Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплоносители характеристики

    На нефтеперерабатывающих заводах применяются теплоносители, характеристика которых приведена в табл. 5.29. [c.526]

    Аппараты для перемешивания жидких сред проектируются для различных температур — от отрицательных до положительных. Температурные характеристики аппаратов зависят от свойств перемешиваемой среды и теплоносителя, характеристик аппарата, типа уплотнения и конструкции теплообменных устройств. Стандартные аппараты изготавливают для перемешивания сред с температурой от минус 40 до плюс 350° С. [c.16]


    ВЫБОР И РАСЧЕТ РАСХОДА ТЕПЛОНОСИТЕЛЕЙ Характеристика теплоносителей [c.37]

    Необходимость сооружения абсорбционного блока определяется при разработке технологии с учетом характеристики перерабатываемой нефти. На рис. 56 приведен общий вид стабилизатора и фракционирующего абсорбера, применяемых в блоках стабилизации и абсорбции современных комбинированных установок АВТ. Эти цилиндрические аппараты колонного типа оборудованы фракционирующими тарелками (до 40 шт.), штуцерами-патрубками для-ввода и вывода продуктов, люками-лазами для ремонтных и монтажных работ. Высота и конструктивные данные указанных аппаратов во всех случаях сохраняются одинаковыми, а диаметр их меняется в зависимости от углеводородного состава перерабатываемой нефти. Конструкция нижней части аппаратов зависит от вида теплоносителя (пар высокого давления, циркулирующая че- [c.151]

    В табл. 55 дана сравнительная характеристика жидких металлов, воды, дифенильной смеси и расплава солей. Весьма эффективным теплоносителем с точки зрения значений коэффициента теплоотдачи, температуры плавления и кипения, удельной теплоемкости, а также стоимости перекачки является натрий. Недостатком натрия является высокая активность по отношению к кислороду. Он является очень опасным горючим и взрывчатым веществом. [c.329]

    Во втором случае переменными являются лишь Т я х. Однако в дифференциальном уравнении эти переменные невозможно разделить, так что приходится прибегать к приближенному методу решения. Поскольку при третьем способе теплообмена процесс проводится изотермически, то интегрирование не составляет труда, но остается открытым вопрос о том, как изменяется R в ходе реакции, каковы должны быть температура теплоносителя и его расход, а также характеристики поверхности теплообмена. [c.100]

    В качестве теплоносителя использовать насыщенный водяной пар давлением 0,2 МПа. Удельная теплота конденсации Г1= 2 208 000 Дж/кг, температура конденсации 1 = 119,6°С. Физико-химические характеристики конденсата при температуре конденсации р, = 943 кг/м , р,1 = 0,000231 Па-с, = = 0,686 Вт/(м-К). [c.37]

    В течение периода падающей скорости сушки температуры материала и сушильного агента возрастают во всех точках псевдоожиженного слоя. Здесь распределение тепла на удаление влаги и нагрев влажного материала зависит от кинетических характеристик тепло- и массопереноса внутри частиц. В периодических процессах это соотношение, кроме того, может еще изменяться во времени. При расчете сушильного процесса для периода падающей скорости по уравнениям теплообмена трудно точно определить среднюю разность температур м жду теплоносителем и поверхностью материала. Эти трудности увеличиваются при использовании для расчета сушильного процесса уравнений массообмена. В связи в этим недавно возникла тенденция выражать результаты эксперимента в форме и =/(<) приведем некоторые примеры. [c.516]


    Авторское свидетельство РФ №2042911. Целью изобретения является повышение эффективности рабочего процесса корпусного пластинчатого теплообменника благодаря обеспечению возможности оптимизации геометрических характеристик трактов теплоносителей в пакете пластин при эксплуатации теплообменника одного типоразмера в различных условиях, а также уменьшение стоимости разработки и изготовления типового ряда теплообменников для заданного [c.34]

    В научно-исследовательских работах и литературе по теплопередаче основное внимание уделяется вопросам ин-тё сификации теплообмена. Безусловно, интенсивность теплообмена является важной количественной характеристикой теплообменных аппаратов и ее увеличение снижает необходимую площадь поверхности теплообмена. Однако, как правило, интенсификация теплообмена приводит к возрастанию гидравлического сопротивления теплообменника, т. е. увеличению затрат мощности на циркуляцию теплоносителей. Поэтому сравнение интенсивности теплопередачи различных вариантов поверхности является обоснованным лишь при одинаковой затрате мощности на циркуляцию теплоносителей, что не всегда учитывается. [c.3]

    В книге ставится задача учесть, какой ценой достигается увеличение интенсивности теплопередачи, т. е. охарактеризовать процесс теплообмена также и с качественной стороны. Характеристика эффективности теплообмена должна быть относительной величиной, а именно — отношением количества переданной теплоты к затратам мощности на циркуляцию теплоносителей. Указанное отношение является функцией многих величин, особенно при обычном двухстороннем обтекании. Естественно, что сравнение эффективности различных вариантов поверхностей теплообмена возможно также только при определенных условиях и в первую очередь при постоянной интенсивности теплообмена. [c.3]

    Подобный способ задания условий и аналитическое решение уравнений были использованы в [11] для одностороннего наружного обтекания поверхности теплообмена. В качестве характеристик поверхностей рассматривались величины Q, F, Nt (i=h — наружный теплоноситель).  [c.23]

    Из (2.56) следует, что величина является функцией вида теплоносителя и его параметров, типа поверхности, включая ее геометрические характеристики и компоновку, а также функцией Кег одного из потоков. Ввиду многообразия исходных данных для расчета дать общие практические рекомендации по выбору г° не представляется возможным и необходимо рассматривать конкретные варианты. [c.47]

    Поиску рациональной компоновки трубной решетки посвящены работы, где рассматривалось одностороннее наружное обтекание. В [25] исследовалась на экстремум функция Ар(а), названная автором характеристической, и получена зависимость Од" (сГ1). В [26] принят постоянный параметр Ф = 1,7 и указано направление улучшения характеристик аппарата путем уменьшения относительного поперечного шага Oi. Сравнение результатов этих работ и данных настоящей работы представлены на рис. 3.6. Значительные расхождения результатов вызваны, очевидно, применением в [25, 26] устаревших формул по теплоотдаче и аэродинамическому сопротивлению. Использование рекомендаций настоящей работы по выбору о " позволяет примерно на 10 % уменьшить затраты на циркуляцию теплоносителей и значительно уменьшить объем трубного пучка по сравнению с ранее существующими рекомендациями. [c.59]

    Отметим, что полученные оптимальные решения фо° и зависят лишь от коэффициентов Л, , и в которые не входит внутренний эквивалентный диаметр эв, т. е. оптимальные решения не зависят от геометрии (конфигурации) ячейки по тракту внутреннего теплоносителя. Предварительное нахождение оптимальных относительных характеристик позволяет значительно упростить задачу оптимизации теплообменника и свести ее к нахождению одного из Re,- потоков и одного из эквивалентных диаметров каналов ы. [c.73]

    Из рис. 5.5 следует, что Ке Р существенно зависит от коэффициентов и Д , которые являются относительной характеристикой свойств потоков и массовой кратности циркуляции. Отметим, что варианты с различными значениями А и Дф имеют место для аппаратов с различными теплоносителями или различными их параметрами. Увеличение Д при фиксированном значении А и одинаковом для обе- [c.85]

    Найдем границу целесообразного применения шероховатой поверхности для двухстороннего обтекания. Будем считать, что имеет место продольное обтекание каналов турбулентными потоками, причем показатели степени при Ке в уравнениях теплоотдачи и сопротивления для гладкой и шероховатой поверхностей удовлетворяют равенствам пв=п , йв=а . Кроме того, будем считать неизменными геометрические характеристики ячеек пучка. Например, для трубного пучка это означает одинаковый типоразмер труб гладкой и шероховатой поверхностей, а также одинаковое пространственное расположение каналов, т. е. равные значения относительных шагов или проходных сечений по несущей поверхности. Отношение Ке наружного и внутреннего теплоносителей, т. е. г, определяется уравнением (4.5), которое справедливо как для гладкой, так и для шероховатой поверхности, причем если в шероховатой поверхности скорости потоков рассчитываются по несущей поверхности, а не по самому загроможденному сечению, то справедливо равенство Гш=Гг=г. Это означает, что независимо от индекса рассматриваемого потока 1 отношение сопряженных Ке одноименных потоков в сопоставляемых поверхностях будет одним и тем же, что непосредственно следует из формул [c.89]


    Так как gv t,ml dз является геометрической характеристикой поверхности я при сравнении теплоносителей остается постоянной, то отношение плотностей теплового потока для сопоставляемых теплоносителей равно [c.103]

    На основе технико-экономического анализа получены уравнения и для оптимальных относительных характеристик теплообменника. Показано, что эти уравнения совпадают с полученными ранее при использовании критерия эффективности теплообмена, когда расчет ведется при технико-экономически оптимальных значениях Не°" потоков. Полученные для трубных пучков формулы и решения позволяют рассчитать оптимальный теплообменник с однофазными теплоносителями как при отсутствии ограничений на характеристики теплообменного аппарата, так и при их наличии. [c.134]

    Б2. Расчет конструктивных характеристик аппарата (БС—КХА). Рассчитываются те величины, которые в проектном расчете вводились как исходные данные из стандартов (нормалей) число труб в пучке (Птп). живые сечения и размеры каналов по ходу теплоносителей и др. Некоторые составляющие этого расчета описаны в работах [44. с. 51 56, с. 39— [c.41]

    Для каждого аппарата можно провести декомпозицию на функционально-конструкционные элементы. Функционально-конструкционный элемент имеет смысл отличительного признака и может соответствовать как конкретным физическим элементам, например, поверхности теплообмена в реакторе, так и качественным характеристикам или свойствам, например, стационарному или подвижному катализатору, направлению движения теплоносителя и т. п. Взаимная связь функционально-конструкционных элементов определенного уровня декомпозиции составляет конструкцию аппара-, та. Наличие или отсутствие функционально-конструкционного элемента соответствует включению или исключению определенного члена в системе уравнений или изменению функционального вида уравнений, составляющих математическое описание конструкции аппарата. [c.223]

    Исходными данными для расчета теплообменных аппаратов являются характеристики продуктов, ограничения на типы используемого оборудования, а также некоторые сведения о потоках тепло- и хладоагентов состав, температура и давление на входе в аппарат. Остальные параметры (температура на выходе аппарата и расход хладоагента или теплоносителя, а также конструкционные размеры) определяются в результате расчета. Причем их определение производится на основании критерия оптимальности с учетом капитальных и эксплуатационных затрат. Это возможно в результате перебора для каждого рассчитываемого аппарата [c.327]

    Современные теплообменные аппараты должны обеспечивать необходимый теплосъем на единицу площади теплообменника, высокую пропускную способность по теплоносителям при допустимых перепадах давлений, высокую коррозионную стойкость в афессивных средах, надежную работу в течение длительного периода эксплуатации, стабильность тепловых и гидромеханических характеристик за счет механической или химической очистки поверхности теплообмена, удобство в эксплуатации. При серийном производстве теплообменников их узлы и детали должны быть максимально унифицированы. [c.333]

    Принцип работы таких аппаратов основан на смешении потоков теплоносителя, проходящего через отдельные группы каналов с различными тепловыми и гидравлическими характеристиками. При этом эффективное число единиц теплопереноса 9, обеспечиваемое в аппарате, равно усредненному значению чисел единиц теплопереноса в отдельных группах каналов 0у. [c.361]

    Установка (рис. 21) состоит из емкостей 1 для теплоносителя и 7 для соленых стоков, контактного водяного испарителя 4, трубчатой нагревательной печи 6, водяных насосов 8, насоса 9 для перекачки теплоносителя, отстойника-промывателя 2 и смесителей 5. Стоки ЭЛОУ из емкости 7 насосом 8 подаются в контактный водяной испаритель 4, сюда же поступает нагретый в печи 6 теплоноситель. Струя сточных вод, вытекая из сопла, в зоне контакта водяного испарителя дробится на множество капель, которые, соприкасаясь с нагретым теплоносителем, нагреваются и начинают испарятся. При этом образуется водяной пар, который через отделитель жидкости 3 отводится для нужд завода, а упаренный раствор вместе с теплоносителем поступает в нижнюю часть аппарата, где расслаивается вследствие разности плотностей. Из испарителя 4 теплоноситель поступает в отстойник-промыватель 2, в котором промывается исходными стоками с целью обессоливания и затем насосом 9 подается на нагрев в трубчатую печь 6. Возможен также впрыск соленых стоков непосредственно в лоток теплоносителя перед контактным испарителем. В качестве теплоносителя используется вакуумный газойль, характеристика которого приведена в табл. 4. [c.47]

    Характеристика теплоносителя (вакуумный газойль) [c.47]

    Испытания при переменном расходе теплоносителей позволяют получить те же показатели работы АВО, что и испытания при постоянном расходе теплоносителей, но дополненные оценкой влияния скорости движения теплоносителей на коэффициент теплопередачи К- Именно этот показатель необходим при решении вопроса об интенсификации АВО. Рассматриваемый метод испытаний используют и для построения эксплуатационной аэродинамической характеристики вентиляторов. В этом случае изменяют угол поворота лопастей вентилятора, полное давление и расход охлаждающего воздуха. Для изменения производительности при постоянном угле поворота лопастей служат жалюзи. Чтобы графически построить эксплуатационную аэродинамическую характеристику, число режимов должно быть не менее четырех. [c.61]

    Для получения синтетических смазочных масел, работоспособных в широком интервале температур, а также высокотемпературных теплоносителей, гидравлических и охлаждающих жидкостей успешно используются эфиры кремниевых кислот. Эти соединения обладают весьма ценными для смазочных материалов свойствами. Для них характерны низкая летучесть, стойкость к действию высоких температур, солнечного света и радиоактивного излучения отличные вязкостно-температурные и электроизоляционные свойства. Правда, они не стойки к окислению, но их стабильность довольно легко повысить добавками например, ароматических аминов [15, с. 168]. Смазывающие свойства эфиров ортокремниевой кислоты удовлетворительны при низких нагрузках, но недостаточны в более жестких условиях граничного трения. Для улучшения смазочных характеристик также рекомендуются различные добавки, причем высокая растворяющая способность ортокремниевых эфиров позволяет совмещать их с различными соединениями. [c.163]

    Отопление, вентиляция, кондицио- нирование Расход теплоносителя, характеристики электропривода насосов и вентиляторов, прямая и обратная температуры, системы регулирования, теплообменники (см. 3), температура и влажность воздуха в помещениях и снаружи, инфильтрация, кратность воздухообмена, рециркуляция. Теплоизоляция трубопроводов, теплообменников и арматуры, устранение утечек. Применение антинакипинов. Внедрение центральных и индивидуальных регуляторов, рекуперация вентиляционного тепла. Системы газового отопления, радиационное отопление, Применение термосифонов н тешювых насосов. [c.362]

    Тепловой и гидродинамический режимы работы аппарата подбирают из расчета определенных установленных и заданных параметров работы установки (количества и температуры теплоносителя, характеристики нылеуноса и т. д.). Таким образом, каждая сушильная установка имеет индивидуальную узкую характеристику. [c.3]

    Теперь поставим вопрос, как оценить величину Л. Прежде всего Q представляет собой скорость теплообмена, отнесенную к единице объема слоя, и потому /г имеет вид Ыр, где р — площадь поперечного сечения реактора, деленная на периметр охлаждающей поверхности (иногда эту величину называют гидравлическим радиусом), и к — коэффициент теплопередачи, отнесенный к единице охлаждающей поверхности. В рассматриваемой системе, очевидно, существуют три последовательных сопротивления теплопередаче от реагирующей смеси или зернистого слоя к стенке реактора, через стенку реактора и от стенкп к теплоносителю. Последнее сопротивление зависит от характеристик потока теплоносителя и может быть оценено стандартными методами, применяемыми при расчете теплообменников. Скорость теплопередачи через стенку определяется решением задачи теплопроводности. Для гомогенного реактора скорость теплопередачи от реагирующей смеси к стенке также оценивается стандартными методами, но для зернистого слоя вопрос более сложен. Эксперименты [c.272]

    Удельный объем пара является важной характеристикой его как теплоносителя. Уменьшение объема пара при передаче его на расстояние приводит к улучшению условий выбора трубопровода. Удельный абъем уменьшается с ростом давления. Отсюда следует, [c.271]

    В таблице, кроме теплофизических свойств теплоносителей, приведены также характеристики работы насоса. Эти величины, приведенные в таблице в относительных единицах, важны для сравнения теплоносителей с экономической точки зрения, так как они характеризуют расход энергии перекачивающим насосом, отнесенный к количеству переданного тепла в кгм1ккал. [c.329]

    При этом сопротивление газового и воздушного трактов возрастает незначительно и нет необходимости в применении мощных вентиляторов и дымососов. Е.ажным достоинством такого воздухоподогревателя является то, что температура стенки тепловой трубы (при квалифицированном выборе конструктивных характеристик н заполнении тепловой трубки теплоносителем) во время работы поддерживается значительно выше точки росы, что создает условия для на. ежной эксплуатации аппарата в коррозионной среде. В отличие от воздухоподогревателей обычных конструкций, где сквозная коррозия труб приводит к перетоку части воздуха в дымовые газы, разрушение стенки тепловой трубы мало отражается на работоспособности аппарата. При этом незначительно уменьшается поверхность теплопередачи. [c.87]

    К газогорелочным устройствам предъявляются следующие основные требования 1) конструкция должна быть по возможности компактной и простой в изготовлении, удобной, надежной и безопасной в эксплуатации, несложной в ремонте и не должна содержать элементов с пониженной стойкостью в работе 2) горелки, работая при заданной производительности, должны обеспечить полное сжигание газа с требуемым расходом воздуха 3) пределы регулирования горелок и характеристики пламени должны удовлетворять необходимые треб(3вания работы печи и быть не менее 1 3 4) конструкция горелок должна предусматривать удобство зажигания, регулирования и возможность автоматического поддержания необходимых соотношений газа и воздуха при изменении нагрузки и режимных параметров потребителей теплоносителя 5) шум, создаваемый горелкой, не должен превышать 85 децибелл (под шумовой характеристикой горелки имеется в виду уровень звукового давления, создаваемого работающей горелкой в зависимости от спектра частот). [c.159]

    Приведены критерии и методика сравнения эффективности теплообменников с однофазными потоками при различных условиях обтекания. Дана шкала эффектианости теплообмена для различных газовых теплоносителей. Оптимальпме скорости потоков и характеристики трубных пучков рассмотрены с учетом технико-экономических показателей. [c.2]

    Ввиду того что изменение Re одного из потоков при постоянстве остальных характеристик поверхности приводит к изменению величин Е, qx, входящих в условия и критерии оптимизации, т. е. невозможно выдержать условие 9x=idem или =idem, оптимальные значения Rei потоков не могут быть найдены на основе рассмотренных выше критериев сравнения. Для нахождения Re " следует использовать универсальные критерии, определение которых возможно без дополнительных ограничений типа x=idem, и т. д. Таким критерием являются годовые приведенные затраты, где введение экономических показателей позволяет учесть изменения площади поверхности теплообмена и мощности, затрачиваемой на циркуляцию теплоносителей. Подчеркнем также, что знание оптимальных значений Rei, " не является обязательным при сравнении теплообменников. Действительно, для заданной поверхности задано Ren (или задан диапазон значений Re,i, характерный для установок данного типа), а сопряженные числа Re,2 одноименных потоков в исследуемой поверхности находят исходя из условий сравнения, для чего используют (2.25) — [c.44]

    Полученные ранее критерии tie, щ, могут быть использованы при сравнении различных теплоносителей. С этой задачей встречаются при выборе теплоносителя для охлаждения атомных реакторов, для различных теплообменных аппаратов, а также при выборе рабочих тел для замкнутых циклов, например ЗГТУ. Обычный путь решения этой задачи — сравнение результатов расчета вариантов, полученных при использовании различных теплоносителей. Однако результаты такого сравнения существенно зависят от принятых тепловых схем, условий сопоставления и рассматриваемых консттрукций. Поэтому прежде чем сравнивать показатели вариантов с различными теплоносителями, целесообразно предварительно провести сопоставление свойств непосредственно самих теплоносителей для оценки перспективы их возможностей и достижимых показателей при различных параметрах. Основой такого сопоставления может служить разработанная выше методика сравнения поверхностей при условии постоянства конфигурации каналов и их пространственного расположения в решетке, что приводит к условию 112= 1- К роме того, смена теплоносителя в аппарате не влияет на коэффициент gx, т. е. gx2/gxi = l (здесь индекс 1 означает заданный, а 2 — исследуемый теплоноситель. Отсюда следует, что результаты сравнения для Q, F, N w Q, X, N характеристик аппарата будут одними и теми же. Это упрощает общее решение задачи. [c.102]

    Характеристикам ребер и теплоносителей, омывающих ребра, присвоим соответственно индексы 1 и 2. Температура теплоносителя вдоль ребра 1 понижается с до изменяется также коэффициент теплоотдачи аор1 от теплоносителя к отложениям на ребре. Это является причиной асимметрии кривой изменения температур относительно оси ребристого элемента. Температуры кромки /кр1 посредине /р[ и у основания 1° ребра 1, температура отложений на ребре / р1 в нижней части ребристого элемента [c.68]

    Ширина используемого диапазона пропорциональности зависит от емкости системы процесса, необходимой скорости корректирующего действия и пределов регулирования. Емкость обычно соотносится с тепловой или массовой емкостью системы, приходящейся на единицу изменения регулируемого параметра. Например, емкость огневого подогревателя с промежуточным теплоносителем (солевая или водяная ванна) больше емкости подогревателя прямого действия из-за массы тенло1госителя. Если удельная емкость велика и необходимо иметь быстрое корректирующее действие, рекомендуется применять узкий диапазон пропорциональности. Вообще процессы с медленно изменяющимися параметрами — преимущественная область пропорционального регулирования. Однако его применение ограничивается большим временем запаздывания. Определяющим фактором в таких случаях является соответствие размера клапана регулируемому потоку, а оптимальной настройкой диапазона — такое минимальное значение, при котором процесс не имеет колебаний. Кроме того, когда заданное значение должно поддерживаться на уровне, не зависящем от нагрузки, необходимо дополнительное интегральное звено регулирования. Если скорость интегрирования установлена правильно, движение клапана происходит со скоростью, обеспечивающей управляемость процесса. Если эта скорость велика, начинаются колебания, так как клапан движется быстрее, чем датчик фиксирует эти колебания. При медленной настройке процесс не будет достаточно быстродействующим. В пневматических системах регулирования необходимая скорость интегрирования достигается с помощью системы сдвоенных сильфонов, в которых пространство заполнено жидкостью. В отверстии для прохода жидкости имеется игольчатый клапан, который является регулятором интегрального воздействия на входной параметр. В приборах, имеющих как пропорциональную, так и интегральную характеристику, пропорциональное регулирование действует тогда, когда этот клапан закрыт, т. е. когда в точке настройки давление жидкости на обе стороны пропорциональных сильфонов одинаково. Как только пропорциональные сильфоны сдвинулись относительно точки настройки, начинает действовать интегральная составляющая регулятора. Сильфоны интегрального регулирования компенсируют это смещение перетоком жидкости из одного сильфона в другой. Скорость движения жидкости в сильфо-нах регулируется перемещением иглы клапана. [c.292]

    Аналитическое изучение объекта сводится к сопоставлению уравнений, характеризующих АВО в равновесном состоянии и переходном режиме. В общем виде динамические характеристики объектов регулирования описываются обыкновенными дифференциальными уравнениями с постоянными коэффициентами. Числовые коэффициенты, входящие в уравнения, зависят от конструктивных особенностей АВО, характера движения теплоносителей, теплопередающей способности аппаратов. Надо сказать, что аналитически невозможно охарактеризовать все многообразие независимых переменных, влияющих на регулируемый параметр <вых, поэтому свойства АВО исследуют экспериментально, снимая на действующих аппаратах статические и динамические характеристики. Для систем, характеризуемых одной входной t и одной выходной величиной Ibhx, процессы регулирования могут быть описаны обобщенным уравнением вида [c.117]


Смотреть страницы где упоминается термин Теплоносители характеристики: [c.411]    [c.257]    [c.258]    [c.273]    [c.6]    [c.11]    [c.20]    [c.119]    [c.126]    [c.45]   
Лакокрасочные покрытия (1968) -- [ c.152 , c.153 ]




ПОИСК





Смотрите так же термины и статьи:

Теплоноситель



© 2025 chem21.info Реклама на сайте