на анионите в СЬформе (рис. 33). [c.112]

    В растворах слабых электролитов часть молекул диссоциирована на ионы, поэтому число частиц-ионов и молекул в растворе электролита бол эше, чем в экви-молярном растворе неэлектролита. Этс ведет к увеличению осмотического давления, пони5 ению давления пара, повышению температуры кип1 ния, понижению температуры замерзания растворов злектролитов по сравнению с растворами неэлектроли ов той же концентрации. [c.141]


    Комплексные соединения. Многие соли, кислоты и ос-гюванпя, а также и некоторые неэлектролиты относятся к большому классу сложных комплексных соединений, строение и свойства которых впервые были описаны в координационной теории А. Вернера (1893). Такие соединения содержат центральный атом — комплексообразователь. Обычно это положительно заряженный ион металла, координирующий вокруг себя определенное число противоположно заряженных ионов или полярных молекул (ЫНз, Н2О и др.), называемых лигандами (Ь). Таким образом, возникает внутренняя сфера комплексного соединения или комплексный ион, заряд которого определяется алгебраической суммой зарядов комплексообразователя и связанных с ним лигандов Такой суммарггый заряд может быть положительным (катионный комплекс), отрицательным (анионный комплекс) и в частном случае может быть равен нулю (нейтральный комплекс-неэлектролит). Число лигандов при условии, что каждый из них связан с центральным атомом только одной связью, называется координационным [c.44]

    При образовании малодиссоциирующих соединейий происходит связывание ионов реагирующих веществ, поэтому растворы становятся слабыми проводниками электрического тока. Это можно проверить на опыте с нейтрализацией гидроксида бария серной кислотой. Если опустить электроды в насыщенный раствор гидроксида бария, предварительно прибавив к нему несколько капель фенолфталеина, то электрическая лампочка, включенная в цепь, горит. При осторожном добавлении из бюретки разбавленного раствора серной кислоты и энергичном перемещивании лампочка станет гореть ме-не - ярко и, наконец, совсем погаснет, а малиновая окраска раствора исчезнет. Раствор практически перестал проводить электрический ток. Это произошло потому, что все имеющиеся в растворе ионы образовали малодиссоциирующее (Н2О) и малорастворимое (Ва304) вещества и раствор практически превратился в неэлектролит  [c.232]

    Эта pa.-iHo Tb потенциалов (доннановский потенциал) противодействует стремлению ионов выровнять свои концентрации в ионите и растворс путем диффузии и предотвращает проникновение КОНОНОВ а значит и электролита в. зерна смолы. Поэтому ш разбавленных растворов ионит с высокой емкостью адсорбирует электролит в значительно меньн1ей степени, чем неэлектролит [1]. [c.195]

    Анионы, разупорядочивая структуру воды, оводняют и катион, и неэлектролит, создавая этим условия для образования гидратно-сольватных оболочек катиона (устойчивость таких комплексов катион—вода—растворитель будет тем прочнее, чем сильнее поляризована вода, т. е. чем больше заряд и меньше радиус катиона). Склонность упомянутых выше ионов к образованию дальних, небьерру-мовских (по терминологии Даймонда [283]) ионных ассоциатов приводит к повышению вероятности образования их с заранее подготовленной смешанной гидратно-соль-ватной оболочкой. Среди большого числа разнообразных по своему составу и строению сольватов имеются такие, значения параметров растворимости которых довольно близки к значениям этого параметра равновесной фазы растворителя, в результате чего произойдет их распределение между обеими фазами. [c.111]

    Экстракция в системах электролит — неэлектролит является широко распространенным процессом в технологии редких, радио-а[ тиБНЫх, цветных металлов и неорганических веществ. Главная черта этого процесса состоит в том, что извлечение вещества из вод-но11 в органическую фа.чу происходит в результате химического взаимодействия гидратированных ионов с экстрагентами с получением соединений, растворимых в избытке экстрагента или в инертном разбавителе. Реэкстракция вещества в водную фазу также связана с предшествующими химическими процессами разрушения экстрагируемых соединений. [c.379]

    Еще одним недостатком является то, что емкость смолы по отношению к молекулам органического вещества представляет лишь небольшую долю от ее ионообменной емкости кроме того, молекулы веществ, содержащих более чем три-четыре атома углерода, вряд ли вообще поглощаются смолой. Сульфированная поли-стирольная смола обычного типа имеет ионообменную емкость около 5 мэкв1г, но ее емкость в отношении адсорбции этилового спирта будет не более 0,5 мэкв1г. Следовательно, для удаления определенного весового количества неэлектролита этим новым методом требуется больше смолы, чем для удаления такого же количества электролита обычным ионным обменом. Такая малая емкость означает, что объем раствора, который можно единовременно очищать, очень мал. В практике обычного ионного обмена лишь в особых условиях стали бы обсуждать целесообразность работы с раствором, объем которого не может превышать за операцию пятикратного объема слоя ионита, так как обычно количество раствора превышает объем слоя в несколько сотен раз. В способе опережающего электролита количество разделяемого раствора за операцию составляет 0,2—1,0 объема слоя, и это должно сильно затруднять операции разделения (если только они вообще возможны). После каждой операции неэлектролит вымывают из колонки большим количеством воды. В одном из типичных опытов, описанном изобретателями метода, после пропускания одного объема рабочего раствора на объем слоя колонку регенерируют тремя объемами воды, а поэтому в результате происходит не менее чем трехкратное разбавление неэлектролита. Такое разбавление, вероятно, очень нежелательно и делает неизбежным [c.128]

    Пусть некоторый раствор В состоит из 7V молекул неэлектролита и iVa-1-iV ионов электролита. Выберем в качестве стандартного состояния бесконечно разведенный раствор электролита в неэлектролите. Тогда, так же как и для раствора А, nony laeM  [c.447]

    В целях упропдения мы выбрали для рассмотрения случай, когда электролит является бинарным. В тех случаях, когда молекула электролита нри диссоциации образует больше двух ионов, вывод несколько усложняется. Однако конечный результат остается неизменным. Концентрационная зависимость коэффициента активности неэлектролита, растворенного в электролите, имеет тот же вид, что и соответствующая зависимость д.тя электролита, растворенного в неэлектролите. Термодинамические свойства разведенных растворов неэлектролитов в электролитах должны быть сходными с аналогичными сво11ствами растворов электролитов в неэлектролитах, вытекающими из теории Дебая—Хюккеля. [c.448]

    Приведенные в этом параграфе материалы подтверждают справедливость этого положения для растворов электролит—неэлектролит. Одни и те же закономерности оказываются применимыми и к нейтральным молекулам, распределеппым среди ионов, и к ионам, распределенным среди молекул. Важно, чтобы было сочетание нейтральных молекул с ионами—частицами, имеющими свободный заряд. Этот вывод, повидимому, имеет силу не только для жидких растворов, но и для любых смесей из частиц разных видов. Если присутствуют ионы как примесь к нейтральным молекулам или нейтральные молекулы как примесь к ионам, на сцену выступают уравнения Дебая—X гоккеля. [c.449]

    Если нужно отделить неэлектролит и от катионов, и от анионов, то раствор может быть подвергнут деионизации пропусканием сначала через катионит в Н-форме, а затем через анионит в ОН-форме (схема 1.3). В первой колонке катионы обмениваются на ионы водорода. Освобождающиеся кислоты поглощаются во второй колонке. Б некоторых случаях для деионизации может быть с успехом использован смешанный слой . Одной из первых работ, где использовался этот метод, является работа Плотта и Глока [15] по удале- [c.22]

    Другой интересный способ заключается в удалении ионных нримесей путем на./тожения электрического напряжения, В нерекиси водорода, которая ведет себя как неэлектролит (аналогично воде), неорганические соли диссоциируют на ионы, В связи с этим анионы и катионы будут соответственно переноситься к противоположно заряженным электродам. Выдан ряд патентов по методам очистки, основанным на этом принципе [21], однако, насколько авторам известно, ш один из них не нашел промышленного применения для очистки растворов перекиси водорода. Понятно, что таким способом нельзя удалить из перекиси водорода незаряженные примеси, встречающиеся, нанример, в продукте производства, полученном по методу с применением органических веществ. [c.139]

    Для иллюстрации последствий ионной диссоциации можно привести разнообразные примеры. Чтобы показать влияние диссоциации соляной кислоты, Льюис и др. [3] построили график зависимости парциального давления НС1, находящейся в равновесии с раствором, как от т, так и от т . Они построили также график понижения точки замерзания уксусной кислоты, из которого видно, что уксусная кислота ведет себя как неэлектролит, за исключением очень низких концентраций. То же бтмечено на рис. 14-1, показывающем изменение с концентрацией молярного коэффициента активности /д (определенного аналогично у ). Его поведение типично для неэлектролитов. Однако, если уксусная кислота действительно диссоциирует на ионы водорода и ацетата при бесконечном разбавлении, величина - -d x /л/ 1п с должна стремиться к 2 по мере приближения с к нулю. Наблюдаемое поведение уксусной кислоты обусловлено ее малой константой диссоциации, вследствие чего уксусная кислота почти [c.48]

    Электростатическая модель. При учете только электростатических взаимодействий в растворе неэлектролита N, содержащем электролит С+А , неэлектролит должен концентрироваться вблизи ионов, если его молекулы более полярны, чем молекулы растворителя (электростатическое всаливание). Если полярность молекул неэлектролита меньше, чем молекул растворителя, то они должны вытесняться из окрестностей иона (электростатическое высаливание). ГЬ этой модели были рассчитаны [100, 14, 137] значения ks, согласно которым сделаны некоторые выводы 1) при DN < Dsoiverit все электролиты должны оказывать высаливающее действие практически по отношению ко всем неэлектролитам. И обратно, если электролиты вызывают такой эффект, то непременно Dy < Dsoivent (D - диэлектрическая проницаемость) (рис. 1.2) 2) практически все неэлектролиты должны высаливаться из воды 3) для несложных электролитов ks должны быть близки между собой, причем различия должны согласовываться с величинами ионных радиусов. Наиболее серьезное ограничение применимости модели состояло в ее неспособности объяснить изменение знака s для данного неэлектролита в зависимости от природы электролита. [c.44]

    Теория солевых эффектов для неэлектролитов с кислотно-основными свойствами, основанная на учете водородных связей. Молекулы воды в первой координационной сфере ионов металлов обладают повышенной кислотностью по сравнению с молекулами воды в объеме. Эта кислотность передается с некоторым ослаблением и на более удаленные молекулы воды, связанные водородной сачзью (гл. 2, разд. З.Г). Если неэлектролит N обладает основными свойствами, то эффективность его стабилизации (всаливания) уменьшается в ряду Н+ > Li+> > Na+> K+> Rb+, s+ (гл. 2, разд. З.Г), поскольку прочность водородных связей в структурах 1 и 2 увеличивается с ростом кислотности воды (гл. 2, разд. 4.Е) [c.49]

    Экспериментальные значения lg у. согласуются с (1.27). Данные по растворимости субстрата также согласуются с (1.27), что позволяет рассчитать параметры взаимодействия между солью и неэлектролитом для (ирея-бутилхлорида (4 ). Значения - хорошо коррелируют с таковыми для бензола, что вполне закономерно для двух сравнительно мало полярных неэлектролитов (например, см. рис. 1.7), если исключить из рассмотрения органические соли, для которых существенны, по-видимому, специфические ближние взаимодействия соль — неэлектролит (разд. З.А). Однако корреляция k s с k l или 6 6 для неорганических солей также нарушается в двух случаях для солей состава 1 1 и для солей состава 1 2. Из-за солевой специфичности ни yR j, ни yTS не согласуются с (1.265). Кларке и Тафт полагают, что эти результаты указывают на преобладание эффекта среды, индуцированного солями, когда речь идет о yRpi, тогда как в случае у существенны и эти эффекты, и влияние ионной атмосферы, которое учитывает уравнение (1.265). Если предположить, что индуцированные солями эффекты среды в случаях укг5 и yTS близки между собой, они должны компенсировать друг друга в константах скорости обычных реакций сольволиза в водных растворах k (1.269). Поэтому существенным остается только влияние ионной атмосферы на значения А с1 - s. Разность с - kjs для неорганических солей состава 1 1 составляет 0,25 0,05, а для солей состава 1 2- 0,63 0,06  [c.193]

    О химии систем, находящихся в области III и IV на рис. 1.1, в которых компонент (неэлектролит) не является водой, известно очень мало. По-видимому, поведение ультраконцентрированных растворов определяется способностью неэлектролита стабилизировать ионные пары в расплавленной соли. Этот эффект и его химические следствия обсуждаются в гл. 3 (разд. 6.Ж и 8.Г ). [c.347]

    Электропроводность и вязкость некоторых полностью мицелли-зованных систем органический неэлектролит — расплав R4NX определяли во всем композиционном диапазоне. Электропроводность сама по себе монотонно падает с увеличением доли соли в разбавленных растворах — из-за ассоциации ионов (разд. 2. А), а в концентрированных растворах — вследствие снижения подвижности ионов, обусловленной значительным ростом вязкости. Произведение Вальдена Лг), в котором учитывается изменение вязкости, проходит через минимум, а затем растет до величины, характерной для расплавленной соли, приблизительно равной предельной величине при бесконечном разведении. Это рассматривается как доказательство отсутствия ионной ассоциации в ионной жидкости [302, 458]. Разумное объяснение такому поведению дает излагаемая далее качественная теория, которая f [c.585]

    Ассоциация ионов влияет на их химическое поведение несколькими путями. (1) Изменение плотности заряда и его распределение в ионе вследствие присутствия противоиона могут изменить реакционную способность иона. Этот эффект можно обнаружить при сравнении ионных пар со свободными ионами и IP с SSIP. (2) Реакции, которые образуют IP из SSIP, более выгодны, чем реакции, которые образуют SSIP из IP, за счет энергии разделения IP - обычно несколько килокалорий на моль (разд. 6.В). Важной разновидностью является реакция, в которой ионный реагент превращается в неэлектролит, вклинивающийся между ионами. Если молекула продукта плохо сольватирует ионы, образование такой ионной пары, разделенной продуктом, невыгодно из-за энергий, превышающих обычные энергии внедрения растворителя. (3) Изменение условий от благоприятствующих свободным ионам до благоприятствующих ассоциированным ионам сдвигает химические равновесия, в которые вовлечены ионы, в сторону наиболее ассоциированных частиц. 4 Возможен широкий [c.597]


Смотреть страницы где упоминается термин ионная неэлектролитов: [c.89]    [c.135]    [c.40]    [c.64]    [c.113]    [c.494]    [c.273]    [c.209]    [c.376]    [c.368]    [c.494]    [c.145]    [c.247]    [c.588]    [c.628]   
Химический энциклопедический словарь (1983) -- [ c.494 ]




ПОИСК





Смотрите так же термины и статьи:

Неэлектролиты



© 2025 chem21.info Реклама на сайте