Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мембраны в СВМ, эксплуатация

    Процессы мембранного разделения с использованием обратноосмотических мембран однотипны. Исходную разделяемую жидкость насосом под давлением прокачивают с определенной скоростью над рабочим слоем мембраны. Вода и часть растворенных в ней веществ проталкиваются сквозь поры мембраны и отводятся в виде фильтрата. Молекулы, их ассоциаты и частицы жидкой смеси, имеющие больший размер, чем размеры пор мембраны, задерживаются, концентрируются в остатке жидкой смеси и образуют второй продукт процесса — концентрат. Концентрат циркулирует непрерывно до получения требуемой или допустимой степени обезвоживания задержанных мембраной веществ. Процесс осуществляют при давлении 1,4—5 МПа и скорости истока жидкой среды над мембраной 0,2—0,3 м/с. Установки обратного осмоса компактнее дистилляционных и электродиализных, просты и удобны в эксплуатации. [c.107]


    Перемещение твердых мелкодисперсных веществ в аппаратуре и трубопроводах, как правило, сопровождается электризацией этих транспортируемых сред. Поэтому во всех случаях работы с пылями следует принимать меры по отводу статического электричества, часто являющегося источником искровых разрядов, воспламеняющих пылевоздушные горючие смеси. Для исключения опасного искрения электрооборудования необходимо строго соблюдать соответствующие правила устройства и эксплуатации электроустановок во взрывоопасных химических производствах. Чтобы предотвратить воспламенение от открытого пламени, а также от искр при электросварочных, газосварочных и газорезательных работах, необходимо принимать организационные меры, регламентированные действующими типовыми положениями и инструкциями по эксплуатации взрывоопасных химических и нефтехимических производств. Однако не всегда представляется возможным полностью исключить образование смеси взрывоопасной концентрации в аппарате и возможные источники их воспламенения. В этих случаях для защиты корпуса аппарата используют ослабленные элементы (мембраны, клапаны и др.), при разрушении или открытии которых снижается давление взрыва. Мембрана или другой ослабленный элемент должны срабатывать при давлении, на 20—30% превышающем рабочее. В качестве материала используют металлическую фольгу, крафт-бумагу, лакоткань, прорезиненный асбест, полиэтиленовую пленку, целлофан и др. [c.284]

    Необходимым условием нормальной эксплуатации ацетиленопроводов является периодический осмотр всей их системы, особое внимание должно быть обращено на отсутствие коррозии, неплотностей, нормальный отвод жидкости и т. д. Предохранительные приспособления (разрывные мембраны, огнепреградители) необходимо проверять, осматривать и заменять через определенные промежутки времени. Замена установленных мембран новыми, независимо от их исправности, производится не реже одного раза в год. [c.118]

    Результаты испытаний пилотной установки с аппаратом плоскокамерного типа (мембрана МЕМ-079) показали, что даже при разделении в одну ступень концентрация метана в топливном газе достигает 98% (об.). При увеличении числа ступеней (работа в каскадном режиме) возможно достижение, высокой — до 90%—степени утилизации метана из исходного биогаза. Очевидно, что даже при высоких (3540 м /ч) нагрузках по газу эксплуатация мембранной установки экономически выгоднее. [c.304]

    В последние годы получены мембраны, которые пригодны для работы при значительно больших температурах (см. стр. 48). Для выбора оптимальных условий их эксплуатации становится необходимым учет влияния температуры на характеристики разделения. Анализ данных по влиянию температуры на проницаемость и селективность ацетатцеллюлозных мембран (рис. 1У-10) показывает, что вначале с повышением температуры проницаемость увеличивается обратно пропорционально вязкости жидкости. Затем кривая G=f t) начинает отклоняться от этой закономерности, проницаемость уменьшается и при 85 С падает до нуля. Этот эффект мои<но объяснить только усадкой и полным стягиванием пор мембраны в процессе структурирования полимера, который заканчивается при указанной температуре, что подтверждается, в частности, необратимым изменением свойств этих мембран после работы при температуре выше 50 °С. Селективность ацетатцеллюлозных мембран при повышении температуры сначала возрастает, затем остается примерно постоянной. [c.183]


    Разрывные мембраны изготовляются из тонколистового металлического проката. Первоначально их делали плоскими (рис. 25.3, а), теперь им придают при изготовлении куполообразную форму (рис. 25.3,6), подвергая мембрану нагружению давлением, составляющим около 90% от разрывного. При этом исчерпывается почти весь запас пластических деформаций металла, что увеличивает быстродействие мембраны и позволяет при изготовлении обнаружить скрытые дефекты материала и отбраковывать мембраны, непригодные для эксплуатации. [c.306]

    Предварительно выпученные мембраны более точны при срабатывании, чем плоские. Они удобны при монтаже и в эксплуатации. При формообразовании (выпучивании) дефектные мембраны отбраковывают. [c.102]

    Важнейшим устройством, обеспечивающим безопасную эксплуатацию аппаратов, являются предохранительные клапаны и мембраны. Их конструкция, размеры и пропускная способность должны быть выбраны расчетным путем. Они должны предотвратить давление в аппарате, превышающее рабочее на 0,05 МПа (при рабочем давлении не выше 0,3 МПа), на 15% (при рабочем давлении от 0,3 до 6 МПа) и на Ю7о (при рабочем давлении свыше б МПа). [c.569]

    Электрохимический процесс осуществляют в электрохимических устройствах. Если какие-либо химические вещества получают при пропускании через раствор или расплав электролита электрического тока от внешнего источника, то электрохимическое устройство называют электролизером. Если же с помощью электрохимического устройства вырабатывают электрическую энергию, то такое устройство называют гальваническим элементом или химическим источником тока (ХИТ). Любое электрохимическое устройство включает одну или несколько электрохимических ячеек, в которых размещаются электроды, электролит и, при необходимости, разделительные перегородки диафрагмы, мембраны, сепараторы. Конструкция электрохимической ячейки определяется ее функциональным назначением, размерами, условиями эксплуатации. [c.6]

    Срок службы мембраны, мес. Температура эксплуатации, °С pH анолита [c.111]

    Для увеличения гидрофильности мембраны и уменьшения количества пузырьков газа, налипающих на мембрану в процессе эксплуатации, обе поверхности мембраны обрабатывают неорганическими веществами, образующими оксиды. Такая обработка позволяет уменьшить падение напряжения на мембране примерно на 200 мВ. [c.112]

    Челябинский завод Теплоприбор выпускает простой и надежный в эксплуатации регулятор прямого действия РДП. Устройство регулятора показано на рис. 135. Мембрана 2 жестко связана с клапаном 1. Над мембраной расположена пружина, нажим которой можно отрегулировать с помощью регулировочного болта 3. Мазут, пройдя через клапан 1, давит на мембрану снизу. Таким образом, результирующее воздействие на клапан I равно разности между установленным давлением пружины и давлением мазута на мембрану, т. е. колебания в давлении мазута изменяют проходное сечение для него, чем и достигается поддержание постоянного давления после себя . Температура мазута не должна превышать 100° С. [c.271]

    Асбестовые предохранительные клапаны дешевы и просты в изготовлении, однако во время эксплуатации они могут выходить из строя даже при отсутствии взрывов газовоздушной смеси. Одна из причин этого — пульсация в топке и газоходах котла, наблюдающаяся при сжигании газового топлива. Пульсация в газоходах вызывает вибрацию асбестовой мембраны и разрушение ее у мест закрепления в раме. Для уменьшения влияния вибрации на стойкость асбестового листа снаружи его покрывают тонким слоем глины, которая образует твердую корочку, незначительно увеличивающую его прочность и жесткость. [c.31]

    Мембраны должны обладать следующими свойствами высокой разделяющей способностью (селективностью) высокой удельной производительностью (проницаемостью) постоянством своих характеристик в процессе эксплуатации химической стойкостью в разделяющей среде механической прочностью невысокой стоимостью. [c.563]

    Л/ел/брана - полупроницаемая перегородка, пропускающая определенные компоненты жидких или газовых смесей. Мембраны должны удовлетворять следующим основным требованиям обладать высокой разделяющей способностью (селективностью) высокой удельной производительностью (проницаемостью) химической стойкостью к действию среды разделяемой системы механической прочностью, достаточной для их сохранности при монтаже, транспортировании и хранении. Кроме того, свойства мембраны в процессе эксплуатации не должны существенно изменяться. [c.314]

    Пористые мембраны нашли широкое применение прежде всего в процессах обратного осмоса, микро- и ультрафильтрации, реже-для разделения газов. Они имеют как анизотропную, так и изотропную структуру. Мембраны с анизотропной структурой имеют поверхностный тонкопористый слой толщиной 0,25-0,5 мкм (называемый активным, или селективным), представляющий собой селективный барьер. Компоненты смеси разделяются именно этим слоем, располагаемым со стороны разделяемой смеси. Крупнопористый слой толщиной примерно 100-200 мкм, находящийся под активным слоем, является подложкой, повышающей механическую прочность мембраны. Мембраны с анизотропной структурой характеризуются высокой удельной производительностью, более медленной закупоркой пор в процессе их эксплуатации. Срок службы этих мембран определяется главным образом химической стойкостью материала мембран в перерабатываемых средах. Для мембран с изотропной структурой характерно быстрое снижение проницаемости вследствие закупорки пор коллоидными или взвешенными частицами, часто содержащимися в разделяемых растворах. [c.315]


    Другое важнейшее достоинство динамических мембран-высокая удельная производительность, достигающая сотен литров с квадратного метра в час, что превышает удельную производительность широко распространенных ацетатцеллюлозных мембран для обратного осмоса. Следует также отметить, что срок службы динамических мембран практически неограничен. Мембраны обладают полупроницаемыми свойствами до тех пор, пока в разделяемом растворе имеются микроколичества материала (0,1-10 мг/л). В случае механического повреждения динамической мембраны возможно самовосстановление ее в результате отложения на подложке нового полупроницаемого слоя. Более того, если во время эксплуатации ухудшаются характеристики мембраны, их можно восстановить, смыв сорбированный слой растворителем, подаваемым с противоположной стороны подложки. [c.321]

    Наиболее перспективным типом мембран являются гомогенные ионитовые мембраны. В гомогенных мембранах ионообменный компонент образует одну сплошную фазу, что обусловливает высокие показатели электрохимических свойств и их стабильность в процессе эксплуатации. [c.127]

    Применение агрегата окисления новой конструкции, в котором совмещены смеситель и контактный аппарат, использование минимальных объемов аммиачно-воздушной смеси и оснащение этого узла надежными системами автоматического регулирования и противоаварийной защиты позволяют обеспечить безопасные условия эксплуатации установки в отсутств1ие устройств, сбрасывающих давление при взрыве аммиачно-воздушной смеси. Как показал опыт эксплуатации, взрывные мембраны не всегда обеспечивают защиту аппарата от разрушения при взрыве, что обусловлено несовершенством методов расчета и сложностью их изготовления. Поэтому за рубежом на многих крупных агрегатах, работающих под давлением, предохранительные мембраны не устанавливают. Однако рабочий состав аммиачно-воздушной смеси принимают с относительно низким содержанием аммиака (9,5—10%). что позволяет создать больший запас надежности эксплуатации агрегата по отношению к нижнему концентрационному пределу воспламенения при 200°С (15%). [c.44]

    При взрыве бьита обрушено здание (рис. ХП-5) и выведено из строя технологическое оборудование. Причиной загорания явилось возникновение огня ( жучка ) во второй паре жерновых мельниц ао время пуска (поджатия камней), что привело к аоопламенеяию продукта а течке н ковшевом элеваторе. Затем пламя распространилось через вентиляцию во все просевающие аппараты и фильтр-мешок, вызвав взрыв в них пылевоздушеой смеси. Мембраны взрывных клапанов аппаратов были разрушены. На этом предприятии в течение семи лет эксплуатации было зафиксировано 68 загораний и взрывов. В 47 случаях источником огня явились жерновые мельницы, в 14 случаях мельницы ударного типа и семь случаев произошло по другим причинам. [c.270]

    Мембраны из поликомпонентных сплавов на основе палладия, серебра и никеля допускают эксплуатацию при температурах до 600 °С, при этом необходима предварительная очистка разделяемой газовой смеси от серосодержащих соединений, окиси углерода, галогеивдов и других примесей, которые способны образовывать с металлами устойчивые химические соединения (гидриды, карбиды, нитриды, оксиды), снижающие скорость диффузии. Следует помнить, что при более низких температурах, помимо снижения коэффициента диффузии, падает скорость диссоциации газа и химическая стадия процесса проницания становится лимитирующей. [c.119]

    Процесс концентрир он алия водорода из продувочных газов с использованием мембранных аппаратов плоскокамерного типа реализован в СССР НПО Криогенмаш [14, 37]. Испытания опытной установки (мембрана — асимметричная ПВТМС), обеспечивающей получение 500 м ч водорода концентрацией 97— 98% (о б.) из азотоводородной смеси, находящейся под давлением 2,5 МПа, позволили перейти к проектированию, монтажу и эксплуатации промышленного агрегата. Установка производительностью 9000 м /ч пермеата, содержащего не менее 94% (об.) водорода, состоит из 38 аппаратов с плоскокамерным расположением мембранных элементов. Диаметр кожуха аппарата [c.278]

    Опыт эксплуатации установки Делсеп позволил определить оптимальные технологические параметры работы мембранной установки с рулонными элементами на основе ацетатцеллюлозной мембраны. [c.290]

    Важным параметром, определяющим как технологию, так и экономику процесса, является стойкость мембран в рабочей среде или время ЖИ31НИ , т. е. время стабильной работы мембраны в аппарате, по завершении которого мембрана должна быть заменена. Эксплуатация установки показала, что за 200 сут. работы проницаемость ацетатцеллюлозных мембран по СО2 снизилась до 2,16 м (м -ч-МПа) в течение последующих двух с половиной лет производительность установки уменьшилась еще на 6%. Таким образом, время жизни данной мембраны —не менее 3 лет. [c.293]

    ГТИ , который занимает промежуточное положение между аппаратами трубчатого типа и аппаратами с полыми волокнами. Пластмассо-libiii стержень диаметром 3—4 мм с продольными канавками 0,5x0,5 мм покрывают дренажной оплеткой — сеткой, на которую помещают полупроницаемую мембрану. Один конец стержня заглушают, а другой вставляют в трубную решетку и таким образом собирают пучок стержней (108— 241 штук) с поверхностью мембраны в одном модуле до 9 м . К достоинствам этого типа аппарата относятся компактность, механизированный способ получения элементов. Однако сборка модуля достаточно сложна, в нем трудно создать благоприятные гидродинамические условия для снижения концентрационной поляризации, так как раствор поступает в межстержневое пространство, имеющее большое сечение, что значительно упрощает конструкцию и облегчает эксплуатацию этих аппаратов. [c.166]

    Иногда предохранительный клапан вследствие специфических условий технологического процесса не может обеспечить снижение давления до нормального, потому что его действие ограничено некоторыми пределами. Если, например, объем газов или паров в сосуде станет возрастать быстрее возможной пропускной способности клапана, то давление в сосуде будет не снижаться, а. повышаться, что может вызвать разрыв аппарата. Кроме того, клапан имеет определенную инерционность, т. е. ему требуется некоторое, пусть незначительное, время, чтобы он пришел в действие при мгновенном росте давления он может не успеть его сбро- сить. В других случаях внутренняя среда в сосуде вследствие своей коррозионной активности может нарушить правильное действие частей клапана или забить отложениями его детали. При таких особенностях эксплуатации сосудов, работающих под давлением, применяют предохранительные пластинки —разрывные мембраны. [c.194]

    Упругие мембраны (рнс. 4) могут быть разрывными, выщелкивающими и отрывными. Их применяют в диафрагменных насосах, гидропневмоаккумуляторах, компенсаторах изменения объема рабочей жидкости в изолированных от внешней среды резервуарах и др. Эти уплотнения работают на мембране при перепадах давления до 0,1 МПа. Исключение составляют гидропневмоаккумуляторы, в которых рабочая жидкость находится под давлением до нескольких десятков МПа, однако в них. давление уравновешивается противодавлением газа. Упругие. мембраны изготовляют из пористых резинотканевых материалов и резин, поэтому при их эксплуатации необходимо учитывать возможные диффузионные утечки среды. [c.83]

    Выбросы газа из загрузочных люков уменьшают за счет хорошей очистки люков и заливки крышек уплотняющим раствором. Уплотнение крышек стояков на некоторых заводах обеспечивают созданием гидрозатворов на крышке стояка при постоянных подаче и сливе воды. Герметизацию дверей и планирных лючков обеспечивают хорошей очисткой и нормальной работой прижимнЫх устройств. На некоторых японских предприятиях над дверьми коксовых камер устанавливают специальные вытяжные колпаки с отсосом воздуха до 500м /мин. Применяют различные системы улучшенного уплотнения дверей коксовых камер, в особенности для дверей коксовых печей с высотой камеры более 4 м. Уплотнение достигается за счет прижимания плоской мембраны с гибким диапазоном уплотнения (до 10 мм), что компенсирует прогиб двери (смена мембраны- раз в 1,5 года). Используют уплотнение дверей с помощью прокладки асбестового шнура по периметру уплотняющего ножа. Недостатком этого способа оказывается большой расход асбеста и повышенные в результате расходы на эксплуатацию дверей. [c.370]

    Широкое применение полимерных мембран для опреснения сточных вод сдерживается их низкой водопроницаемостью, нестойкостью в щелочных и кислых средах, недостаточной механической прочностью, постепенной и необратимой потерей ионной селективности в процессе эксплуатации. Поскольку мембранное опреснение определяется коллоидно-химическими свойствами, целесообразно разрабатывать методы получения мембран, образованных из дисперсных частиц (динамические мембраны). Для этого достаточно формировать осадки из сильнозаряженных малых коллоидных частиц так, чтобы размер пор при достаточно плотной упаковке не превыщал несколько единиц нм. Осадок (коллоидная мембрана) формируется при фильтрации жидкости, содержащей подобные частицы, через пористую подложку. Если размер пор достаточно мал, осадок формируется только на внещней поверхности подложки. Однако тонкопористая мембрана, как показывают многочисленные эксперименты, возникает (но значительно медленнее) и при диаметре пор порядка микрона, что почти стократно превыщает размер частиц, за счет многослойного прилипания частиц на стенки поры. [c.350]

    Если прекратить подачу частиц в фильтруемую жидкость, подобная мембрана, являющаяся динамическим образованием, разрушится. Динамическая природа мембраны определяет ее полезные технологические свойства. Состав мембраны непрерывно обновляется, вследствие чего она сохраняет свои полезные свойства в экстремальных условиях. Эксплуатация установок обратного осмоса на основе полимерных мембран требует дорогостоящей предварительной очистки, так как на поверхности мембран формируется осадок, снижающий и селективность, и проницаемость. Динамические мембраны позволяют отказаться от предварительной очистки. Наконец, опыт эксплуатации динамических мембран (например, на стоках предприятий целлюлозно-бумажной промышленности) показал, что можно отказаться от ввода частиц мембранообразующего компонента. Динамическая мембрана формируется из содер- [c.350]

    Если прекратить подачу частиц в фильтруемую жидкость, подобная мембрана, являющаяся динамическим образованием, разрушится. Динамическая природа мембраны определяет ее полезные технологические свойства. Состав мембраны непрерывно обновляется, вследствие чего она сохраняет свои полезные свойства в экстремальных условиях. Эксплуатация установок обратного осмоса на основе полимерных мембран требует дорогостоящей предварительной очистки, так как на поверхности мембран формируется осадок, снижающий и селективность, и проницаемость. Динамические мембраны позволяют отказаться от предварительной очистки. Наконец, опыт эксплуатации динамических мембран (например, на стоках предприятий целлюлозно-бумажной промышленности) показал, что можно отказаться от ввода частиц мембранообразующего компонента. Динамическая мембрана формируется из содержащихся в стоках коллоидных или полимерных частиц и при этом обеспечивает необходимую степень опреснения. На основе динамических мембран одновременно решаются две задачи —достигается очистка от дисперсных (или полимерных) частиц и опреснение, одновременно протекают два процесса — ультрафильтрация и обратный осмос. [c.386]

    Предохрантельные клапаны и разрывные мембраны должны устанавливаться на газопроводах в соответствии с требованиями Правил устройства и безопасной эксплуатации сосудов, работающих под давлением . [c.397]

    Регуляторы работают следующим образом газ высокого давления поступает через фильтр 13 под клапан 12 с уплотнением из бензомасломорозостойкой резины. Положение клапана определяется положением шарнирно связанного с ним рычажного механизма 8 мембраны 3, уравновешиваемой сверху регулировочной пружиной 10 и давлением газа, поступающего снизу мембраны. Сжимают пружину 10 регулировочной гайкой 6. В мембрану 3 регулятора давления вмон- тирован предохранительный сбросной клапан 7. При закрытом клапане 12 и повышении давления оверх установленных пределов мембрана, преодолевая действие пружины 10 и пружины 5 предохранительного клапана, отойдет от уплотнения предохранительного клапана и сбросит излишек давления через отверстие муфты 9 в атмосферу. Совмещение регулятора давления с предохранительным клапаном обеспечивает ко.мпактность установки и необходимую для эксплуатации безопасность. [c.127]

    Опыт эксплуатации резервуаров с плавающей крышей показал, что отказы плаваших крыш возникают вследствие износа оцинкованного скользящего листа, чрезмерного крена плавающей крышл из-за неравномерности распределения атмосферных осадков ( В0ДД1 снег ), вы 5--рооов нефтепродукта на поверхность плавающей крыши, т.е. нарушения плавучести плавающей крыши, а также локального сквозного разрушения мембраны, яля [c.11]

    Ионитовые мембраны бывают трех типов гомогенные, изготовленные из одной ионообменной смолы гетерогенные, получаемые прессованием тонкоизмельченной ионообменной смолы и инертного связующего, и интерполимерные, получаемые смешением ионообменной смолы и связующего, имеющего линейную структуру. Последний тип мембран, изготавливаемых из хорошо растворимых в воде полиэлектролитов и нерастворимых инертных веществ, не получил распространения вследствие дефицитности исходных полнэлектролитов и их вымывания в процессе эксплуатации. [c.21]

    Лружины, мембраны, сильфоны для тяжелых условий эксплуатации [c.11]

    Ультрафильтры в виде полых нитей удобны в эксплуатации. Производительность их равна или выше, чем у пленочных мембран внеш. диаметр составляет 400—1500 мкм, толщина стенки 10—20% от него. Ультрафильтрац. мембраны задерживают в-ва с мол. м. от 1000 до неск. млн. [c.135]

    ДИАФИЛЬТРАЦИЯ, способ осуществления мембрттых методов разделения р ров (гл. обр. обратного осмоса и ультрафильтрации), используемый в тех случаях, когда проницаемость мембраны по отношению к разл. компонентам р-ра сильно различается. При Д. в мембранный аппарат с разделяемым р-ром дополнительно вводится р-ритель, расход к-рого обычно равен кол-ву отбираемого из аппарата фильтрата. Компонент р-ра, плохо задерживаемый мембраной, переходит вместе с вводимым р-рителем в фильтрат компонент, селективно задерживаемый мембраной, остается в аппарате, что позволяет, практически нацело разделить к0 нI0-ненты р-ра. Д. примен., напр., для очистки р-рон полпмеров от минер, солей. Достоинства способа — высокая степень разделения, простота конструктивного оформления, низкие эксплуатац. расходы. [c.161]

    В р-рах электролитов М.н. проявлвпот высокую ионную селективность и электрич. проводимость. Селективная ионо-проницаемость (селективность)-важный показатель электрохим, св-в М. и. он отражает различие в проницаемости ионов, несущих заряд противоположный и одноименный с зарядом мембраны. Селективность характеризуют числом переноса ионов через мембрану, к-рое близко к единице (0,90-0,98), т. е. перенос тока через мембраны разл. составов и типов на 90-98% осуществляется противоионами. Определение электрич. проводимости сводится к измерению электрич. сопротивления М. и., к-рое для разл. мембран лежит в пределах 20-250 Ом см (в 0,6 и. р-рс Na l). Др. характеристики М. и. ст 9-13 МПа (в набухшем состоянии), относит, удлинение 2-20%. К М.и. предъявляют след, требования высокая селективность, низкое электрич. сопротивление, высокая мех. прочность, относит, удлинение в определенных пределах, высокая хим. стойкость, низкая стоимость, стабильность св-в при эксплуатации. [c.32]

    Интерполимерные мембраны не нащли пока промышленного применения из-за дефицитности исходных чистых полиэлектролитов, нестабильности электрохимических характеристик в процессе эксплуатации вследствие вымывания части полиэлектролита, а также из-за того, что трудно изготовить мембраны больших размеров. Ниже приведена характеристика [c.137]

    Наиболее сложным вопросом при разработке водо-,но-воздушных батарей с ИОМ является сохранение влажности во время эксплуатации и хранения, так проводимость мембраны при ее дегидратации су-ственно снижается. В качестве иллюстрации приве-гы данные по динамике изменения проводимости )М при нахождении ее на воздухе (рис. 6,38). Следовательно, процессы тепломассообмена должны ть организованы таким образом, чтобы количество юдимой через паровую фазу воды в каждой точке [c.321]


Смотреть страницы где упоминается термин Мембраны в СВМ, эксплуатация: [c.214]    [c.196]    [c.84]    [c.127]    [c.319]    [c.56]    [c.8]    [c.104]    [c.604]    [c.494]   
Эксплуатация холодильников (1977) -- [ c.87 ]




ПОИСК





Смотрите так же термины и статьи:

Область применения и условия эксплуатации предохранительных мембран

Причины изменений технологических параметров обратноосмотических установок в процессе эксплуатации Физико-химические воздействия на мембраны

Установка и эксплуатация предохранительных мембран



© 2025 chem21.info Реклама на сайте