Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коллоидальные растворы металлов получение

    Практическое применение коллоидальных катализаторов встретило затруднения, так как пригодными в качестве катализаторов являются лишь определенные типы коллоидных растворов металлов. Обычные методы приготовления дают разбавленные золи, которые в редких случаях пригодны для катализа. Металлический золь должен иметь достаточно высокую концентрацию, чтобы быть каталитически эффективным и обладать высокой степенью дисперсности. Кроме того, коллоиды, полученные обычными способами, чрезвычайно чувствительны к электролитам, в особенности к кислотам и основаниям. Поэтому коллоидальные катализаторы должны приготовляться с защитными коллоидами и защитное действие данного коллоида должно быть достаточным для предотвращения коагуляции в условиях катализа. С другой стороны, сам защитный коллоид не должен быть каталитическим ядом или действовать в качестве яда во время реакции. Иногда бывает необходимо высушить коллоидный раствор до геля, содержащего металл в состоянии высокой концентрации а такой гель должен растворяться в воде или смеси воды и спирта, давая коллоидные растворы различной концентрации. При применении гуммиарабика или желатины в качестве защитных коллоидов можно получить металлические золи в концентрированном виде, минуя получение обратимых гелей. [c.263]


    Опыты были произведены с коллоидальными растворами платины, серебра и ртути, а также с тонкими палочками из металла, подвешенными верхним концом к кварцевой нити наподобие маятника и с оплавленным в маленький шар нижним концом. Полученные таким образом нулевые электроды показывали, однако, по сравнению с прежними, разность потенциалов в вольта. Такие же результаты были получены при обращении опытов тонкий металлический порошок падал в трубку, наполненную раствором, причем условия подбирались таким образом, что не возникало никакого тока 2). [c.226]

    Простые вещества. В компактном состоянии рутений — серовато-белый, осмий — серебристо-белый металлы с плотнейшей гексагональной структурой, твердые, хрупкие и тугоплавкие. Химически чистый родий имеет вид светло-серого порошка. Сплавленный, он напоминает алюминий. Дисперсный порошок родия черного цвета называется родиевой чернью. При сплавлении родия с цинком и дальнейшей обработке сплава соляной кислотой получают взрывчатый родий. Причиной взрыва является каталитическое свойство родия взрывать смесь адсорбированных газов (водорода и кислорода). Коллоидальный родий, полученный диспергированием чистого металла в воде или восстановлением из растворов его солей, обладает еш,е большими каталитическими свойствами, чем родиевая чернь. Компактный иридий — серебристо-белый металл, подобно родию имеет структуру гранецентрированного куба, очс иь твердый и хрупкий. Платина и палладий — серовато-белые блестящие мягкие металлы. Платина легко прокатывается и вытягивается в проволоку, палладий поддается ковке, обладает большей вязкостью, чем платина. [c.403]

    Наиболее распространенны- Рис. 40. Схема прибора для ми способами приготовления катодного распыления металлов, коллоидных растворов являются способы диспергирования, т. е. распыления того вещества, коллоидный раствор которого нужно получить обратный способ получения этих растворов есть процесс конденсации (химический), т. е. переход от атомов или молекул к коллоидальным частицам, и третий способ — поверхностное растворение суспензии. [c.165]

    В дискуссии, посвященной блестящим покрытиям, Хор обосновал некоторые теоретические положения для получения блестящего покрытия при электроосаждении и в процессе погружения в расплавленный металл. Вообще, недостаток в сглаживании при катодном осаждении обусловлен тем фактом, что осаждение происходит предпочтительнее в местах с незавершенными слоями атомов. Именно в таких местах с незавершенными слоями происходит предпочтительное растворение металла в ваннах для травления с образованием фигур травления. Ванны для блестящего травления содержат растворы, в которых атомы удаляются случайно, обычно за счет промежуточного образования твердых пленок, так что травление устраняется. Некоторое полирование может быть получено при введении второго металла в ванну, вероятно потому, что посторонние атомы разрушают решетку и уменьшают вероятность осаждения на кристаллографически благоприятных участках сплавы никеля и кобальта давно известны как сплавы, дающие более блестящие осадки, чем простые никелевые покрытия, хотя на сегодня добавка кобальта нежелательна, будучи более дорогостоящей, чем органические добавки в других случаях (как например при осаждении сплавов олова и никеля) интерметаллическое соединение сложного строения не образует простых слоев и поэтому не столь склонно к селективному выбору мест осаждения и осаждается на всем катоде. Соосаждение окислов дает лишь ограниченный блеск коллоидальные частички окиси или гидроокиси слишком велики. [c.559]


    Танпип.под названием настойка чернильных орешков применявшийся более ста лет тому назад как реактив для качественною анализа, постепенно вышел из употребления и в начале XX века применялся в металлургическом анализе только в качестве индикатора в молибдат-ном методе определения свинца, по Александеру. Предложенный нами метод отделения тантала от ниобия, опубликованный в 1925 г. [7], положил начало серии исследований, которые показали, что таннин является важнейшим реагентом для количествслного разделения и определения ряда редких и обычных элементов, в особенности элементов группы аммиака, не осаждающихся аммиаком и сернистым аммонием из вич-но кислого раствора. Водный раствор таннина, будучи коллоидальной суспензией отрицательно заряженных частиц, осаждает положительно заряженные частицы гидроокисей металлов полученные адсорбционные комплексы очень хорошо коагулируют и совершенно нерастворимы. Несмотря на большой объем, они легко фильтруются и промываются (особенно при смешивании с бумажной массой) при прокаливании переходят в окислы, удобные для взвешивания. Танниновые комплексы некоторых элементов бесцветны, другие имеют яркие и характерные окраски, что является фактором огромного значения для качественного и количественного анализов. Самым замечательным свойством этих реакций является то, что осаждению не препятствует присутствие органических гидроксикислот винной, лимонной и т, д. В то время как теория взаимодействия таннина с растворами тартратных (и других) комплексов металлов до сих пор неясна, его практическое применение имеет большую ценность в аналитической химии таких редких элементов, как германий, тантал, ниобий, титан, цирконий, торий, ванадий, уран и др. [c.13]

    Полученные Скита коллоидальные растворы палладия и платины для применения в качестве катализаторов отличаются по способам приготовлени или по виду применяемого защитного ксллсида. Мсжно наметить четыре разновидности катализаторов 1) благородные металлы в виде растворимых в воде коллоидов, содержащие в качестве заыштнсго коллоида гуммиарабик 2) платина в виде растворимого в ледяной уксусной кислоте коллоида, содержащая желатин в качестве защитного коллоида 3) коллоидальная платина, содержащая в качестве защитных коллоидов гуммиарабик и желатин 4) коллоидальная платина, приготовленная по методу зародышей. [c.264]

    Каталитическая гидрогенизация с коллоидальными металлами платинО вой группы широко изучена, но каталитическое окисление с коллоидальными металлами весьма мало исследовано. Шрётер с сотрудниками провел много опытов каталитической гидрогенизации, применяя коллоидальные металлы платиновой группы. Особый интерес представляли исследования силы и типа гидрирующего действия коллоидальных катализаторов при гидрогенизации ненасыщенных соединений. Валлах [468], исследуя терпены, проводил каталитическую гидрогенизацию кратных связей в терпенах, пользуясь коллоидальным палладием, приготовленным по Паалю. Скита утверждает, что соединения с двойными связями эффективно гидрогенизуются в присутствии полученного им препарата коллоидального катализатора. Считается, что гидрогенизация с коллоидальными металлами платиновой группы имеет преимущество перед восстановлением с натрием, амальгамой натрия, цинковой пылью и уксусной кислотой в том отношении, что реакция идет в нейтральном растворе, чем исключается перегруппировка и (или) нежелательные превращения ненасыщенных соединений, весьма чувствительных к кислотам и щелочам. Гидрогенизация при обыкновенной температуре, в присутствии металлов с высокоразвитой поверхностью, как, например, платиновой или палладиевой чернью, идет медленнее, чем гидрогенизация в присутствии коллоидальных катализаторов, так как поверхность коллоидально-диспергированного металла больше, чем поверхность губчатого металла. [c.266]

    Для примера сернистых соединений тяжелых металлов опишем сернистые соединения As, Sb и Hg. Трехсернистый мышьяк или аурввнг-мент As-S встречается в природе и образуется в чистом виде, когда раствор мышьяковистого ангидрида в присутствии H I приходит в соприкосновение с сернистым водородом (без НС1 осадка не образуется). Тогда получается красивый желтый осадок As O -)- 3H-S = ЗН О - - As S , который при накаливании плавится и улетучивается без разложения. As S легко получается в коллоидальном растворе (гл. 1, доп. 76). Коллоидальный раствор сернистого мышьяка получается проще всего при прямом действии №S ва чистый водный раствор As O . Желтый раствор как при испарении на водяной бане, так и при замораживании (тогда лед получается бесцветный) дает красное видоизменение (Н. Winter, 1905), уже нерастворимое в воде, хотя растворяющееся в щелочах, N HS и т. п. и представляющее следы кристаллизации. От прибавки многих солей, соляной кислоты и т. п. сернистый мышьяк выпадает в виде желтого осадка и притом вполне, так что в растворе затем не остается следов мышьяка. Сплавляясь As S образует полупрозрачную желтую массу и в этом виде получается заводским путем. Природный имеет уд. вес 3,4, а сплавленный искусственно — 2,7. Употребляется как желтая краска и, вследствие своей нерастворимости в воде и кислотах, менее вреден, чем другие соединения, отвечающие мышьяковистой кислоте. По типу AsX известен реальгар AsS, частица вероятно As S . Реальгар (сандарак) находится в природе в виде просвечивающих красных кристаллов, уд. веса 3,59, и может быть получен искусственно чрез сплавление мышьяка с серою в определенной, указанной формулою, пропорции. Его готовят в большом виде, перегоняя смесь серного и мышьякового колчеданов. Подобно аурипигменту, он растворяется в сернистом калии и даже в едком кали. Применяется он в практике для сигнальных в фейерверочных огней, потому что с селитрою дает вспышку и большое пламя яркобелого цвета. [c.519]


    К стр. 3. О растворимом серебре Кэри Ли см. доб. 4t. В Основах химии (изд. 8, 1906, стр. 392—393) говорится по поводу некоторых окислительных реакций азотнокислого серебра Исследуя в 1889 г. ближе реакции этого рода, Кэри Ли ( arey Lea) в Америке показал, что при этом происходит растворимое серебро, называемое им аллотропическим . Далее следует описание способа его получения и его свойств. Не подлежит сомнению,— продолжает автор,—что видоизменения серебра, полученные Кэри Ли, представляют такое же отношение к обычному серебру, совершенно не растворимому в воде, какое существует между кварцем и растворимым кремнеземом, между uS или Аз ЗЗ в их обычной нерастворимой форме и в коллоидальных растворах их гидрозолей.. . Здесь, однако, сделан важный шаг вперед в том отношении, что дело идет о растворе простого тела и притом металла, т. е. особо характерного состояния вещества. . . можно надеяться что дальнейшее изучение растворимых коллоидальных соединений, представляющих, по-видимому, разные переходы к эмульсиям, внесет новое освещение в сложный вопрос [393] о растворах, составляющий одну из задач современной эпохи химических сведений. Заметим при этогл, что Прннг (1890) при диализе чрез перепонку явно показал коллоидальное состояние растворимого серебра, потому что оно чрез перепонку не проходит . В доп. [625j (сгр. 780—781) автор подробнее осветил этот вопрос и закончил его следующими словами А так как коллоидальное состояние преимущественно отвечает очень сложным частицам, то причину перехода серебра и др. простых тел в гидрозоли, быть может, можно уяснить ассоциациею частиц. Во- [c.534]

    Когда СаСО выделяется из растворов, то в первый момент она имеет студенистый вид, что заставляет думать, что соль вта является в коллоидальном состоянии. Только с течением времени она кристаллизуется. Повидимому (Тамман) всегда твердые тела в момент первого своего появления являются коллоидами, но затем более или менее легко приобретают кристалличность. Коллоидальное состояние СаСО особенно видно из наблюдений проф. Фаминцына, который показал, что при выделении углеизвестковой соли из растворов она получается, при некоторых условиях, в форме зерен, имеющих особое наслоенное строение, свойственное крахмалу, что имеет не только самостоятельный интерес, но и представляет пример получения минерального вещества в такой точно форме, в какой до сих пор известны были только органические вещества, вырабатываемые в растениях. Это показывает, что формы (клетки, сосуды, зерна) растительных и животных веществ, в каких они находятся в организмах, не представляют в себе чего-нибудь свойственного одним организмам, а суть результаты только тех особенных условий, в которых образуюгся эти вещества. Траубе, а затем Монье с Фогтом (1882) получили, при подобном же медленном образовании осадков (реагируя кремне- и угленатровою солью на сернокислые соли разных металлов), под микроскопом образования, во всех отношениях сходственные по виду с растительными клетками. [c.369]

    Если содержание Си в 100 мл больше 0,0001 г, с реактивом образуется муть и требуется дальнейшее разбавление. Присутствие мельчайших следов железа в испытуемом растворе дает бурый оттенок с органическим реактивом изменение цвета легко заметить при сравнении с другим цилиндром, содержащим из металлов только медь. Добавление небольшого количества желатины к раствору несколько повышает яркость окраски, что облегчает сравнение. Сильвестер и Лампит [37] подчеркивают, что желтая окраска меди с диэтилдитиокарбаматом натрия вызывается коллоидальным осадком, поэтому оттенок обычно несколько отличается от оттенка, полученного в глухом опыте. Для избежания этого затруднения они предлагают применять органический растворитель. Более точным они считают встряхивание с амиловым спиртом в цилиндре Несслера и наблюдение окраски верхнего слоя не сверху, а поперек. Количество амилового спирта меняют в зависимости от количества присутствующей меди таким образом, чтобы цвет верхнего слоя был удобен для колориметрического сравнения. Прибавляя 10 мл амилового спирта, можно легко открыть добавление 0,0002 мг Си, если меди присутствует не больше 0,015 мг. Вместо амилового спирта можно употреблять четыреххлористый углерод [38]. [c.136]

    Особенно мелкие кристаллы карбонатов коллоидальных размеров получаются по методу Патаи и Томашека [197, 198] и Буцага [199] путём осаждения карбонатов введением СОг в раствор гидратов окисей щёлочноземельных металлов в глицерине. Величина полученных таким образом кристаллов карбо натов зависит от вязкости глицеринового раствора и от его концентрации, причём величина кристаллов уменьшается с увеличением концентрации, что позволяет легко её изменять в "широких пределах. Таким образом могут быть получены кристаллы размером вплоть до 0,03 На вкл. 111,-фиг. 1 показан электронный снимок полученных таким образом кристаллов карбонатов при 5000-кратном увеличении. [c.154]


Смотреть страницы где упоминается термин Коллоидальные растворы металлов получение: [c.327]    [c.301]    [c.510]    [c.85]    [c.616]    [c.77]    [c.403]    [c.992]    [c.992]    [c.30]   
Руководство по электрохимии Издание 2 (1931) -- [ c.27 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы получение

Металлы растворов



© 2025 chem21.info Реклама на сайте