Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидропероксиды разложение

    Реакции, протекающие при окислении кумола и разложении гидропероксида с образованием фенола и ацетона, а также побочных продуктов, рассмотрены в [61]. Направления использования фенола (получение фенолоформальдегидных смол, циклогексана и далее капролактама, дифенилолпропана, о-крезола и 2,6-ксиленола, анилина и т. д.) рассмотрены в работах [42, 62]. Гидрированием бензола получают циклогексан, окислением последнего — циклогексанон и далее оксимированием и бекмановской перегруппировкой — капролактам [63]. [c.333]


    Разложение гидропероксида изопропилбензола представляет экзотермическую реакцию кислотного расщепления, описываемую общим уравнением  [c.358]

    Металлы могут участвовать как катализаторы в любой стадии окисления [103]. На стадии инициирования металлические катализаторы облегчают разложение гидропероксидов в тех случаях, когда образовавшиеся гидропероксиды оказываются стабильными и неспособными спонтанно разлагаться при данных температурных условиях. В этих системах возможны различные варианты взаимодействия металла с окисленным углеводородом. В некоторых, относительно редких случаях возможен прямой перенос электронов от углеводорода к металлу [c.78]

    Распространенной формой участия металлического катализатора в окислении углеводородов является промотирование им разложения гидропероксида с образованием свободных радикалов  [c.78]

    На рис. 2.18 графически показано действие ингибиторов (ди-этил-л-фенилендиамин), влияющих только на начальную стадию окисления. Ограниченное действие ингибиторов этой группы объясняется тем, что они не способны влиять на скорость разложения гидропероксидов, и их противоокислительный эффект обусловливается только подавлением зарождения активных частиц (радикалов) в начальной стадии процесса. [c.81]

    При контакте с сильными кислотами также происходит распад многих пероксидов. Например, имели место случаи сильных взрывов вследствие кислотного разложения гидропероксида кумола. Поэтому ускорители и сильные кислоты необходимо хранить обособленно от органических пероксидов, исключать возможность попадания в пероксиды металлов — продуктов коррозии. [c.25]

    В поисках высокотемпературных ингибиторов обеления смазочных масел были синтезированы и исследованы комплексы металлов переменной валентности на основе серусодержащих алкилфенолов [93, с. 47]. Такие металлокомплексы обеспечивают обрыв цепей окисления ио реакции с пероксидными радикалами и многократное разложение гидропероксидов с низким выходом свободных радикалов в объем. [c.179]

    Производство фенола и ацетона кумольным методом включает стадии получения изопропилбеизола (стр. 249), синтеза гидропероксида изопропилбеизола и его кислотного разложения в фенол и ацетон. [c.377]

    Кинетические кривые окисления топлива имеют автокаталитический характер и линеаризуются в координатах Д[02] поэтому кинетику автоокисления характеризовали не скоростью, которая меняется во времени, а коэффициентом Ь в уравнении Д[02] = Ь1. Эта зависимость характерна для цепных радикальных реакций, когда основным источником радикалов является гидропероксид, а цепи обрываются бимолекулярно [66]. Параметр Ь, характеризующий активность катализаторов в разложении гидропероксидов на радикалы, изменяется от 0.26 10 до 4.00 Ю моль - / [c.109]


    Гидропероксиды прн разложении под действием повышенной температуры или катализаторов окисления действительно дают спирты и карбонильные соединения. Это разложение может иметь молекулярный механизм, однако в развившемся процессе окисления продукты образуются главным образом цепным путем. При получении спиртов звено цепи таково  [c.358]

    На практике некаталитическое окисление в жидкой фазе применяют только при синтезе гидропероксидов и надкислот (поскольку последние способны к разложению под действием катализаторов). В этом случае кинетика процесса определяется такими элементарными стадиями  [c.363]

    Окисление изопропилбензола и разложение гидропероксида. Получение фенола из изопропилбензола включает операции окисления изопропилбензола до его гидропероксида, выделения гидропероксида из продуктов окисления, разложения гидропероксида, нейтрализации продуктов разложения и выделения из них фенола и ацетона. [c.357]

    Кислотное разложение гидропероксидов [c.372]

    На рис. 16.5 представлена технологическая схема процесса получения и разложения гидропероксида изопропилбензола. [c.359]

    Так, предлагалось окислять циклоалканы Сз и С12 до гидропероксидов с разложением последних щелочью до смеси спирта с кетоном. Более эффективным оказался другой способ — термическое окисление воздухом, обедненным кислородом (до концентрации 3—4% О2). Эти условия, как показано ранее (стр. 365) и аналогично окислению парафинов (стр. 380), способствуют преимущественному образованию спирта по сравнению с кетоном. Если, кроме того, проводить процесс в присутствии борной кислоты, последняя связывает спирты в эфиры [c.390]

    При окислении ароматических углеводородов получают карбоновые кислоты ароматического ряда и их ангидриды, хиноны, гидропероксиды, при разложении которых образуются фенолы, [c.36]

    Кумольный метод получения фенола и ацетона разработан советскими учеными П.Г. Сергеевым, Б.Д. Кружаловым, Р.Ю. Удрисом и внедрен в 1944 г. За рубежом аналогичные производства появились позднее в Канаде и во Франции — в 1953 г., в США и ФРГ — в 1954 г Процесс производства фенола и ацетона кумольным методом состоит из 7 стадий алкилирование бензола, окисление изопропилбензола, вьщеление гидропероксида, разложение гидропероксида, нейтрализация гидропероксида, выделение фенола, вьщеление ацетона (рис. 9.1). [c.336]

    Окисление пропанола-2 при 120 °С Окисление изопропилбензола при ПО—130°С, разложение гидропероксида изопропилбензола серной кислотой [c.222]

    При мономолекулярном распаде гндропероксида эффективность инициирования е=/г,/2 2 лежит в пределах 0,4—0,8 и равна вероятности выхода радикалов из клетки в объем. Для гидропероксидов топлив е находится в пределах 0,04—0,06 (топливо Т-6) и 0,015—0,020 (топливо РТ), что на порядок ниже значений, характерных для клеточного эффекта. Следовательно, в топливах, наряду с гомолитическим, протекает интенсивное (в 10—30 раз более быстрое) гетеролитическое разложение гидропероксидов. [c.96]

    Диалкилдитиофосфаты и диалкилдитиокарбаматы металлов. Диалкилдитиофосфаты цинка, бария и других металлов энергично реагируют с гидропероксидами [229, 232, 233, 237], разрушая их как гетеролитически, так и гомолитически. Последнее обстоятельство — разложение гидропероксидов с образованием радикалов — объясняет, почему введение тиофосфата металла в начальный период стимулирует окисление углеводорода, например, тетралина [236]. [c.122]

    Потребность в п-крезоле составляет 10—15% от общей потребности в синтетических крезолах, а 80—85% потребности приходится на долю дикрезольной фракции. Последнюю получают из толуола методом, аналогичным изопропилбензольному способу получения фенола. Исходным сырьем служит смесь изопропилтолуолов. Алкилирование ведут на хлориде алюминия, чтобы обеспечить образование смеси изомеров, оптимальной для синтеза дикрезольной фракции состава до 3% о-изомера, 60—65% ж-изо-мера и 35—40% п-изомера. При кислотном разложении гидропероксида изопропилтолуолов получается дикрезольная фракция, практически свободная от о-крезола. Только в Японии в 1971 — 1972 гг. создано производство синтетической дикрезольной фракции мощностью 60 тыс. т/год, а в настоящее время эти мощности удвоены [61]. Производство дикрезола открывает путь к значительному расширению производства ионола и ж-крезола. [c.74]

    Каталитическое разложение гидропероксидов. Гидропероксиды легко разрушаются соединениями металлов переменной валентности, однако распад, как правило, протекает с образованием свободных радикалов поэтому в присутствии кислорода эти катализаторы ускоряют окисление. Катализаторами гетеролитического разложения ROOH являются кислоты Бренстеда. Гидропероксид кумила, в частности, распадается под действием кислоты на фенол и ацетон. Караш [257] предполагал, что распад этот протекает через образование неустойчивого иона R0+ [257] [c.125]

    Кроме перечисленных крупнотоннажных производств, ксилолы используются или могут быть использованы для изготовления ряда других важных продуктов. Одним из перспективных направлений может оказаться производство различных ксиленолов и крезолов щелочным плавлением сульфокислот ксилолов, кислотным разложением гидропероксидов изопропилксилолов, окислительным декарбоксилированием толуиловых кислот, получаемых при окислении ксилолов [34, с. 63—78]i. [c.85]


    Механизм действия диалкил- и диарилдитиофосфатов металлов, применяющихся в качестве эффективных антиокислительных присадок к смазочным маслам, очень сложен и поэтому мало изучен, Антиокислительные свойства этих солей, вероятно, в основном определяются наличием в них атомов серы, поскольку ди-алкил- и диарилфосфаты металлов не обладают антиокислительными свойствами. Некоторые исследователи относят эти присадки к антиокислителям, способным прерывать цепные реакции за счет разложения гидропероксидов. Исследования Санина [2, с. 183] показали, что диалкилдитиофосфаты металлов задерживают реакцию окисления при введении их как до начала окисления, так и в процессе окисления, вплоть до самых глубоких стадий его развития. Вероятно, в начальной стадии окисления диалкилдитиофосфаты металлов тормозят процесс за счет дезактивации образующихся радикалов (в основном ROO ), а на глубоких стадиях— за счет разложения гидропероксидов. [c.64]

    Для анализа путей образования и расходования ROOH были определены значения параметра ф2 = W 2 3/k([02], характеризующего вклад реакции (-2.3) в индуцированный распад ROOH и суммарной скорости разложения гидропероксида по первому и второму порядкам кз ,. [c.99]

    Как видно из данных, приведенных на рис. 3.12, при 1бО°С гидропероксиды углеводородных фракций ДТ и ЛГКК быстро распадаются в первые 20-30 мин, далее разложение идет очень медленно. Установлено, что распад гидропероксидов происходит по реакции первого порядка относительно ROOH в соответствии с выражением [88]  [c.103]

    Повышению селективности по гидропероксиду способствует главным образом сннжение температуры и степени конверсии эти параметры поддернсивают на оптимальном уровне, зависящем от общей экономической эффективности процесса. Так, прн окислении алкилароматических углеводородов поддерживают температуру 100—120°С, а при окислении изобутана 120—150Х. Полезно снижать температуру по мере накопления гидропероксида, чтобы замедлить скорость его разложения. Чтобы избежать последовательных превращений гидропероксида, ограничивают степень конверсии в пределах от 30% (при окислении кумола) до 10% (для этилбензола) при получении дигидропероксида динзопропилбензола приходится увеличивать степень конверсии до 50—60%. [c.371]

    И кинетическом отношении кислотное разложение гидропероксидов характеризуется очень высокой скоростью, причем практически полное превращение в присутствии 0,05—1% (масс.) НгЗО,-(в расчете на гидропероксид) при 50—60 °С достигается за 2— 3 мни. Реакция тормозится водой и ускоряется образующимся фенолом, имея первые порядки по кислотному катализатору и гидропероксиду. Вместо сериой кислоты в качестве катализаторов ИСП эП Ывались катионообменные смолы, но сведения об их практп-чес1 ом применении отсутствуют. [c.373]

    Оксидат из нижней части колонны 1 содержит до 30% гидропероксида. Он отдает свое тепло изопропилбензолу в теплообменнике 4, дросселируется до остаточного давления х4 кПа и поступает на вакуум-ректификацию для концентрирования гидропероксида. Отгонку изопропилбеизола ведут в насадочной ректификаци-синой колонне 6 непрерывного действия, снабженной конденсатором-дефлегматором. Применение вакуума обусловлено термической нестабильностью гидропероксида. Часть конденсированного изо-пронилбензола возвращают из конденсатора-дефлегматора на оро-пение колонны 6, а остальное количество выводят в сепаратор 3, громывают щелочью и снова направляют на окисление. Кубовая хидкость из колонны 6 содержит 70—75% гидропероксида, а так- се побочные продукты окисления и остатки изопропилбеизола. Путем дополнительной вакуум-ректификации (на схеме не изобра-ясена) при остаточном давлении 665 Па повышают концентрацию гидропероксида до 88—92%- Следующую стадию (кислотное разложение гидропероксида) осуществляют в узле 7 одним из двух списанных выше методов. [c.378]

    В связи с этим разработка кумольного метода получения фенола позволила создать кооперированное производство фенола, ацетона и пропиленоксида, используя в качестве гидроперок-сидного соединения гидропероксид изопропилбензола. В этом производстве часть гидропероксида направляется на разложение до фенола и ацетона, а остальное количество его поступает на эпоксидирование пропилена  [c.361]

    Упрощенная схема процесса изображена на рис. 114. Окисление ведут в каскаде барботажных колонн 1 с последовательным перетоком жидкости и подачей воздуха в каждую колонну. Тепло реакции снимается за счет испарения избыточного циклогексана, который коь денсируется в общем для всех колонн холодильнике 2, отделяется от газа в сепараторе 3 и поступает в линию оборотного циклогексана. Оксидат из последней колонны промывают водой (для выделения низших кислот) в смесителе 4 и отделяют от водного слоя в сепараторе 5. Затем из оксидата в колонне 6 отгоняют основную массу циклогексана, оставляя в кубе такое его количество, чтэбы концентрация гидропероксида не превысила безопасного уровня (3—4%). Кубовую жидкость обрабатывают затем при нагревании и каскаде аппаратов 7 с мешалками (на рисунке изображен один) водной щелочью. При этом происходит омыление сложных эфиров и лактонов, а также разложение гидропероксида. Органический слой отде- [c.389]

    Поскольку основной побочной реакцией является параллельное разложение гидропероксида (ROOH—> ROH + 0,502), также про-текаьзщее на катализаторе, дифференциальная селективность реакции по гидропероксиду приближенно равна  [c.441]

    В состав молекулярных продуктов превращения гидропероксид-ных радикалов входят спирты, карбонильные соединения, подвер-гайцГйеся дальнейшим преврац1ениям. Разложение в среде углеводородов гидроперокСида этилбензола при 65—116°С в присутст- [c.262]

    В отсутствие такой активирующей функции приходится использовать более изощренные методы, ведущие к аналогичному результату, основанные главным образом на свободнорадикальных реакциях. К их числу относится термическое разложение тре/п-бутиловых эфиров пад-кислот типа 282 (легко получаемых из хлорангидридов кислот и гидропероксида огреиг-бутила) по схеме [c.197]


Смотреть страницы где упоминается термин Гидропероксиды разложение: [c.194]    [c.194]    [c.66]    [c.125]    [c.206]    [c.63]    [c.63]    [c.63]    [c.371]    [c.371]    [c.372]    [c.442]    [c.8]    [c.276]    [c.354]    [c.223]   
Технология нефтехимического синтеза Издание 2 (1985) -- [ c.282 ]




ПОИСК





Смотрите так же термины и статьи:

Гидропероксиды

Каталитическое разложение гидропероксидов диизопропилбензолов

Кислотно-каталитическое разложение гидропероксидов

Константа скорости разложения гидропероксида

Разложение гидропероксида изопропилбензола

Разложение гидропероксидов в. присутствии солей металлов переменной валентности

Реактор разложения гидропероксида, адиабатический

Скорость разложения гидропероксида

Энергия активации разложения гидропероксидов

Эффективная константа скорости разложения гидропероксидов



© 2024 chem21.info Реклама на сайте