Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматограмма ионообменная

    Точный расчет ионообменной хроматограммы можно выполнить при помощи уравнений, полученных интегрированием системы дифференциальных уравнений, описывающих динамику ионного обмена. Здесь же рассмотрен приближенный метод расчета простейшей системы, состоящей из трех однозарядных ионов. [c.107]

    Таким образом, ионообменная проявительная хроматограмма аналогична хроматограмме адсорбционного анализа с той лишь разницей, что в этом случае все порции вытекающего из колонки раствора содержат противоион А+. Так, например, если анализ раствора каких-либо электролитов проводился на колонке, содержащей ионит с противоионом Н+, то все порции вытекающего из колонки раствора будут кислыми, а вымывание должно проводиться раствором кислоты. [c.110]


    При получении распределительных хроматограмм на колонке твердый носитель вначале растирают с растворителем, который будет служить неподвижной фазой. Полученную густую кашицу суспендируют во втором растворителе (подвижная фаза) и смесь равномерно вносят в колонку. В случае ионообменной хроматографии иониты предварительно подвергают специальной обработке например, катионит очищают от ионов железа и доводят до набухания. [c.157]

    После заполнения колонки в нее осторожно приливают раствор анализируемого вещества (или смеси веществ) в подобранном растворителе. При адсорбционной и распределительной хроматографии исследуемый раствор должен занимать в колонке небольшой объем, покрывая поверхность носителя или адсорбента. При ионообменной хроматографии можно добавлять растворителя больше. После внесения хроматографируемой смеси приступают к проявлению хроматограммы, пропуская через слой адсорбента (нли [c.157]

    Кроме ионообменной хроматографии, для разделения и анализа катионов и анионов советские ученые Е. Н. Гапон и Т. Б. Га-пон в 1948 г. предложили осадочную хроматографию. В этом варианте метода Цвета формирование хроматограмм обусловлено не различием адсорбируемости или коэффициентов распределения, а процессом образования осадков и различием в их растворимости. Это и вызывает разделение тех ионов, которые вошли в состав осадков при реакции с реактивом-осадителем, нанесенным на сорбент хроматографической колонки или на фильтровальную бумагу. [c.9]

    Ионообменная хроматография основана на различной способности ионов поглощаться ионитом колонки. Проявление хроматограммы проводят при помощи подвижной фазы, которая позволяет хотя бы частично вытеснить сорбированные ионы. С точки зрения определения понятия элюент (разд. 7.3.1) неверно применять термин элюирование к процессам ионного обмена, хотя это встречается в литературе. Время пребывания ионов в колонке определяется энтальпией ионообменных процессов и зависит от соотношения концентраций ионов в растворе. Подвижная фаза может двояким образом оказывать влияние на ионообменный процесс, что можно показать на уравнении (7.4.5). При прохождении растворителя через колонку равновесие-должно быть сдвинуто вправо. С одной стороны, этого можно добиться, повышая концентрацию ионов Н+ (т. е. концентрацию вытесняющего иона),. [c.380]

    Ионообменная хроматограмма образуется при условии различий в сорбируемости ионов. Эти различия количественно определяются различиями в константах ионного обмена. Собственно говоря, это и позволяет использовать фронтальную ионообменную хроматографию для определения констант ионного обмена. Авторы данного метода поставили перед собой задачу рассмотреть случай образования фронтальной хроматограммы трех ионов, пренебрегая факторами размывания границ хроматографических зон. [c.131]


    Явление расслаивания зон осадков детально изучено Ф. М. Шемякиным, который показал, что причиной послойных образований является ионообменная реакция между осадком и диффундирующим раствором, и предложил хроматографическую теорию ритмических отложений осадка [151]. Согласно этой теории, исходный раствор при прохождении через зону осадка подвергается хроматографическому разделению. Осадок при этом, выполняя роль носителя, своей поверхностью задерживает один из ионов раствора, другие же ионы уходят вниз (а в чашке Петри направление от центра к периферии), отрываются от зоны осадка и образуют зону отставания . Лишь после насыщения поверхности осадка задержанными ионами последние получают возможность пройти через осадок и в дальнейшем по мере продвижения фронта диффузии, преодолевая зону отставания, образовывать новый слой осадка на некотором расстоянии от первого слоя. Это происходит в зоне, где имеются оба иона, образующие осадок, вследствие чего получается диффузионная хроматограмма, состоящая из ряда различно окрашенных осадочных колец. [c.197]

    Своеобразие динамических условий осаждения компонентов смеси накладывает отпечаток на характер процесса образования осадочных хроматограмм, В практике часто используется следующий вариант ионообменно-осадочной хроматографии [154]. Через носитель, являющийся ионообменником (R) и насыщенный противоионом (например, катионами Ag+), пропускается раствор электролита (например, водный раствор КС1). Первая стадия сложного процесса — ионный обмен  [c.202]

    В табл. 1 дана классификация хроматографических методов анализа, основанная на этих показателях. Как видно изданных, приведенных в таблице, при хроматографическом анализе наиболее часто используется колоночная техника работы. Один и тот же метод хроматографического анализа может применяться в различных вариантах, например, осадочную хроматограмму можно получить в колонке с сорбентом, на бумаге или в гелях. Определенный принцип разделения, например, распределение молекул между двумя фазами, лежит в основе различных методов хроматографического анализа. Необходимо также отметить, что в методах тонкослойной хроматографии возможен практически любой принцип разделения — сорбционный, распределительный, ионообменный и т. д. Однако чаще всего разделение в тонких слоях сорбента используется в адсорбционной, распределительной и ионообменной хроматографии жидкостей. [c.7]

    Из советских ученых послойный метод первыми применили Е. Н. Гапон и Т. Б. Гапон для расчета ионообменной равновесной хроматограммы [16]. [c.147]

    Способы анализа хроматограмм. Изучение ионообменных хроматограмм, образованных в колонке, можно проводить различными способами  [c.179]

    Способы получения ионообменных хроматограмм [c.205]

    Ионообменная хроматография в количественном анализе. . Способы получения ионообменных хроматограмм. .  [c.311]

    Хроматография — метод разделения и анализа смеси веществ, основанный на различной сорбции компонентов анализируемой смеси определенным сорбентом. Впервые X. предложена в 1903 г. русским ученым М. Цветом. Разделение ведут в колонках, наполненных силикагелем, оксидом алюминия, ионообменными смолами (ионитами) и др., или же на специальной бумаге. Вследствие различной сорби-руемости компонентов смеси (подвижная фаза) происходит их зональное распределение по слою сорбента (неподвижная фаза) — возникает хроматограмма, позволяющая выделить и проанализировать отдельные вещества (процесс подобен многоступенчатой ректификации). В зависимости от агрегатного состояния подвижной фазы различают газовую и жидкостную X. по механизмам разделения — ионообменную, осадочную, распределительную и молекулярную (адсорбционную) X. в зависимости от техники проведения разделения в X. различают колоночную (колонки сорбентов), бумажную (специальная фильтровальная бумага), капиллярную (используют узкие капилляры), тонкослойную X. (применяют тонкие слои сорбентов). Методами X. анализируют смеси неорганических и органических соединений, концентрируют следы элементов. В химической технологии X. применяют для очистки, разделения веществ. X. позволяет разделять и анализировать смеси веществ, очень близких по свойствам (напр,, лантаноиды, актиноиды, изотопы, аминокислоты, углеводороды и др.). [c.151]

    На рис. 5.3-15 изображена ионообменная хроматограмма разделения Мц2+, Со2+, Си +. и 2п2+. [c.284]

    Описано определение калия и рубидия, одновременно присутствующих в исследуемом объекте, при помощи искусственных радиоактивных изотопов К и Rb [405]. Исследование потерь при количественном определении калия производилось радиохимическим методом с применением изотопа [1870] Этот же изотоп используется для изучения распределения калия на бумажных хроматограммах [1278] и ионообменных колонках [980] [c.112]


    Возможность синтетического получения ионитов различной активности, а также применения жидкостей с разной величиной рн позволяет использовать этот способ как для избирательного извлечения кислот или оснований из растворов их смесей, так и, для дробного вымывания их из поглотителя. В связи с этим при ионообменной хроматографии смеси кислот или оснований и проявлении полученной хроматограммы отдельные компоненты будут располагаться в столбике поглотителя на различной высоте в соответствии со степенью их диссоциации. Некоторые данные о константах диссоциации органических кислот и оснований приведены в табл. 68. [c.234]

    Устройство приборов для хроматографии и осуществление самого эксперимента сравнительно просты. Выбрав подходящую систему ионного обмена и проведя рекомендованную обработку (регенерацию) ионообменника, при идентичных условиях элюирования (скорость потока, температура и т. д.) можно получать хорошо воспроизводимые хроматограммы. Благодаря этому фракционирование белков с помощью ионообменной хроматографии имеет широкое распространение. [c.23]

    Одномерная тонкослойная ионообменная хроматограмма дает почти те же значения аминокислот, что и диаграмма, полученная на аминокислотном анализаторе. Разделение аминокислот от Асп до Ала в анализаторе также чувствительно к изменению pH и молярности буферного раствора и ухудшается при увеличении pH. В то же время разделение аминокислот от Вал и далее уже нечувствительно к изменению pH и молярности. [c.256]

    Сложные смеси катионов предварительно разделяют на аналитические группы при помощи групповых реагентов, а затем отдельные катионы идентифицируют после развития хроматограмм на бумаге. В некоторых случаях предварительное разделение смесп производят методом ионообменной хроматографии. [c.180]

    Как бы в дополнение к ионообменным разделениям, хроматография на бумаге смесей рзэ показывает довольно эффективные результаты, достигнутые особенно в последние годы благодаря обстоятельному исследованию выбора экстракционных систем и связанных с ними вопросов предварительной обработки бумаги, нахождения оптимальных условий для получения хроматограмм и т. д. Сведения о разделении смесей рзэ методом распределительной хроматографии приведены в табл. 21. Критерием эффективности метода хроматографии на бумаге служат две его характеристики чувствительность и степень разделения. [c.115]

    Метод хроматографии в тонких слоях, предложенный советскими учеными Н. А. Измайловым и М. С. Шрайбер, устраняет многие из этих затруднений. Применение самых разнообразных материалов делает метод поистине универсальным. Вместо волокон целлюлозы в распоряжение исследователя поступают порошки различных сорбентов окиси алюминия, силикагеля, ионообменных смол и т. д. Течение жидкости в таких слоях подобно перемещению ее в слое зерненого сорбента в колоночной хроматографии в результате получаются более резкие фронты, что приводит к более четкому разделению. Сама аппаратура поэтому сильно уменьшается в габаритах, сокращается время разделения и обработки хроматограмм. Идентификация может производиться не только колориметрически или радиометрически, но и простой десорбцией с участка слоя, содержащего пятно с последующим химическим анализом. [c.5]

    К химическим средствам относится пропускание через колонку после получения первичной ионообменной хроматограммы раствора комплексообразователя. Такой прием носит название комплексообразующего вытеснения в хроматографии. [c.321]

    Промывание первичной хроматограммы чистым растворителем может привести к разделению зон. Разделение зон может быть полное и неполное. При неполном разделении имеет место перекрывание зон. В молекулярной хроматографии возможно полное разделение смеси при промывании компонентов с достаточно различной адсорбционной способностью. Промывание в ионообменной хроматографии приводит только к расширению зон. Особенность осадочной хроматограммы— получение чистых зон уже в первичной хроматограмме. В распределительной хроматографии для разделения смеси веществ используется только процедура промывания. [c.324]

    Пропускание через колонку после получения первичной ионообменной хроматограммы раствора комплексообразователя в хроматографии носит название комплексообразующего вытеснения. [c.311]

    Явление саморадиолиза может быть ослаблено также диспергированием меченого соединения в большом объеме ийертного вещества, хранением на бумажных хроматограммах, ионообменных смолах и т. д. Это особенно удобно при хранении малых количеств вещества с большой удельной активностью. [c.90]

    Существенный вклад внесла аналитическая химия в решение такой важной проблемы современной науки, как синтез и изучение свойств трансурановых элементов. Предсказание химических свойств трансурановых элементов оказалось более сложным, чем для элементов, входящих в периодическую систему в ее старых границах, так как не было ясности в распределении новых элементов по группам. Трудности усугублялись и тем, что до синтеза трансурановых элементов торий, протактиний и уран относились соответственно к IV, V и VI группам периодической системы в качестве аналогов гафния, тантала и вольфрама. Неправильное вначале отнесение первого трансуранового элемента № 93 к аналогам рения привело к ошибочным результатам. Химические свойства нептуния (№ 93) и плутония (№ 94) показали их близость не с рением и осмием, а с ураном. Было установлено, что трансурановые элементы являются аналогами лантаноидов, так как у них происходит заполнение электронного 5/- слоя, и, следовательно, строение седьмого и шестого периодов системы Д. И. Менделеева аналогично. Актиноиды с порядковыми номерами 90—103 занимают места под соответствующими лантаноидами с номерами 58—71. Аналогия актиноидов и лантаноидов очень ярко проявилась в ионообменных свойствах. Хроматограммы элюирования трехвалентных актиноидов и лантаноидов были совершенно аналогичны. С помощью ионообменной методики и установленной закономерности были открыты все транс-кюриевые актиноиды. Рекордным считается установление на этой основе химической природы элемента 101 — менделевия, синтезированного в начале в количестве всего 17 атомов. Аналогия в свойствах актиноидов и лантаноидов проявляется также в процессах экстракции, соосаждения и некоторых других. Экстракционные методики, разработанные для выделения лантаноидов, оказались пригодными и для выделения актиноидов. [c.16]

    При ионообменной хроматографии можно добавить в колонку больше растворителя, так как чистые неионизированные растворители не вызывают расширения зон. По этой же причине можно вводить также разбавленные исследуемые растворы и концентрировать их на сорбенте. Для проявления хроматограммы применяют растворитель, под дейст -вием которого зоны перемещаются вниз по слою сорбента с небольшой скоростью. [c.74]

    Методы анализа фракций могут быть физическими, химическими и биологическими. Одним из лучших методов считается детектирование радиоактивных изотопов. Результаты измерений оформляют в виде кривой зависимости определяемой величины от объема злюата. По распределению пиков на хроматограмме судят о возможности объединения некоторых фракций, совершенно чистых, без примесей других компонентов. Методом ионообменной хроматографии можно разделять различные катионы и анионы, четвертичные аммониевые основания, амины, аминокислоты, белки, продукты гидролиза пептидов, физиологические жидкости, гидролизаты клеточных оболочек микробов, антибиотики, витамины, нуклеиновые кислоты. [c.361]

    Ионообменная хроматография основана на обратимом обмене содержащихся в растворе ионов иа ионы, входящие в состав ионообмен-ника. Образование хроматограмм при этом происходит вследствие различной способности к обмену иоиов хроматографируемого раствора. [c.284]

    Осадители. Сорбируемость реагента-осадителя и его количество значительно влияют на формирование осадочных хроматограмм. Чем лучше сорбируемость осадителя, тем четче зоны отдельных осадков. Молекулы-осадители (органические соединения) лучше сорбируются такими же носителями (АЦОд, 5102 и др.), а ионы-осадители (неорганические соединения) лучше сорбируются носителями с ионообменными свойствами (глинистыми минералами, синтетическими ионообменниками, бумагой для хроматографирования и др.). [c.227]

    Ионообменная хроматография за последние годы стала одним из важнейших методов препаративного разделения и аналитического исследования смесей различных неорганических и органических соединений. Она основана на обратимом стехиометрическом обмене ионов, содержащихся в растворе, на ионы, входящие в состав ионо-обменника. Образование хроматограмм в этом случае происходит вследствие неодинаковой способности к обмену различных ионов хроматографируемого раствора. В ионообменной хроматографии, так же как и в адсорбционной, можно применять фронтальный, вытеснительный, элюентный методы анализа. [c.141]

    ХРОМАТОГРАФИЯ НА БУМАГЕ (бумажная хроматогра фия, БХ), основана па различии в скорости перемещения компонентов анализируемой смеси по бумаге в потоке р-рителя соответств. состава. Хроматограммой в этом случае наз. картину расположения хроматографич. зон на бумаге после завершения разделения. Каплю анализируемого р-ра (1—10 мкл) наносят на спец. бумагу, по к-рой под действием капиллярных и гравитац. сил перемещается р-ритель. Эксперимент проводят обычно в герметичных сосудах, как правило стеклянных. Бумага м. б. инертным носителем неподвижной фазы (напр., в распределит, и осадочной БХ) либо активной неподвижной фазой (в адсорбц. и ионообменной БХ). [c.668]

    Ионообменная хроматография — разделение веществ, основанное на обратимом обмене ионов, содержащихся в растворе, на ионы, входящие в состав ионообменника. Образование хроматограмм при этом происходит вследствие различной способности к обмену ионов хроматографируемого раствора. В качестве элюента (вымывающего вещества) применяют растворы [c.331]

    Диаметр колонок от 1 до 10 мм, длина до 300 мм, сорбенты 70 наименований для всех видов жидкостной хроматографии обратно- и прямофазной, ионообменной, ион-парной, ионной, эксклюзионной. Каждая колонка имеет индивидуальную тест-хроматограмму и паспорт. [c.449]

    Ряд работ посвящен выделению кадмия в радиоактивно чистом состоянии путем многократного осаждения сульфидом [218], ионообменному разделению радиоактивных изотопов кадмия и других элементов [105], разделению d и Zn на бумажных хроматограммах [128J, получению d без носителя из циклотронных мишеней (четкое разделение d и Zn достигнуто при их соотношении от 30000 1 до 1 1000) [744]. Радиоактивный изотоп i d выпускается нашей промышленностью в виде раствора его солей — d (N03)2 и dGl 2 — с удельной активностью 1—10 мкюри г или мкюри мл. [c.139]

    Фронтальная ионообменная хроматография. Метод фронтальной хроматографии состоит в фильтрации раствора, содержащего несколько сорбирующихся веществ, через колонку с сорбентом. Вследствие различий в сорбционных свойствах отдельных компонентов смеси в колонке образуется ряд зон, двигающихся с различными скоростями (так называемая первичная хроматограмма). [c.55]

    Ионообменная хроматография основана на обратимом стехиометрическом (эквивалентном) обмене ионами, содержащимися в жидкой подвижной фазе (растворе) с ионами твердых сорбентов неподвижной фазы. Сорбенты, содержащие ионогенные группы, способные к обмену, называют ионообменниками или ионитами. Хроматограмма образуется вследствие неодинаковой способности к обмену у различных ионов хроматографируемого раствора. Этот вид хроматографии используют для фронтального, вытеснительного и элютивного методов анализа. [c.421]

    X. открыл М. С. Цвет в 1903. вРогинский С. 3., Яновский М. И.. Берман А. Д., Основы применения хроматографии в катализе, М., 1972 Гольберт К. А., Вигдергауз М. С., Курс газовой хроматографии, 2 изд.. М., 1974. В. Г. Березкин. ХРОМАТОГРАФИЯ НА БУМАГЕ (бумажная хроматография, БХ), основана на различии в скорости перемещения компонентов анализируемой смеси по бумаге в потоке р-рителя соответств. состава. Хроматограммой в этом случае наз. картину расположения хроматографич. зон на бумаге после завершения разделения. Каплю анализируемого р-ра (1—10 мкл) наносят на спец. бумагу, по к-рой под действием капиллярных и гравитац. сил перемещается р-ритель. Эксперимент проводят обычно в герметичных сосудах, как правило стеклянных. Бумага м. о. инертным носителем неподвижной фазы (напр., в распределит, и осадочной БХ) либо активной неподвижной фазой (в адсорбц. и ионообменной БХ). [c.668]


Смотреть страницы где упоминается термин Хроматограмма ионообменная: [c.92]    [c.93]    [c.60]    [c.457]    [c.106]    [c.312]    [c.308]   
Курс аналитической химии Издание 2 (1968) -- [ c.242 ]

Курс аналитической химии Издание 4 (1977) -- [ c.244 ]




ПОИСК





Смотрите так же термины и статьи:

Ионообменная хроматография проявление хроматограмм

Способы получения ионообменных хроматограмм

Хроматограмма

Хроматографические колонки и методы изучения ионообменных хроматограмм



© 2025 chem21.info Реклама на сайте