Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диэлектрическая постоянная, определение

    Значения диэлектрической постоянной (определение выполнено на пластинках толщиной 3 мм. отвержденных при 60 ) приведены в табл. 64. [c.774]

    Вид дифференциального уравнения скорости химической реакции устанавливается на основании опытных данных по зависимости концентраций реагирующих веществ и продуктов реакции от времени. Концентрации определяются обычными химическими или физико-химическими методами анализа (например, измерение оптической плотности, электропроводности, потенциала электрода, диэлектрической постоянной, теплопроводности газовой смеси и др.). Для определения дифференциального уравнения скорости химической реакции необходимо определить как общий порядок реакции, так и порядок по отдельным компонентам реагирующей системы. Для определения порядка реакции можно использовать следующие методы. [c.540]


    Методы состоят в определении диэлектрической постоянной влажного угля. Эта величина является весьма чувствительной, так как ее значение примерно в 30 раз больше для воды, чем для сухого угля [64]. [c.62]

    Результаты определения зависимости молекулярного веса от диэлектрической постоянной растворителя (в) [c.222]

    При разделении неизмененных нефтяных смол первое п основное требование, предъявляемое к адсорбенту и десорбирующим жидкостям, заключается в том, чтобы они не вызывали химических изменений компонентов разделяемой смеси. Размеры пор адсорбентов должны соответствовать размерам молекул разделяемой смеси, что определяет его общую адсорбционную емкость. Адсорбент должен обладать достаточно хорошей специфичностью или адсорбционной избирательностью по отношению к молекулам различных типов структур, что в значительной мере и определяет эффективность разделения нри помощи хроматографических методов. Растворители должны характеризоваться высокой степенью чистоты и определенной вымывающей (десорбирующей) способностью. Многочисленные данные, полученные при изучении вымывающей способности растворителей разной химической природы, показывают, что существует довольно определенная закономерная связь (пропорциональность) между их диэлектрической постоянной, т. е. полярностью, и вымывающей способностью или, что то же самое, адсорбируемостью [38]. [c.448]

    Свойства и реакции 2-аминоэтансульфокислоты и ее производных. Как отмечено выше, таурин обладает слабо выраженными кислотными свойствами. Определение константы ионизации дало различные величины, причем два более новых значения [170] составляют 1,8-10" и 5,77-10 . Водные растворы таурина имеют диэлектрическую постоянную выше, чем у воды, причем она увеличивается пропорционально концентрации раствора 171]. Аналогичное действие оказывают другие солеобразные соединения, в которых положительные и отрицательные ионы, присутствуя в одной молекуле (двухполярные ионы), создают постоянные диполи. В кислом растворе таурин чрезвычайно устойчив к действию окисляющих агентов. Он не вступает в реакцию с серной кислотой, кипящей азотной кислотой, царской водкой или сухим хлором [172]. Однако при сплавлении таурина с углекислым натрием и азотнокислым калием сера полностью превращается [c.134]

    Для второго издания курс подвергся ряду изменений и дополнений. Более подробно рассмотрены основы метода электронного парамагнитного резонанса (3>ПР), приведены примеры идентификации свободных радикалов по спектрам ЭПР. В гл. И1 переработан 2, посвященный теории абсолютных скоростей реакций существенные изменения, касающиеся влияния диэлектрической постоянной на скорость реакции, внесены в 11, трактующий вопросы роли среды в элементарном акте химического превращения в 12 рассмотрение кинетического изотопного эффекта дополнено методом определения констант скоростей по изменению изотопного состава в ходе процесса. Изложение вопроса о кинетике химических реакций, состоящих из нескольких элементарных стадий (гл. VI), дополнено описанием нового способа определения числа линейно независимых дифференциальных уравнений, описывающих кинетику процесса. [c.5]


    Диэлектрическая постоянная или диэлектрическая проницаемость — величина, показывающая изменение силы взаимодействия двух электрических зарядов в данной среде (в данном веществе) по сравнению с силой их взаимодействия в вакууме. В основе такого определения понятия диэлектрическая проницаемость лежит уравнение (1) (закон Кулона) [c.398]

    Однако корреляция величин констант скорости и диэлектрических постоянных оказывается возможной лишь в пределах группы раствори-телей, принадлежащих к одному гомологическому ряду, или для серии смесей переменного состава, приготовленных из определенной пары растворителей. Так, имеется определенная функциональная зависимость между константой скорости сольволиза тре/и-бутилхлорида и диэлектрической постоянной в ряду вода — спирты (сплошная линия на рис. 37), но эта зависимость неприменима для большого числа растворителей других классов. [c.120]

    Примером может служить определение дипольных моментов ц и поляризуемостей молекул а, которое может быть осуществлено с помощью измерений диэлектрической постоянной е и показателя преломления п вещества по уравнениям [c.49]

    Б. Особенности электропроводности неводных растворов. В водных растворах, а также в неводных растворителях с высокой диэлектрической постоянной эквивалентная электропроводность обычно возрастает с ростом разведения (см. рис. 16) в результате увеличения подвижности ионов, а для слабых электролитов также и степени диссоциации. Эта закономерность нарушается в неводных растворителях с низкой диэлектрической проницаемостью, что было впервые обнаружено в 1890 г. И. А. Каблуковым при исследовании растворов хлористого водорода в амиловом спирте. Электропроводность этих растворов возрастала с ростом концентрации (т. е. с уменьшением разведения) в определенном интервале. Такое явление называется аномальной электропроводностью. В растворителях с диэлектрической проницаемостью е<с35 на кривых зависимости эквивалентной электропроводности от разведения можно наблюдать максимум и минимум (рис. 23). П. Вальден установил, что разведение, отвечающее минимуму электропроводности, и диэлектрическая проницаемость растворителя связаны соотношением e /v и 30. [c.77]

    Если предположить, что при адсорбции органического вещества изменяются не только диэлектрическая постоянная плотного слоя е и его средняя толщина 6, а также нормальная к поверхности составляющая дипольного момента молекул адсорбата iJ. (например, в результате изменения их ориентации с ростом Гд), то формально вводимая зависимость а от ф приобретает вполне определенный физический смысл. В самом деле, если [c.70]

    Рис. 34. Графический метод определения моментов диполя из зависимости диэлектрической постоянной е от температуры Т [c.95]

    Опыты показывают, что во многих системах величина е зависит от частоты. Например, при низких частотах значение е завышено. Если увеличить частоту, то при определенном значении ее диэлектрическая постоянная уменьшается. Это уменьшение захватывает область частот, за которой следует область статического, уменьшенного значения е. [c.107]

    Каждое твердое кристаллическое тело, представляющее собой индивидуальное вещество, обладает определенной температурой плавления. В отличие от кристаллических плавление аморфных тел происходит в интервале температур (рис. 8). При нагревании аморфное твердое тело постепенно становится более мягким, делается подвижным и приобретает свойства, характерные для жидкости. В интервале размягчения аморфного тела характерно изменяются все физические свойства вязкость, коэффициент расширения, теплоемкость, электропроводность, диэлектрическая постоянная. [c.46]

    Модель взаимодействия ион — растворитель была предложена Борном, исходившим в своих расчетах из простейших предположений, более характерных для физика, чем для химика. Ион радиуса п предполагался находящимся в среде диэлектрика, обладавшей определенной диэлектрической постоянной е и лишенной какой-либо структуры. Вычислялась работа разряда иона в ва-куме, затем частица, лишенная заряда, переносилась мысленно в данный растворитель (без затраты работы) и вновь заряжалась до потенциала на поверхности иона. Энергия переноса моля ионов из вакуума в раствор равна, по мысли Борна, энергии сольватации. Борн получил уравнение для энтальпии сольватации [c.251]

    Делались попытки путем введения соответствующих устройств по возможности исключить эти источники ошибок и создать вполне определенные рабочие условия. Идеальным случаем было бы определение концентрации жидкости в испарителе и конденсата пара без отбора пробы. Последнее время для этой цели стали применять проточный рефрактометр (см. главу 8.52). Кроме того, вполне допустимо в ряде случаев измерять диэлектрическую постоянную с помощью проточной ячейки (см. главу 8.53). Всегда целесообразно начинать работу с максимальной загрузкой испарителя, чтобы взятые или отводимые для измерения пробы не нарушали уста новления равновесия. [c.95]


    Все более широкое применение физических методов измерения и лабораториях привело к дальнейшей разработке методов определения диэлектрической постоянной (ДП). Этот метод измерения обладает особыми преимуществами при ректификации смесей, содержащих воду (ДП = 80), а также смесей веществ с резко отличными значениями ДП. В качестве таких примеров можно назвать смеси уксусной кислоты (ДП = 6,13) и уксусного ангидрида (ДП = 22,2), а также смеси метилового спирта и толуола. Азеотропная смесь метилового спирта и толуола, образующаяся при ректификации, имеет значение ДП=26,8 по сравнению с величиной ДП для исходных компонентов, равной соответственно 33,8 и 2,37 [61]. На рис. 425 изображено устройство Эме [61 ], используемое для контроля процесса ректификации. Измерительная ячейка этого устрой- [c.518]

    Формамид обладает необычной диэлектрической постоянной (110), существенно превосходящей диэлектрическую постоянную воды. Этот растворитель находится в жидком состоянии в удобной для работы области температур (2,5-193 °С) и имеет низкое давление паров при комнатной температуре. По вязкости он превосходит ДМФ (3,3 сП по сравнению с 0,80 сП для ДМФ). В отличие от ДМФ формамид лишь эпизодически применялся в качестве растворителя электролитов, причем область рабочих потенциалов в формамиде оказалась уже, чем в ДМФ. Более высокая диэлектрическая постоянная вообще не дает особых преимуществ формамиду перед ДМФ, так как диэлектрическая постоянная последнего также достаточно велика, чтобы обеспечить адекватную проводимость растворов. В основном с помощью формамида можно варьировать условия опыта путем изменения определенных свойств растворителя. Формамид - хороший растворитель для различных неорганических соединений, включая хлориды, нитраты и сульфаты ряда переходных и щелочноземельных металлов. Подобно воде, формамид растворяет более полярные органические соединения и смешивается с водой он очень гигроскопичен и легко гидролизуется с образованием уксусной кислоты и аммиака. Формамид использовался и качестве растворителя при полярографии на КРЭ некоторых переходных элементов и ряда органических соединений. [c.21]

    Изучение различных физических свойств биомассы клеток (парциальное давление паров воды, теплота испарения, диэлектрические постоянные и др.) показало, что при влажности биомассы свыше 20% вода полностью заполняет объем клетки и функционирует как непрерывная среда. При этих условиях в клетке могут свободно протекать все ферментативные процессы. Если биомасса содержит 10—20% влаги, то это в основном связанная вода. Клеточные коллоиды в данном случае переходят в гели и протекание всех ферментативных процессов затруднено. Если влажность биомассы еще ниже — 5—10%, ее физические свойства резко изменяются, но и при этих условиях, можно полагать, еще возможен обмен между молекулами воды и некоторыми веществами на близлежащих участках. Если влажность биомассы менее 5%, вода в клетке локализуется в пределах определенных структурных элементов. При таком обезвоживании биомассы микробной культуры часть клеток повреждается и инактивируется. Инактивация клеток имеет место и при хранении сухих микробных препаратов. В то же время в сухом виде жизнеспособность клеток сохраняется гораздо дольше —до нескольких лет, так как из-за низкого содержания воды все реак- [c.24]

    Книга содержит подробную классификацию растворителей эмпирические и теоретические уравнения, выражающие температурную зависимость плотности, показателя преломления поверхностного натяжения, вязкости и теплоты испарения, й также данные по критическим температурам и критическим давлениям, температурам замерзания, электрическим и оптическим свойствам таблицы физических констант и отдельные таблицы температур кипения и замерзания, диэлектрических постоянных и дипольных моментов для 254 растворителей. Кроме того, в книге приведены критерии чистоты, методы сушки и способы определения влажности растворителей и собраны наиболее надежные из описанных в литературе методов очистки растворителей книга снабжена обширной библиографией, состоящей из ссылок более чем на 2000 книг и журнальных статей. [c.4]

    В некоторых случаях электропроводность растворителя может СЛУЖИТЬ критерием его чистоты. Измерение электропроводности является превосходным методом оценки чистоты воды и может быть использовано для определения полноты удаления диссоциирующих веществ из растворителей с высокими диэлектрическими постоянными. Иногда электропроводность можно использовать для оценки степени обезвоживания растворителя. Смеси ДВУХ жидкостей, каждая из которых практически не проводит электрический ток, могут иметь электропроводность, близкую к электропроводности компонентов или же более высокую. [c.45]

    Диэлектрическая постоянная является мерой относительного влияния растворителя на силу, с которой притягиваются две разноименно заряженные пластинки. Диэлектрическая постоянная вакуума, по определению, равна единице. Однако практически все измерения проводятся на воздухе. Диэлектрическая постоянная является безразмерной величиной. [c.45]

    Диэлектрическая постоянная е (рис. 3) спекающихся, хорошо высушенных углей составляет менее 5 для обычных частот. Она немного больше в углях малометаморфизованных, вероятно, из-за содержания в них сравнительно большого числа функциональных полярных групп, таких как —ОН, и особенно в антрацитах из-за явления заметной полу-проводимости. Однако величины диэлектрической постоянной для углей остаются все же ниже, чем для воды (евад = 80), что позволяет использовать диэлектрическую постоянную для определения содержания влаги в угольной мелочи в непрерывном ее потоке при транспортировке последней [8]. Отметим, что влага, называемая конституционной , остающаяся после высушивания угля до воздушносухого состояния при обычной температуре, отличается по электрическим свойствам от свободной (удаляющейся) влаги, так как она находится в адсорбированном состоянии. [c.21]

    Экспериментальное исследование характера влияния химической природы растворителя и концентрации асфальтенов в растворах с целью выяснения количествеппоп зависимости межмоле-кулярных взаимодействий асфальтепон в растворах, в сравнительно широком интервале концентраций, от такого фактора, как полярность растворителей, показало, что с повышением полярности последних понижается степень ассоциации асфальтенов и смол в растворах [21]. В таком сильно полярном растворителе, как нитробензол (динольный момент 3,95, диэлектрическая постоянная 36,0), ассоциация молекул смол совсем не имеет ме-гта, если концентрация смолы в растворе не превышает 3,5%. Как уже отмечалось, тенденция к ассоциации смол и асфальтенов понижается с повышением температуры, поэтому при криоско-пическом методе определения молекулярных весов асфальтенов предпочтение следует отдавать высококпнящим растворителям. [c.78]

    Битумы обнаруживают тенденцию к образованию максимума диэлектрических потерь при более высоких температурах. На основании своих более поздних исследований, проведенных на битуме, в котором он увеличивал содержание асфальтенов, Сааль [44] объяснил это явление эффектом Максвелла — Вагнера. В этом случае диэлектрик состоит из двух или более компонентов с различными диэлектрическими постоянными и проводимостями. В подобных системах обычно имеются такие носители зарядов, которые могут перемещаться в теле диэлектрика на определенное расстояние. Когда движение носителей зарядов задерживается (в результате их захвата в самом теле диэлектрика или на поверхности раздела либо в результате невозможности их разряда и отложения на электродах), наблюдается появление пространственных зар>дов [451, вызывающих искажение макроскопического поля. Это явление возникает также в результате поверхностной поляризации. [c.42]

    Для тетрагидронафталина можно принять величину дипольного момента, определенную Альтшулером [20], по взмеррвиям диэлектрической постоянной жидкого вещества. Остальные"измерения выполнены в растворах и менее точны. [c.421]

    История развития газовой хроматографии в известной степени есть история развития детектора. На первом этапе детектирование основывалось на химическом определении суммарного количества вещества (поглощение газа-носителя, титрование и т. д.). Применение детектора, работающего по принципу измерения теплопроводности (катарометра), создало известный переворот в газовой хроматографии. Катарометр обладает рядом недостатков. Невысокая чувствительность делает его мало пригодным для анализа примесей и микропримесей. Зависимость показаний катарометра от температуры, давления и скорости потока газа-носителя вносит погрешности в результаты анализа. В связи с этим предпринимались поиски новых физических принципов детектирования измерение плотности (газовые весы Мартина), теплот адсорбции, диэлектрической постоянной и др. Эти детекторы не получили широкого распространения из-за сложности изготовления, большой инерционности и по другим причинам. [c.239]

    Следует подчеркнуть, что в данном случае понятие поверхность, или эффективная поверхность, весьма условно. Так, ее величина зависит от структуры смачиваемой фазы и природы ее поверхности, а также от природы смачиваюш,ей среды. При смачивании водой определяемая величина поверхности зависит от количества атомов с большой электроотрицательностью на единице этой поверхности. Чтобы определить истинное значение удельной поверхности, необходимо предположить, что вода, присоединяясь, образует мономолекулярный слой, и знать плотность заполнения поверхности молекулами воды. Некоторые сведения об этом можно получить, определяя плотность связанной воды, например, измерениями диэлектрической постоянной или по методу Брунауэра, Эммета и Теллера для определения эффективной поверхности по объему пара или газа, который соответствует покрытию поверхности 1 г адсорбента мономолекулярным слоем. [c.113]

    Определению плотности связанной воды исследователями уделялось много внимания. Для некоторых объектов О. Д. Куриленко сделал такие определения на основании измерения диэлектрических постоянных. Величины плотности связанной воды ко.теблются от 1,2 [c.114]

    Определенную роль играет также диэлектрическая проницаемость растворителя е. При низкой проницаемости ионы, образующиеся согласно (4.16) и (4.18), могут ассоциироваться. Тогда в растворе в значительных количествах присутствуют совокупности противоэаряжснных иопов. Такие совокупности называют ионными ассоциатами ионными парами). Они возникают только вследствие электростатического притяжения и этим отличаются от молекул. За счет образования ионных ассоциатов, например, можно в основном объяснить уменьшение силы уксусной кислоты в этаноле (е = 24,2 рКа=Ю,3) по сравнению с силой этого протолита в воде (ё = 78,5 рКд =4,8). В случае воды диэлектрическая постоянная настолько велика, что с образованием ионных ассоциатов в водных растворах можно не считаться. [c.49]

    Например, для меди а = 5,76-10 GSE. Поэтому для коротковолнового инфракрасного света (ко = 1 мкм) 4яст/(о 3500. Однако для определения диэлектрической постоянной е металлов [c.400]

    Поскольку уксусная кислота достаточно неудобна в работе, использование ее в качестве растворителя имеет смысл лишь тогда, когда это дает существенные преимущества по сравнению с другими, менее ядовитыми соединениями. В электрохимии ее применяли в трех различных областях кислотноосновном титровании, полярографии на КРЭ и как растворитель для реакции анодного ацето ксил про вания. К важнейшим свойствам растворителя, используемого при титровании, особенно при кулонометрической генерации титрованного раствора и потенциометрическом определении конца титрования, относятся диэлектрическая постоянная, кислотность и основность и константа ионного произведения. Уксусная кислота интересна в первую очередь своей кислотностью. По сравнению с другими кислотами, применение которых возможно для этих целей, например серной и муравьиной, уксусная кислота характеризуется лучшим сочетанием свойств. Ее диэлектрическая постоянная ниже, чем у этих двух кислот, но она не настолько мала, чтобы затруднить проведение электрохимических измерений. Хотя по кислотности уксусная кислота уступает указанным кислотам, все же она достаточно сильная кислота и способна титровать многие слабые основания. Уксусная кислота имеет намного меньшую константу автопротолиза (2,5 10 ) [2], благодаря чему она гораздо более удобная среда для титрования. [c.32]

    Итак, суммируя, можно сказать, что высокая каталитическая способность ферментов обусловлена, во-первых, тем, что ферменты сближают субстраты и связывают их с активным центром в подходящей ориентации. Во-вторых, ферменты содержат кислотные и основные группы ориентированные так, что становится возможным перенос протонов а субстрате. В-третьих, определенные группы в молекуле фермента (особенно нуклеофильные) могут образовывать ковалентные связи с суб-стратом, что приводит к формированию более реакционнослособных структур, чем субстрат. В-четвертых, фермент способен индуцировать напряжение, или искажение молекулы субстрата, которое часто сопровождается конформационным изменением в белковой молекуле. Нередко спрашивают почему молекулы ферментов такие большие Отчасти это, очевидно, связано с тем, что образование поверхности, комплемен-тарной поверхностям субстратов и обладающей необходимой жесткостью, возможно лишь при достаточно сложной геометрии скелета поли-пептидной молекулы. Кроме того, чтобы функциональные группы фер-мента могли принимать непосредственное участие в катализе, они должны быть расположены соответствующим образом. Иногда для этого тре-буется, чтобы в определенном объеме была создана среда с более низкой диэлектрической постоянной. Наконец, имея в виду, что в ходе каталитического процесса происходят конформационные изменения, мы можем только удивляться тому, что природе удалось создать машину -столь малых размеров. [c.63]

    В оптимальных условиях экстракции Sb(V) с применением кристаллического фиолетового (при его исходной концентрации в водной фазе 1,66-10 М) краситель, находящийся в этих условиях в виде двух форм — мономерной (Ятах = 591 нм) и димерной (Ятах = 540 нм), образует с Sb la ионный ассоциат, бензольные экстракты которого также характеризуются двумя максимумами поглощения — при 610 и 550 нм [327]. Некоторое смещение максимумов поглощения объясняется явлением сольватохромии [361]. Однако при извлечении ионного ассоциата растворителями с более высокой диэлектрической проницаемостью, чем у бензола (хлорбензол, хлороформ, дихлорэтан и т. п.), и смесями бензола с высокополярными растворителями в спектрах экстрактов наблюдается только один максимум, принадлежащий мономерной форме красителя, т. е. наблюдается явление, обратное установленному для самих красителей. Таким образом ведут себя и другие красители, в том числе метиловый фиолетовый, бриллиантовый зеленый, малахитовый зеленый. Получение экстрактов с одним максимумом существенно увеличивает оптическую плотность экстракта. Таким образом, добавление к бензолу нитробензола, дихлорэтана и других высокополярных растворителей или использование только этих растворителей приводит к дезагрегации красителей, входящих в состав ионных ассоциатов. Растворители с диэлектрической постоянной > 10 (нитробензол, спирты, нитрилы, альдегиды и т. п.) в качестве экстрагентов для экстракционно-фотометрического определения Sb(V) непригодны, так как сильно извлекают солянокислые соли самих красителей. Для экстракции ионных ассоциатов, образуемых Sb lg с катионами трифенилметановых красителей, рекомендуется применять растворители с диэлектрической проницаемостью в пределах 4,8— 10,0 [327]. Эти растворители (хлорбензол, смеси бензола с нитробензолом или с дихлорэтаном) экстрагируют Sb(V) полнее, и получаемые экстракты характеризуются значительно большими молярными коэффициентами погашения. Добавление к бензолу циклогексанона и других кетонов, наоборот, уменьшает оптическую плотность экстрактов. Это объясняется тем, что кетоны хорошо извлекают Sb в виде HSb le, присоединяясь к ней с образованием соответствующих неокрашенных сольватов [393]. [c.46]

    Для полного анализа тройных систем требуется определение двух независимых параметров, характеризующих их состав одним из таких параметров может служить показатель преломления, а вторым -какое-либо легко определяемое физическое свойство плотность, поверхностное натяжение, вязкость, диэлектрическая постоянная, температура плавления или кипения, - либо химическая характеристика системы (концентрация одного из компонентов, кислотность, непре-дельность и т.п.). Чаще всего используется рефрактоденситгшетри-ческий метод, заключающийся в измерении показателя преломления и плотности. Для этого готовят тройные смеси точно известного состава, планомерно расположенные в треугольнике составов, затем измеряют показатели преломления и плотности эталонных смесей. Для каждой из исследованных смесей строят вспомогательные графики п-состав р - состав, интерполируют их через равные интервалы, после чего проводят линии равного уровня - соответственно изорефракты и изоденсы. В результате получают калибровочную треугольную диаграмму с сеткой изорефракт и изоденс. [c.201]


Смотреть страницы где упоминается термин Диэлектрическая постоянная, определение: [c.132]    [c.226]    [c.221]    [c.130]    [c.323]    [c.169]    [c.81]    [c.31]    [c.60]    [c.61]    [c.5]    [c.173]   
Химия коллоидных и аморфных веществ (1948) -- [ c.27 ]




ПОИСК





Смотрите так же термины и статьи:

Диэлектрическая постоянная



© 2025 chem21.info Реклама на сайте