Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кадмий степени окисления

    VI групп, примыкающие к диагонали бор — астат,— типичные полупроводники (т. е. их электрическая проводимость с повышением температуры увеличивается, а не уменьшается). Характерная черта этих элементов — образование амфотерных гидроксидов (с. 151). Наиболее многочисленны d-металлы. В периодической таблице химических элементов Д. И. Менделеева они расположены между S- и р-элементами и получили название переходных металлов. У атомов d-элементов происходит достройка d-орбиталей. Каждое семейство состоит из десяти d-элементов. Известны четыре d-семейства 3d, 4d, 5d, и 6d. Кроме скандия и цинка, все переходные металлы могут иметь несколько степеней окисления. Максимально возможная степень окисления d-металлов +8 (у осмия, например, OsOj). С ростом порядкового номера максимальная степень окисления возрастает от III группы до первого элемента VIII группы, а затем убывает. Эти элементы — типичные металлы. Химия изоэлектронных соединений d-элементов весьма похожа. Элементы разных периодов с аналогичной электронной структурой d-слоев образуют побочные подгруппы периодической системы (например, медь — серебро — золото, цинк — кадмий — ртуть и т. п.). Самая характерная особенность d-элементов — исключительная способность к комплексообра-зованию. Этим они резко отличаются от непереходных элементов. Химию комплексных соединений часто называют химией переходных металлов. [c.141]


    Отсутствие надежных данных по кислородному перенапряжению объясняется сложностью процесса анодного образования кислорода и почти неизбежным наложением на него побочных и вторичных реакций. Прежде всего необходимо напомнить, что обратимый кислородный электрод экспериментально реализовать чрезвычайно сложно, и, следовательно, входящая в уравнение (20.5) величина не определяется опытным путем. Ее обычно рассчитывают теоретически. Для выделения газообразного кислорода из растворов кислот необходимо, чтобы потенциал анода был более положительным, чем равновесный потенциал кислородного электрода ( + 1,23 В при ан = 1 и 25° С), на величину кислородного перенапряжения, отвечающую данной плотности тока. Однако еще до достижения такого высокого положительного потенциала больщинство металлов термодинамически неустойчивы, и вместо реакции выделения кислорода идет процесс их анодного растворения или окисления. Для изучения кинетики выделения кислорода из кислых сред можно использовать поэтому только металлы платиновой группы и золото (стандартные потенциалы которых ноложительнее потенциала кислородного электрода), а также некоторые другие металлы, защищенные от растворения в кислотах стойкими поверхностными оксидами. В щелочных растворах, где равновесный потенциал кислорода менее положителен (при аоп-= 1 и 25° С он составляет около +0,41 В), в качестве анодов применяют также металлы группы железа, кадмий и некоторые другие. Установлено, что в условиях выделения кислорода поверхность всех металлов, включая платину и золото, оказывается в большей или меньшей степени окисленной, и поэтому кислород выделяется обычно не на самом металле, а на его оксидах. [c.421]

    Цинк, кадмий и ртуть являются элементами побочной подгруппы II группы периодической системы элементов Д. И. Менделеева. Конфигурация внешнего и второго снаружи электронных слоев их атомов может быть выражена формулой п—1)52(/г—За счет электронов внешнего слоя цинк, кадмий и ртуть проявляют в соединениях степень окисления 4-2. [c.242]

    Соединения цинка, кадмия и ртути. Степень окисления цинка и кадмия в соединениях +2. Ртуть л<е образует два ряда соединений простые и комплексные соединения со степенью окисления ртути +2, а также соедннення, в основе которых находится свое- [c.330]

    Наиболее примечательными свойствами цинка, Zn, кадмия, Сс1, и ртути, Hg, является их слабое сходство с остальными металлами. Все эти металлы мягкие и имеют низкие температуры плавления и кипения. Ртуть-единственный металл, представляющий собой при комнатной температуре жидкость. Цинк и кадмий напоминают по химическим свойствам щелочно-земе льные металлы. Ртуть более инертна и похожа. на Си, А и Аи. Ддя всех трех элементов, 2п, Сс1 и Н , характерно состояние окисления -Ь 2. Ртуть также имеет состояние окисления + 1 в таких соединениях, как Н 2С12. Но ртуть(1) всегда обнаруживается в виде димерного иона причем рентгеноструктурные и магнитные исследования показывают, что два атома Hg связаны друг с другом ковалентной связью. Таким образом, ртуть имеет в Hg2 l2 степень окисления -I- 1 лищь в том же формальном смысле, в каком кислород имеет степень окисления — 1 в пероксиде водорода Н—О О—Н. [c.449]


    Для химии этих элементов характерны их способность к изменению степени окисления и возможность образования ряда труднорастворимых солей. Особое значение для химического поведения этих элементов имеет комплексообразование. В противоположность элементам побочной подгруппы второй группы (разд. 36.17.2) медь, серебро и золото могут кроме электронов -уровня (где п = 4, 5 или 6) отдавать дин или два электрона (я—1) -уровня. В последнем случае образуются соединения этих элементов в степени окисления -ЬЗ, которая не известна для цинка, кадмия и ртути. [c.646]

    Этим требованиям обычно удовлетворяют металлы. При этом лучше применять металлы с высокой степенью окисления, потенциал которых имеет небольшую отрицательную величину если использовать металлы, потенциал которых имеет большую отрицательную величину, происходит сильное выделение водорода. Из этих соображений очень хорошим восстановителем является кадмий, которьгй применяют в редукторе Джонса. Редуктор представляет собой стеклянную трубку, заполненную- стружками электролитического кадмия, через которую медленно протекает восстанавливаемый раствор. В кад- [c.167]

    Побочные элементы II группы периодической системы химических элементов Д. И. Менделеева цинк 7п, кадмий С<1 и ртуть Н обладают рядом интересных особенностей, связанных с наличием заполненной, но близко лежащей к валентному уровню й-оболочки. Все они проявляют единственную степень окисления + 2, однако их соединения существенно ковалентны. Это объясняется склонностью атомов цинка, кадмия и ртути к гибридизации з- и [c.159]

    Для вычисления степени окмсленкостн элемента п соединении следует исходить нз следующих положений 1) степени окисленности элементов в простых веществах принимаются равными нулю 2) алгебраическая сумма степеней окисленности всех атомов, входящих в состав молекулы, равна нулю 3) постоянную степень окисленности в соединениях проявляют щелочные металлы (+1), металлы главной подгруппы II группы, цинк и кадмий (-f2) 4) водород проявляет степень окисленности 4-1 во всех соединениях, кроме гидридов металлов (ЫаН, СаНг и т. п.), где его степень окисленности равна —1  [c.157]

    К переходным элементам периодической таблицы химических элементов Д. И. Менделеева относят те из них, у которых заполняется предвнешняя й-оболочка. За исключением цинка, кадмия и ртути, все они имеют недостроенную -оболочку. Цинк, кадмий и ртуть относят к переходным элементам, поскольку они близки им по ряду свойств. Отличаются же они проявлением единственной степени окисления + 2 и в этом отношении похожи на з-элемен-ты — щелочноземельные металлы, с которыми они находятся в одной группе. Как отмечалось в предыдущей главе, переходные элементы побочной подгруппы III группы также имеют одну степень окисления +3. Все же остальные переходные элементы отличает разнообразие проявляемых степеней окисления, обилие окислительновосстановительных реакций, широкое изменение кислотно-основных свойств в соединениях. Наличие неспаренных й-электронов приводит к проявлению широкого круга магнитных, электрических и оптических свойств этих элементов. [c.154]

    Эти металлы проявляют степень окисления +2, диамагнитны, имеют довольно высокие значения плотности и невысокие температуры плавления. Ртуть —единственный металл, затвердевающий ниже нуля (—38°С). Она отличается от цинка и кадмия пониженной химической активностью. Металлические свойства у цинка, кадмия и ртути выражены слабо. Цинк проявляет амфотерные свойства. [c.205]

    Цинк и кадмий — активные металлы, а ртуть — пассивна ее ° (Hg +/Hg) = +0,85 В. В своих соединениях они проявляют степень окисления +2. Катионы Hg способны к димеризации с образованием +Hg—Hg+, т. е. Hg +. Соединения, содержащие такие катионы, называли соединениями одновалентной ртути. [c.431]

    Свойства кадмия а его соединений. Кадмий — элемент И группы Периодической системы Д. И. Менделеева. Электронное строение атомов в основном состоянии — з-28- 2р -Зз-Зр 3(1 45 Ар°4(1 55 . Устойчивая степень окисления кадмия -г 2. [c.104]

    Предпоследний электронный уровень атомов цинка, кадмия ртути в отличие от атомов 1В-подгруппы вполне стабилен и электронов не отдает. Поэтому в осуществлении химических связей участвуют только 5-электроны внешнего уровня атомов этих элементов. Цинк, кадмий и ртуть в соединениях имеют степень окисления +2, но у ртути формально возможна и степень окисления +1 (при образовании катиона [c.440]

    Комм. Как меняется состав и характер продуктов взаимодействия катионов элементов ПБ-группы в степени окисления (+П) с гидроксид-ионом по ряду цинк — кадмий — ртуть Почему гидроксид цинка(П) реагирует со щелочью в разбавленном растворе, а гидроксид кадмия(П) — только в концентрированном растворе и при нагревании Почему в случае ртути(П) в осадок вместо гидро- [c.202]

    Для соединений фосфора наиболее характерны следующие степени окисления —3 (фосфин РНз), +3 (РС1з), + 5 (Н3РО4). Среднее содержание фосфора в земной коре достигает 0,09 %, причем его водная и воздушная миграция относительно невысока. Несмотря на значительное разнообразие минеральных и органических соединений фосфора, в природе в виде минералов встречаются практически только производные ортофосфорной кислоты — ортофосфаты, причем до 95 % всех природных фосфатов составляют фосфаты кальция. В земной коре значительная часть соединений фосфора представлена разновидностями апатита, преимущественно фторапатитом Са,о(Р04)йр2. В апатитах также присутствуют примеси кадмия, мышьяка, хлора. [c.60]


    Высокая устойчивость б5 -электронной пары ртути накладывает отпечаток на все ее свойства и обусловливает ее существенное отличие от цинка и кадмия. В частности, в противоположность соединениям Zn и d большинство соединений Hg мало устойчивы. Далее, в отличие от цинка и кадмия для ртути характерны производные кластерного радикала Hg +. В радикале Hg + атомы связаны между собой ковалентной связью —Hg—Hg—, т. е. снова возникает конфигурация 6s . В производных Hg2+ степень окисления Hg принимают равной +1. [c.580]

    В химических реакциях атомы металлов подгруппы цинка отдают два внешних электрона. В образующихся соединениях степень окисления металла равна двум. В огличие от циика и кадмия ртуть имеет также соединения в степени окисления Ч- I, содержащие катион Эти соединения мо но получить, например, по [c.235]

    VIA группы периодической системы сера, селен, теллур, полоний — объединяются п(д общим названием халькогены, В двойных соединениях с металлическими элементами они проявляют степень окисления —2. Название соединений металлов с халькогенами—халько-гениды (сульфиды, селениды, тел1уриды, полониды) селенид цинка ZnSe, или селенистый цинк теллурид кадмия dTe, или теллуристый i адмий. Наибольшее распространение имеют нормальные халькогениды, в которых атомы металла непосредственно соединены лишь с атомами халькогена. [c.8]

    Оксиды -металлов И группы отвечают степени окисления + 2. Цинк и кадмий при низких температурах пассивируются тонкой пленкой оксидов, а при высокой температуре окисляются интенсивно, образуя оксиды ZnO и dO. Оксид ZnO амфотерен и образует в щелочной среде цинкаты  [c.395]

    У атомов цинка, кадмия и ртути, как и у атомов элементов подгруппы меди, ( -подуровень второй снаружи электронной оболочки целиком заполнен и вполне стабилен. Удаление с него электронов требует очень большой затраты энергии. Поэтому рассматриваемые элементы проявляют в своих соединениях степень окисления -Ь2. Ртуть, кроме того, образует соединения, в которых ее степень окисления равна -Ы но, как будет показано ниже (см. разд. 28.3), и в этих соединениях ртуть следует считать двухвгилентной. [c.542]

    Многие металлы медленно взаимодействуют с водной взвесью иода. Реакцию можно ускорить при наличии в воде веществ, иовышающи.х растворимость иода, например спирта. Смесь растертого иода с водой помещают в коническую колбу и добавляют порошок металла. На 1 мае. д. иода необходимо брать 5—6 мае. д. воды металл берут в небольшом избытке по сравнению с теоретически необходимым количеством. Скорость реакции зависит от степени окисленности металла и от его химической природы. Реакция идет с небольшим разогреванием. Если разогревания раствора не происходит, то к нему прибавляют спирт. При значительном разогревании, что наблюдается, когда берут мелкодисперсный металл, раствор нужно охлаждать водой. Когда реакция закончится, раствор некоторое время кипятят, чтобы нод полностью прореагировал. Прозрачный раствор отфильтровывают от осадка и оставляют кристаллизоваться. Этим методом можно получить кристаллогидраты разнообразных иодидов железа, кобальта, никеля, магния, цинка, кадмия и т. д. [c.45]

    Элементы цинк 2п, кадмий Сс1 и ртуть Нд составляют ПБ группу Периодической системы Д. И. Менделеева. Валентный электронный уровень их атомов имеет формулу пз , поскольку (/г—I) /-подуровень полностью заполняется, приобретает повышенную устойчивость и валентным уже не является. Поэтому свойства цинка, кадмия и (в меньшей степени) ртути имеют сходство и со свойствами 5р-элементов, и тех /-элементов, у атомов которых (п—I) -подуровень заполнен лишь ча-стично. Характерная степень окисления элементов ПБ группы равна ( + 11), для ртутн характерна и степень окисления ( + )  [c.228]

    В некоторых случаях редрксиметрическим титрованием заместителей можно определять вещества, атомы которых при определении не изменяют своей степени окисления. Так, например, ионы кальция, цинка, кадмия, никеля, кобальта и свинца осаждают в виде малорастворимых оксалатов  [c.205]

    Выделившийся иод затем титруют раствором тиосульфата натрия. В некоторых случаях редоксиметрическим титрованием заместителей можно определять вещества, атомы которых при определении не изменяют своей степени окисления. Так, например, ионы кальция, цинка, кадмия, никеля, кобальта и свинца осаждают в виде малорастворимых оксалатов  [c.212]

    Химия цинка и кадмия довольно проста, поскольку эти элементы образуют только такие соединения, которых они имеют степень окисления -i-2. Это состояние окисления вполне соответствует электронным структурам, приведенным ib табл. 19.4. Оно отвечает потере или обобществлению двух внешних электронов. Ионы Zn + и d + обладают восемнадцатиэлектронной оболочкой. [c.558]

    ОН , СЫ , Р можно осуществлять уменьшением pH. Комплексы кадмия и цинка с цианид-ионом разрушаются при действии формальдегида, который реагирует с цианид-ионом, образуя нитрил гликолевой кислоты. Пероксид-ные комплексы, например тнгана (IV), разлагаются кипячением в кислых растворах. Демаскирования можно достигнуть также окислением маскирующего соединения (например, окисление ЭДТА) или изменением степени окисления маскируемого вещества (Ре Ре ). [c.209]

    Атомы ртути (в отличие от цинка и кадмия) могут связываться друг с другом ковалентной связью, обра-зуя группировку H Hg , каждый атом которой имеет степень окисления +1. Окислители легко повышают степень окисления ртути (Hg2 l2 + СЬ = 2Hg l2), а восстановители переводят Hg + в Hg и далее в металлическую ртуть  [c.430]

    Атомы элементов имеют следующую электронную оболочку (п—I)s2p6i/ ns2. В образовании химических связей участвуют только электроны внешнего энергетического уровня атома, поэтому цинк, кадмий и ртуть проявляют в соединениях степень окисления +2 (ртуть также +1). [c.253]

    Элементы цинк 2п, кадмий С(1 и ртуть Hg составляют ПБ-груп-пу Периодической системы Д.И. Менделеева. Валентный электронный уровень их атомов имеет формулу п . Предвнешний -подуровень, полностью укомплектованный десятью электронами, приобретает повышенную устойчивость и валентным не является. Поэтому свойства цинка, кадмия и (в меньшей степени) ртути имеют сходство и со свойствами р-элементов, и тех -элементов, в атомах которых -подуровень заполнен лишь частично. Характерная степень окисления элементов ПБ-группы -1-П (для ртути -ьП и -И). [c.198]

    Электроны, находящиеся во внешней оболочке, удерживаются слабо и легко могут быть удалены. Ионы, образующиеся в результате такого удаления электронов (Си+, 2п +, Оа + и т. д.), имеют внешнюю оболочку из восемнадцати электронов и называются ионами с восемнадцатиэлектронной оболочкой. Если эти элементы теряют свои внешние электроны, образуя ионы с восемнадцатиэлектронной оболочкой, или делят внешние электроны с другими атомами, то степень окисления для меди, серебра и золота будет - -1, для цинка, кадмия и ртути +2, для галлия, индия и таллия -+-3. [c.557]

    Цинк и кадмий вытесняют водород из разбавленных кислот, ртуть растворяется только в кислотах-окислителях, например НМОд. Ртуть — во многих отношениях уникальный металл. Это единственный жидкий при нормальных условиях металл. Только для ртути характерно образование в водном растворе димерного иона с формальной степенью окисления -И. Наиболее известное соединение одновалентной ртути — каломель Hg2 l2. Ртзггь образует несколько амидных соединений, содержащих связь Не-М <, например, белый преципитат Hg (МНг) С1 или [НеаМ] I Н2О. Последнее вещество образует осадок ярко-желтого цвета при обнаружении иона аммония с помощью реактива Несслера — щелочного раствора Ка [HgI4]  [c.178]


Смотреть страницы где упоминается термин Кадмий степени окисления: [c.593]    [c.135]    [c.651]    [c.89]    [c.421]    [c.561]    [c.55]    [c.125]    [c.322]    [c.67]    [c.35]    [c.125]    [c.16]    [c.163]    [c.322]   
Справочник по общей и неорганической химии (1997) -- [ c.8 ]




ПОИСК





Смотрите так же термины и статьи:

Окисления степень



© 2025 chem21.info Реклама на сайте