Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полипропилен формование

    Крашение в массе в другие цвета может быть осуш,ествлено введением термостойких пигментов или органических красителей. Фирма Циммер (ФРГ) получила патент [25] на способ приготовления концентрата красителя в полимере путем механического растирания их смеси с одновременным расплавлением. Концентрат вводят в непрерывном процессе перед формованием волокна. По другому способу [26] в расплав полиэфира вводят смесь красителя с полипропиленом, полиэтиленом, полиэтиленгликолем или трис(нонилфенил)фосфитом. [c.230]


    Полипропилен выдерживает действие 98%-ной серной кислоты при температуре 90 в течение 7 час., пе изменяется при 70 в 50%-ной азотной кислоте, не разрушается в концентрированной соляной кислоте и 40%-ном растворе едкого натра. Под влиянием кислорода воздуха полипропилен постепенно окисляется, особенно во время формования изделий при повышенной температуре. Окисление сопровождается возрастанием жесткости, а затем хрупкости материала. Введение в полипропилен антиокислителей (фенолы, амины) стабилизирует свойства полимера, находяш егося в расплавленном состоянии в течение нескольких часов. Длительное солнечное воздействие придает полипропилену хрупкость, ускоряя процесс окислительной деструкции. Введение в полипропилен антиокислителя и сажи позволяет повысить устойчивость полипропилена к световому воздействию. Термическая деструкция полимера наблюдается выше 300.  [c.788]

    Большое влияние оказывает структура волокна и на его термостойкость. В отличиё от природных волокон, которые вследствие своей полярности разлагаются без плавления, синтетические волокна в большинстве случаев термопластичны. Некоторые из них достаточно устойчивы при нагревании выше температуры плавления, что позволяет проводить формование волокна прямо из расплава полимера (таковы, например, найлон-6, найлон-6,6, полиэтилентерефталат и полипропилен). Формование волокон из термически нестойких полимеров, особенно полиак-рилонитрила, ацетатов целлюлозы, поливинилового спирта и поливинилхлорида, производится более трудоемким способом полимер растворяют в подходящем растворителе и полученный раствор выдавливают через отверстия фильеры в поток горячего воздуха, вызывающего испарение растворителя, или в осадительную ванну. Безусловно, формование из расплава (там, где оно возможно) является наиболее предпочтительным методом получения волокна. Низкоплавкие волокна во многих случаях имеют очевидные недостатки. Например, одежда и обивка мебели, изготовленные из таких волокон, легко прожигаются перегретым утюгом, тлеющим табачным пеплом или горящей сигаретой. Желательно, чтобы волокно сохраняло свою форму при нагревании до 100 или даже 150 °С, так как от этого зависит максимально допустимая температура его текстильной обработки, а также максимальная температура стирки и химической чистки полученных из него изделий. Очень важным свойством волокна является окрашиваемость. Если природные волокна обладают высоким сродством к водорастворимым красителям и содержат большое число реакционноспособных функциональных групп, на которых сорбируется красящее вещество, то синтетические волокна более гидрофобны, и для них пришлось разработать новые красители и специальные методы крашения. В ряде случаев волокнообразующий полимер модифицируют путем введения в него звеньев второго мономера, которые не только нарушают регулярность структуры и тем самым повышают реакционную способность полимера, но и несут функциональные группы, способные сорбировать красители (гл. Ю). Поскольку почти все синтетические волокна бесцветны, их можно окрасить в любой желаемый цвет. Исключение составляют лишь некоторые термостойкие волокна специального назначения, полученные на основе полимеров с конденсированными ароматическими ядрами. Матирование синтетических волокон производится с помощью добавки неорганического пигмента, обычно двуокиси титана. Фотоинициированное окисление [c.285]


    Сырье. Основной представитель П. в.— полипропиленовое волокно. Изотактич. полипропилен (см. Пропилена полимеры), К-рый применяют для формования этого волокна, должен отвечать след, требованиям  [c.6]

    Для промышленного производства полипропиленового волокна имеются благоприятные технико-экономические предпосылки. Одна из них — наличие широкой сырьевой базы [2]. Как уже указывалось выше (гл. 2), дешевым сырьем для производства полипропилена служит пропилен, который выделяется в значительном количестве из газов пиролиза и крекинга нефти или из нефтепродуктов. Высококачественный полипропилен, применяемый, в частности, для формования волокна, получается лишь из мономера с высокой степенью чистоты, которая и определяет цену пропилена. Для примера ниже указаны цены ряда получаемых в США мономеров (в центрах за фунт) [3]  [c.230]

    Для формования волокна может быть использован гранулированный полипропилен, удовлетворяющий следующим основным требованиям  [c.235]

    Глубина формования (или степень вытяжки пленок), которую нужно учитывать для приближенного расчета уменьшения толщины изделий после формования, зависит от условий деформирования и типа полимера. Для полимерных пленок распространенных типов степень вытяжки полистирол 2...4 полиэтилентерефталат 3...4 полипропилен 4... 10 полиэтилен [c.87]

    Полипропилен в растворе практически не подвергается деструкции, поэтому отпадает необходимость формования волокна в токе инертного газа (хотя инертная атмосфера и образуется парами растворителя). [c.237]

    Способ формования волокна из раствора дает возможность использовать полипропилен более высокого молекулярного веса и соответственно получать волокна с лучшими механическими свойствами. [c.237]

    Методом вакуумного формования полипропилен можно перерабатывать в тонкостенные изделия больших размеров, Иногда полипропиленовой пленкой в горячем состоянии покрывают картон. [c.279]

    Перерабатывается экструзией, литьем под давлением, вакуум-формованием. Полипропилен —СНа—СН—  [c.256]

    К числу термопластичных материалов, пригодных для переработки методом литья под давлением и экструзионного формования, относятся полиэтилен, полипропилен, полистирол и его сополимеры, пластифицированный поливинилхлорид (пластикат), политрифторхлорэтилен (фторопласт-3), полиформальдегид, полиамиды, поликарбонат, этролы. [c.538]

    С производством пластмасс тесно связана промышленность синтетических волокон. Для производства мономеров, нужных для получения синтетических волокон, применяются такие виды нефтехимического сырья как бензол, циклогексан, фенол, аммиак и др. Такие высокомоле-1 улярные соединения, как капрон, найлон, лавсан, полиформальдегид н полипропилен применяются для изготовления формованных изделий, заменяющих металл, и для получения синтетических волокон. И в то же время ткани из синтетических волокон находят широкое применение не только в быту, но и в технике. Они широко используются в электротехнической промышленности в качестве высококачественных электроизоляционных материалов в виде специальных облицовочных декоративных негорючих тканей для автомобилей, пассажирских вагонов, морских и речных судов как высокопрочный корд для автомобильных покрышек, для приводных ремней, рукавов высокого давления, мягких резинотканевых резервуаров в качестве канатного материала, выдерживающего большие нагрузки, для рыболовных сетей, в химической промышленности в качестве материалов, устойчивых к действию агрессивных сред, для грузовых парашютов, самолетов, космических кораблей и многих других целей. [c.32]

    Полипропилен перерабатывают в изделия стержневым прессованием, литьем под давлением, выдуванием, прессованием. Формование производят при 190—220 и 700—1200 кз/сж в случае изготовления изделий литьем под давлением. Для прессования листов или блоков можно применять давление 100—120 кг1см . Отдельные детали из полипропилена сваривают между собой при 200—220. Средняя объемная усадка полипропилена в процессе формования изделий составляет 1—2% для полиэтилена высокого и низкого давлений она колеблется от 3 до 5°/д, для полистирола 0,3—0,5%. Листовой полипропилен применяют как антикоррозийный облицовочный материал для защиты металла от действия растворов щелочей и кислот. Пленки из полипропилена готовят методом раздувки трубы, получаемой стержневым прессованием. Пленки наиболее высокого качества получают нагревом полимера до 190—250 . Отформованную пленку следует быстро охладить водой до 20—25, это предупреждает образование кру1Пных кристаллитных участков, позволяет сохранить прозрачность пленки и повышает ее эластичность. Охлажденную пленку рекомендуется подвергнуть растяжению. При растяжении происходит ориентация в расположении кристаллов и прочность пленки па растяжение в направлении 0 риентации возрастает до 1200—1600 кг/см вместо 300—400 кг/смР для неориентированной пленки. Газо- и паропроницаемость пленок из полипропилена ниже газо- и паро-проницаемости пленок из полиэтилена (табл. XII.10). [c.789]


    Еще одна область применения двухшнековых экструдеров — химическая модификация полиолефинов. При высоких температурах в присутствии пероксидов и кислорода можно регулировать (сужать) молекулярно-массовое распределение полипропилена [5-7], что позволяет получать полипропилен, более подходящий для формования волокон. Такой процесс называется легкий крекинг . Следует заметить, что его можно применять также при переработке полибутена-1 [8]. Однако полиэтилен при такой переработке сшивается и образует гели. [c.129]

    Высокая ударная вязкость полипропилена в сочетании с легкостью переработки методом литья под давлением, высокая термо- и химическая стойкость позволяют широко использовать этот материал в производстве разнообразных труб, аккумуляторных баков, деталей холодильников, корпусов для радиоприемников, деталей ткацких машин, роторов, центрифуг и других изделий. Подробно способы и режимы формования описаны у Рапелли и Креспи [71]. Полипропилен, предназначенный для производства изделий (преимущественно труб), содержит 2% сажп (космос ВВ) и стабилизатор (фенолы или амины), предохраняющий полипропилен от окисления при термообработке. [c.789]

    Окислы двухвалентных металлов (2п0, Mg0, РЬО) реагируют с хлорированным полипропиленом (наиболее предпочтителен полимер с молекулярным весом >20 000 и содержанием хлора >20%) с образованием эластомеров, обладающих прекрасной озоностой-костью. Эту реакцию часто проводят в присутствии меркапто-бензтиазола [72, 78, 80, 81]. Пленки, волокна и формованные изделия из полипропилена можно подвергнуть действию хлора так, чтобы хлорирование проходило лишь в тонком поверхностном слое. Благодаря повышенной полярности хлорированной поверхности улучшается ее способность окрашиваться и воспринимать печать, чернила, лаки, клеи, фотоэмульсию и т. п. [82—85]. Хлорированный полипропилен размягчается легче, чем нехлорированный (рис. 6,4), вследствие чего улучшается его свариваемость. Раствор низкомолекулярного хлорированного полипропилена в смеси с красителями образует несмываемые чернила [86]. Хлорированный полипропилен в чистом виде или в смеси с немодифицированным полипропиленом может быть рекомендован для склеивания металлов, бумаги, стекла, а также поливинилхлорида и поливинилиден-хлорида [87]. Пленки из хлорированного полипропилена применяются в качестве проницаемых мембран [88] с высокой удельной ударной вязкостью при изгибе [69]. Большой интерес представляет галогенирование твердого полипропилена в целях удаления [c.135]

    Прядильные устройства с плавильными решетками, обычно применяемые в производстве полиамидных и полиэфирных волокон [30, 31], для формования полипропиленового волокна неприемлемы в силу целого ряда причин. Во-первых, вязкость расплава полипропилена, из которого можно формовать волокно, значительно превышает вязкость расплава полиамидов и полиэфиров. Для снижения вязкости расплав перед формованием волокна гютребова-лось бы нагреть до температуры, при которой полипропилен подвержен очень сильной деструкции. Во-вторых, ввиду более высокой вязкости расплава полипропилена для достижения необходимой текучести требуется гораздо более продолжительная выдержка его при высоких температурах, следствием чего является дальнейшая более глубокая деструкция полимера. Наконец, прядильные устройства, снабженные плавильными решетками, не обеспечивают высокой производительности. [c.238]

    Переработка полипропилена методом формования несколько затруднена вследствие присущей ему кристаллической структуры. Относительно резкий переход полимера из твердого состояния в жидкое требует поддериония температурного режима в узких интервалах [1]. Прп низкой температуре требуется применять высокие давления формования, а также затрудняется хорошее воспроизведение конфигурации формы, а при высокой — формуемый материал легко разрывается или деформируется и часто прилипает к модели или форме. Полипропилен характеризуется меньшей удельной теплоемкостью, чем линейный полиэтилен, поэтому его прогрев перед формованием и последующее охлаждение занимают на 15—20% меньше времени. На рис. 11.1 [2] показана зависимость температуры пленки от продолжительности нагревания. Температуру формования обычно поддерживают в пределах 165—175°С. Для прогрева заготовок чаще всего применяют излучающие электронагреватели мощностью 200—450 вт/дм . При формовании изделий из листов толщиной более 3 мм предварительный разогрев заготовок целесообразно осуществлять в сушилке при 110—140°С. Это дает возможность сократить продолжительность рабочего цикла и уменьшить усадку изделий [3], [c.278]

    Из порошковых ионитов можно получать формованные ионитовые изделия различного профиля. Асфальтиты или хлорметилированные асфальтиты прессуются с гек-саметилентетрамином или параформом при 120-150 °С и 2-5 МПа. Полученное пресс-изделие (твердость по Хепплеру 900-1200 кг/см ) можно подвергать различным реакциям с получением ионогенных групп. Например, пресс-изделие из асфальтита хлорметилировать, затем аминировать или фосфорилировать и т. д. Кроме того порошковые иониты можно гранулировать или формовать. Например, для получения формованного изделия порошковый ионит вводится в связующее — полиэтилен или полипропилен в соотношении 12-10 1 при 90 С. Полученную смесь продавливают через фильеры определенного профиля. [c.156]

    Пленки из полипропилена прочнее полиэтиленовых и имеют еще меньшую влаго- и газопроницаемость. Из них изготовляют упаковочный материал, в том числе для хранения пищевых продуктов, а также плащи, косынки и другие изделия. В производстве пленочных материалов применяют и сополимеры пропилена с другими олефинами, например с бутиленом. Трубы из полипропилена обладают высокой коррозионной устойчивостью, они инертны к действию кислот, щелочей, минеральных и растительных масел, спиртов и других реагентов. Полипропилен применяют для изготовления электроизоляционных покрытий, к которым предъявляются требования повышенной термостойкости (до 120—140 °С). Изделия из полипропилена имеют более высокую теплостойкость, форма их более устойчива, чем из полиэтилена полипропилен более технологичен для производства труб, бутылок, канистр и других сосудов. Полипропилен пе-реработывают в изделия в основном теми же методами, что и полиэтилен. Он легко формуется, перерабатывается на экструзионных, литьевых машинах выдуванием, на машинах вакуумного формования. Его можно перерабатывать и методом центробежного формования, неприменимым для других термопластов. [c.103]

    В отличие от полиэтиленовых полипропиленовые волокна имеют важное значение в промышленности. Исходным сырьем для них служит полипропилен с преимущественно изотактиче-ской структурой, который получается полимеризацией пропилена при низких давлениях и температурах на катализаторах циглеровского типа в инертном углеводородном растворителе. Атактический полипропилен не обладает волокнообразующими Свойствами, а синдиотактический не производится в промышленности. Полимер с Т пл 165°С и молекулярным весом до 400 000 отфильтровывают от реакционной смеси, освобождают от остатков катализатора, добавляют антиоксидант, окрашивают (если это нужно) и подвергают формованию из расплава с последующим вытягиванием волокна. Существенно, чтобы тактичность полипропилена составляла около 90%. Ориентированное волокно может иметь высокую степень кристалличности — до 50—60%). Стремление свести к минимуму пространственное взаимодействие между метильными группами заставляет почти линейные молекулы полимера принимать форму спирали, в которой на каждый, виток приходится три мономерных звена, а скелетные связи С—С поочередно находятся в транс- и гош-по-ложениях (рис. 9.6). [c.334]

    Макромолекулы В. п. должны иметь линейную или слаборазветвлен-ную форму. Полимеры с сетчатой (сшитой) структурой непригодны Д.ПЯ получения волокон, т. к. они пе могут быть переведены в расплав или р-р. Наличие в макромолекулах больших разветвлений снижает возможность межмолекулярных взаимодействий (уменьшается фактор к, см. ур-ние) и одновременно затрудняет ориентацию макромолекул при формовании и пластифи-кационном вытягивании волокна это снижает прочность волоквд при растяжении и увеличивает нежелательные пластич. деформации. Поэтому, напр., из класса полиолефинов для формования волокон пригодны только стереорегулярные практически перазветвленные полимеры (напр., изотактич. полипропилен). [c.254]

    Формование полиолефиновых волокон в основном осуществляют из расплава полимера на оборудовании, аналогичном тому, которое используют для изготовления полиамидных и полиэфирных волокон. Для снижения окислительной деструкции полимера во время прядения К нему предварительно добавляют стабилизаторы. С этой же целью полипропилен, используемый Для переработки на волокно, выпускают в гранулах, а не в порошке, который может содержать значительное количество воздуха. Вследствие высокой вязкости расплава полипропилена, для формования из него волокон используют фильеры специальных конструкций с отверстиями ббльшего диаметра. [c.367]

    Экструзия расплавленного полимера через цилиндрические головки и его отбор (намотка) в виде волокон впервые упоминаются в патенте середины XIX века Брумена [3], касающегося гуттаперчи (натуральный тра с-1,4-полиизопрен). Первые искусственные промышленные волокна были получены из нитрата целлюлозы и были производены в 80-х гг. XIX века путем растворения полимера и экструзии через круглые отверстия с последующей коагуляцией [4-6]. Каро-терсом и Хиллом [7] в 1930-х гг. были синтезированы алифатические полиэфиры, и получены волокна экструзией из их расплава. Позднее Каротерс [8] и Болтон [9] опубликовали исследования о формовании волокон из расплава полиамида. С началом коммерческой разработки полиолефинов в 1950-х гг. волокна, изготовленные на основе этих полимеров, стали объектами широких исследований [10-13]. Изотактический полипропилен был наиболее широко распространенным [c.150]

    В последующие годы появились полипропилены с более низкой тактичностью, полученные с использованием металлоценовых катализаторов, которые стали доступными для промышленного применения. Спрюэлл с соавт. [86] первыми высказали предположение, что уровень тактичности в изотактическом полипропилене должен влиять на кристаллизацию вдоль линии формовании. [c.174]

    Эффект двулучепреломления в волокнах, сформованных из расплава смесей изотактический полипропилен-ЭПДМ, по данным Йю и Уайта [73] ниже, чем в изотактическом полипропилене при том же самом напряжении формования. При чем это уменьшение зависит от количества фракции изотактического полипропилена в смеси. При одинаковом напряжении формования [c.177]

    Формование из расплава смесей полипропилена и поликарбоната изучал Йю [89]. В этих волокнах также наблюдались кристаллы а-моноклииного изотактического полипропилена. Йю обнаружил, что полипропилен в смесях проявляет более слабую ориентацию кристаллической фазы, чем чистый изотактический полипропилен или смеси полипропилен-ЭПДМ. По-видимому, этот эффект сходный с обнаруженным Мином с соавторами [64] в полиэтилен-полистироль-ных смесях (см. раздел 8.6.3). Высокая температура стеклования Т в поликарбонате является причиной быстрого изменения вязкости при изменении температуры и вызванного этим перераспределения напряжений вдоль линии формования. [c.177]

    Структурные преобразования в процессе формования из расплава коммерческих термопластичных динамических вулканизатов из изотактического полипропилена рассмотрены Йю и Уайтом [73]. Характеристики волокна были близки характеристикам волокон из смеси изотактический полипропилен-ЭПДМ. Волокна, сформованные из расплава, имели а-моноклинную форму Натты-Коррадини. [c.178]

    Ориентация термопластичных динамических вулканизатов из полипропилена была такой же как в смесях полипропилен-ЭПДМ с преобладанием изотактического полипропилена. С помощью рентгеновского рассеяния определена ориентация в волокнах изотактического полипропилена, сформованного из расплава [66]. Факторы ориентации Германса-Стейна, как оказалось, коррелируют с напряжением формования таким же образом, как изотактический полипропилен и смеси изотактический полипропилен-ЭПДМ (рис, 8.26). [c.178]

Рис. 8.26. Факторы кристаллической ориентации как функция напряжения при формовании волокна из изотактического полипропилена ( ) и смеси динамических вулканизатов изотактический полипропилен-ЭПДМ ( ) [73] Рис. 8.26. <a href="/info/476634">Факторы кристаллической</a> ориентации как функция напряжения при <a href="/info/12053">формовании волокна</a> из изотактического полипропилена ( ) и смеси <a href="/info/1641313">динамических вулканизатов изотактический полипропилен</a>-ЭПДМ ( ) [73]
    Для волокон, сформованных из расплава низкотактических изотактических полипропиленов характерны низкие скорости кристаллизации и, как правило, формирование мезоморфной структуры. Однако при формовании с высокой скоростью в таких волокнах возможно образование значительной доли кристаллов в р-форме и повышенное содержание эпитаксиально разветвленных ламелей. [c.184]

    Скорость кристаллизации синдиотактического полипропилена заметно меньше по сравнению с изотактическим полипропиленом. При кристаллизации синдиотактического полипропилена в условиях низких напряжений формования наблюдается образование цепей в виде спиральной структуры (Т2С2)2 (форма I), при более высоких напряжениях возможно образование цепи в форме транс-зжз та (ТТТТ) (форма П1). Одинаковые условия формования приводят к более высокой степени ориентации кристаллических образований в волокнах из синдиотактического полипропилена, по сравнению с волокнами из изотактического полипропилена, однако в последних эффект двулучепреломления проявляется более интенсивно. [c.184]


Смотреть страницы где упоминается термин Полипропилен формование: [c.408]    [c.28]    [c.294]    [c.29]    [c.67]    [c.108]    [c.291]    [c.168]    [c.169]    [c.176]    [c.176]    [c.168]    [c.169]    [c.174]    [c.176]    [c.176]   
Основы технологии переработки пластических масс (1983) -- [ c.223 ]




ПОИСК





Смотрите так же термины и статьи:

Полипропилен

Полипропилен режимы формования

Полипропилен ротационное формование

Полипропилен формование из листов

Формование листового полипропилена



© 2025 chem21.info Реклама на сайте