Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Циклобутан напряжение цикла

    Напряженность цикла. В циклических соединениях валентные углы С—С-связей часто существенно отличаются от нормального для тетраэдрической структуры угла в 110°. Такие циклы, как циклопропан и циклобутан, напряжены. Это приводит к их повы-щенной реакционной способности в реакциях с раскрытием цикла. [c.134]

    Циклобутан. Четырехчленный цикл с внутренними валентными углами 90° испытывает значительное угловое напряжение. Кроме того, все атомы водорода в нем находятся в заслоненном положении. Напряжение циклобутанового кольца несколько снижается за счет поворота метиленовых групп вокруг С—С связи и выведения из плоскости. Циклобутановое кольцо [c.62]


    Важно уяснить, что при оценке напряжения по теплотам сгорания на СНг-группу принимают, что прочность связи С — Н одинакова независимо от п. Суш ествуют, однако, экспериментальные данные, свидетельствующие о том, что в действительности каждая из С — Н-связей этилена и циклопропана на 3 — 4 ккал прочнее, чем в алканах (см. стр. 80—82). Ясно, что такое превышение обычной прочности этих связей приведет к тому, что энергия напряжения будет казаться меньше, чем она есть на самом деле. Если принять, что связи С — Н на 0,5 ккал прочнее в циклобутане, на 3,0 ккал прочнее в циклопропане и на 4,0 ккал прочнее в этилене, то можно внести соответствующие исправления в энергии напряжения циклов углеродных атомов. В таком случае для циклобутана напряжение, связанное с валентными углами, будет равно 0,5 8 -Ь 26,4 = 30,4 ккал для циклопропана 3,0 6 -Ь 27,6 = 45,6 ккал-, для этилена 4,0 4 -Ь 22,4 = = 38,4 ккал. Эти данные обнаруживают легко объяснимые различия в напряжении для циклопропана и циклобутана, однако этилен при этом все еще оказывается особым случаем, как, по-видимому, и должно быть, если учесть и другие его особые свойства (гл. 6). [c.111]

    Различия в поведении первых двух представителей циклопарафинов от остальных их представителей объясняются теорией напряжения Байера (стр. 207). Угол между направлениями сил химического сродства в циклопропане равен 60° (как угол в равностороннем треугольнике), т. е. очень сильно отличается от обычного угла — 109°28. Валентные углы в циклобутане, если представить его молекулу лежащей в одной плоскости, равны 90° (как углы в квадрате). Большое отклонение от нормальных углов обусловливает напряжение циклов и легкость их разрыва. Валентные углы в циклопентане и циклогексане гораздо ближе к обычному углу — 109°28, вследствие чего здесь напряжение гораздо меньше и кольца циклопентана и циклогексана являются наиболее прочными. [c.495]

    Этот цикл очень сильно напряжен, энергия его напряжения вычислена и указана в табл. 15-2. Оптимальный угол между связями, образуемыми углеродом, равен 109" ( тетраэдрический угол), однако в данном трехчленном цикле углы между связями равны 60°. Циклобутан и циклопентан напряжены меньше, а шестичленные циклы со структурой циклогексана встречаются очень часто. Циклогексан может иметь две различные структуры, называемые конформациями (формами) ванны и кресла (рис. 21-9). Конформация ванны менее устойчива из-за того, что в ней сильно сближены два диаметрально расположенных атома водорода. Сахара и другие вешества, молекулы которых имеют фрагменты, подобные цикло-гексану, почти всегда включают их в форме кресла. [c.285]

    В четырехчленных циклах также имеется угловое напряжение [211], но намного меньшее, и они труднее поддаются реакциям раскрытия цикла. Циклобутан более устойчив к броми-рованию, чем циклопропан, и хотя его можно гидрировать до бутана, это требует более жестких условий. Тем не менее пиро- [c.189]


    Если циклобутан имеет плоское строение, то он должен иметь угол С—С—С = 90°. Однако установлено, что его молекула слегка изгибается, образуя двугранный угол приблизительно 170°. Хотя этот изгиб уменьшает угол С—С—С до значения чуть меньше 90°, увеличивая тем самым напряжение в плоском цикле, но он частично снимает невыгодное заслоненное взаимодействие между соседними связями С—Н в плоской конформации циклобутана. Небольшое вращение вокруг связей цикла будет превращать циклобутан в две изогнутые структуры. Циклобутан менее напряжен, чем циклопропан, и поэтому менее реакционноспособен он инертен в реакции гидрогенизации, как и все большие циклоалканы. [c.211]

    Свойства. Циклопропан и циклобутан-газы, остальные А. с.-жидкие или твердые в-ва. Циклоалканы имеют т-ры кипения на 10-20°С выще, а плотность на 20% больше, чем соответствующие н-алканы. Для напряженных A. . с малыми и средними циклами (см. Напряжение молекул) характерны аномально высокие теплоты сгорания. [c.83]

    Судя по величинам байеровского напряжения, наименьшей энергией должен был обладать циклопентан, наибольшей — циклопропан и макроциклы. Это качественно более или менее согласовывалось с имевшимися в то время данными, поскольку макроциклы не были известны. Действительно, кольцо циклопропана очень легко размыкается под действием галоидоводородов и брома, легко каталитически гидрируется циклобутан значительно устойчивее циклопентан, как и следовало ожидать, чрезвычайно устойчив, и прочность его цикла напоминает прочность [c.525]

    Кроме углового напряжения в циклических соединениях существует напряжение, связанное с тем, что атомы водорода находятся частично или полностью в заслоненных (см. стр. 510 сл.) положениях в циклопропане, циклобутане и циклопентане каждый атом водорода практически соприкасается с двумя соседними. Для циклопропана к энергии углового напряжения добавляется энергия взаимного отталкивания трех пар атомов водорода. Б циклопропане каждый углерод связан с двумя другими и невалентных взаимодействий атомов углерода друг с другом нет. Иначе обстоит дело в случае циклобутана, где помимо углового напряжения ж энергии взаимодействия четырех пар атомов водорода существует некоторое дополнительное напряжение, связанное со взаимодействием между первым и четвертым атомами углерода, расстояние между которыми равно всего 2,2 А. Теоретический расчет суммы всех напряжений в циклобутане приводит к цифре, которая намного превосходит экспериментальную величину, полученную из термохимических данных. Поэтому в настоящее время принято считать, что -в циклобутане один из атомов цикла несколько выдается над плоскостью трех остальных. Такой выход из плоскости уменьшает общую энергию циклобутана. Напряжение моле- [c.526]

    Циклобутан. Энергия напряжения циклобутана сравнима с энергией напряжения циклопропана причиной напряжения также является сильное искажение углов. Теплота образования циклобутана, предсказанная с использованием силового поля ММ2, очень близка к экспериментальному значению. Циклобутан принимает неплоскую структуру, в которой 1,2- и 1,3-несвязанные взаимодействия (отталкивание) сведены к минимуму, барьер перехода в плоскую структуру составляет 6 кДж/моль. Дополнительным источником напряжения в циклобутане является присутствие только двух углерод-углеродных 1,3-взаимодействий на четыре СНа-группы. В циклах большего размера имеется по одному такому взаимодействую на каждую СНг-группу [80]. [c.117]

    Однако в циклопропане и циклобутане связи С-С приобретают неустойчивость в связи с напряжением химических связей в цикле. В циклопропане три С-атома расположены в вершинах равностороннего треугольника, который образован линиями, соединяющими ядра атомов углерода. Углы между этими линиями составляют 60° (рис. 10.1), что меньше валентного угла гибридной хр -связи на 49°. Химическая связь в циклопропане не может образо- [c.323]

    Выше уже говорилось о том, как влияет напряжение в циклоалканах с небольшими кольцами на теплоты сгорания. Вполне вероятно, что другие химические свойства также будут изменяться под влиянием углового напряжения. И действительно, циклопропан и циклобутан значительно более реакционноспособны, чем углеводороды с открытой цепью. Так, они вступают в некоторые реакции, характерные для соединений с углерод-углерод-ной двойной связью, причем их реакционная способность зависит от степени углового напряжения и чувствительности атакующего агента к прочности связи С — С. Результатом таких реакций всегда оказывается раскрытие цикла путем разрыва связи С — Си образования соединения с открытой цепью, в котором углы между связями имеют нормальное значение. [c.111]

    Поскольку алканы содержат только неполярные а-связи, они относительно нереакционноспособны. Наиболее значимые их реакции требуют жестких условий (например, сгорание и крекинг) или участия очень реакционноспособных частиц, таких, как атомы хло ра. На них не действуют концентрированные кислоты и щелочи, а также окисляющие агенты типа раствора перманганата калия (манганата VII). Циклоалканы в общем обладают подобными же свойствами, за исключением случаев, когда цикл напряжен, как в циклопропане и в меньшей степени в циклобутане. Последние соединения намного более реакционноспособны и вступают в некоторые реакции присоединения (рис. 4.2). В этом отношении они напоминают алкены (см. ниже). [c.80]


    Похоже, что мы должны искать какой-то другой механизм действия Ag при катализе этой запрещенной реакции. Следует упомянуть, что Ag не реагирует с простыми циклобутенами, поэтому мы не можем сказать, ускоряется ли также разрешенное конротаторное раскрытие цикла. Далее, Ag" не образует комплекса или не реагирует с простыми циклобутанами или циклопропанами. Он приводит к реакциям раскрытия цикла, иначе запрещенным в напряженных полициклических молекулах. Примеры будут приведены ниже. [c.443]

    Теоретический расчет суммы всех напряжений в плоском циклобутане приводит к цифре, которая намного превосходит экспериментальную величину, полученную из термохимических данных. Поэтому в настоящее время принято считать, что в циклобутане один из атомов цикла несколько выдается над плоскостью трех остальных. Выход атома углерода из плоскости цикла уменьшает общую энергию напряжения в циклобутане. [c.185]

    При вычислении по этой формуле предполагалось, что циклы имеют плоское строение, т. е. что все атомы углерода лежат в одной плоскости. Далее мы увидим, что в действительности это не так. Для плоских циклов Сз—Сз вычисленные углы отклонения имеют следующие значения циклопропан 24° 44, циклобутан 9° 44, циклопентан 0°44, циклогексан — 5° 16, циклогептан — 9° 33, циклооктан— 12° 46. В этих цифрах правильно отражается постепенное повышение устойчивости (т. е. уменьшение напряжения) от трехчленного цикла к пятичленному. Однако дальше гипотеза Байера уже перестает соответствовать фактам шестичленный цикл в действительности прочнее пятичленного, не наблюдается увеличения напряжения и в макроциклах. [c.57]

    Двойные и тройные связи обладают ббльшими рефракциями связей, так как тг-электроны легче поляризуются, чем а-электроны. Таким образом, двойные и тройные связи легко идентифицировать при помощи молекулярной рефракции. Даже (т-связи в напряженных циклах, как, например, в циклопропане и циклобутане, обладают ббльшими рефракциями связей (см. табл. 11), что может служить для идентификации этих циклов. [c.127]

    Все эти кетоны, если они з-же образовались, оказываются очень устойчивыми. Например, циклогептадеканон при нагревании. до 40СГ в незначительной степени обугливается, но в основном остается неизмененным прн нагревании с соляной кислотой до высокой температуры тоже не происходит значительного разложения. Циклоалканы, полученные из циклоалкаионов, были испытаны па отношение к иодистому водороду при высокой температуре. В то время как циклопропан (стр. 780) и циклобутан (стр. 783) в этих условиях претерпевали расщепление кольца, многочленные циклические углеводороды при обработке иодистоводородной кислотой не изменялись. Следовательно, 10—30-член-ные углеродные циклические системы очень устойчивы. Поэтому можно считать, что их кольцевые атомы не находятся в одной плоскости, а расположены в пространстве таким образом, что образуют циклы, более или менее свободные от напряжений. [c.923]

    Ранее (см. гл. 1) было отмечено, что вследствие несколько большей электроотрицательности атома углерода по сравнению с атомом водорода на атомах водорода появляется небольшой дефицит электронной плотности. Это приводит к тому, что атомы водорода соседних метиленовых групп в алифатических углеводородах стремятся занять наиболее удаленное друг от друга положение. Так как в циклических углеводородах исключено свободное вращение метиленовых групп относительно связи С—С, то напряжение в циклах может возникать не только вследствие деформации валентных углов, как в случае трех- и четырехчленных циклов оно может быть обусловлено также взаимным отталкиванием атомов водорода в находящихся в заслоненной конформации соседних метиленовых группах (так называемое питцеровское, или торсионное, напряжение) взаимным отталкиванием находящихся на близком расстоянии диагональных атомов углерода (наблюдается только в циклобутане), а также отталкиванием направленных внутрь цикла буш-притных атомов водорода метиленовых групп, находящихся [c.479]

    Получены я-комплексы металлов с производными циклобутадиена. Этот лиганд, гораздо более напряженный, чем циклобутан, неустойчив и не выделен, но он стабилизируется, входя в качестве я-лиганда в комплекс. Так, реакцией дихлорциклобутена с Ре2(С0)а в пентане при 30 °С получены трикарбонил (я-цикло-бутадиен) железо  [c.111]

    Многие стерически напряженные молекулы, имеющие форму клетки, подвергаются перегруппировке под действием ионов металлов, например А +, КН(1) или Рс1(П) [559]. Наблюдаемые перегруппировки связей формально можно отнести к двум главным типам 1) [2-Ь2]-раскрытие цикла в циклобутанах и 2) превращение [3.3.0]-бициклической системы в дициклопро-пильную систему. Показанная выше молекула кубана может [c.219]

    При плоско.м расположении углеродных атомов кольца (такое плоское расположение и принимал Байер для своих расчетов и рассуждений) реализуются только невыгодные заслоненные (четные) конформации. Поэтому трехчленный цикл единственный, все углеродные атомы которого лежат в одной плоскости (по той простой причине, что через три точки всегда можно прорести плоскость). Все остальные алициклы, начиная с четырехчленного, имеют не-плрское строение циклобутан — форму квадрата, несколько изогнутого по диагонали циклопентан—форму конверта. Общее напряжение уменьшается от трехчленного цикла к пятичлен- вму, вместе с тем падает и склонность к реакциям раскрытия цикла. [c.104]

    Как уже говорилось, термодинамическая устойчивость циклов различна. Об этом можно судить до теплотам сгорания (АЯ), рассчитанным на одну метиленовую группу (табл. 53). Наибольшие теплоты соответствуют циклопропану, затем циклобутану, в которых велики искажения валентных углов (угловое напряжение) и торсионное напряжение (стр. 527). Большие циклы обладают довольно близкими значениями АЯ. Однако и здесь имеются довольно характерные отличия. Наименьшим запасом энергии из первых де< яти членов ряда обладает циклогексан. Более высокая энергия циклопентана объясняется торсионным напряжением, возникающим, как уже говорилось, в результате пространственного взаимодействия атомов водорода, которые находятся в невыгодных, заслоненных, положениях. В средних циклах (Се—С ) теплота сгорания на метиленовую группу немного больше, чем в циклогексане, вследствие другого типа напряжения, небайеровокого (взаимодействие атомов водорода, находящихся по разным сторонам кольца) с этим эффектом мы встретимся еще в разделе, специально посвященном большим и средним циклам. Наконец, энергия макроциклов наименьшая и близка к энергетическому уровню нециклических парафинов с нормальной цепью. [c.534]

    Циклопентан. В плоском регулярно построенном циклопентане угол ССС составляет 108°, отклоняясь от нормального тетраэдрического угла всего на 1,5°. Однако для циклопентана, экспериментальная теплота образования которого достаточно хорошо согласуется со значениями, рассчитанными по схемам EAS 33 ММ1 [34] и ММ2 [76], значение ЭНЕК равно 30,1 кДж/моль. Такая энергия напряжения, очевидно, не может быть обусловлена угловым напряжением. Однако в циклопентане, как и в циклобутане, имеются отталкивания между несвязанными С—С- и С—Н-фрагментами и, хотя разницу в энергии заторможенной и заслоненной форм для включения в цикл СНг—СНг группы определить невозможно, все же можно Оценить ее в 10—11 кДж/моль, исходя из энергии напряжения плоского циклопентана, если принять, что единственным источником напряжения является торсионное напряжение. Соответствующий барьер в этане равен 12 кДж/моль, а в пропане 14 кДж/моль отметим, что значения барьера для бутана (20 кДж/моль) нельзя использовать для расчета циклической молекулы, так как в бутане присутствуют скошенные взаимодействия. При переходе от плоской к неплоской конформации напряжение в циклопентане не устраняется, а только ослабевает. [c.117]

    Аналогичная, но менее резко выраженная картина напряжения С-С-связей наблюдается в щпслобутане. Разница между линиями перекрывания (см. рис. 10.1) 5р -орбиталей соседних атомов (пунктирные линии) и линиями, соединяющими ядра атомов (сплошные линии), составляет только 19°. Поэтому из-за напряжения ст-связей циклобутан менее устойчив, чем циклопентан и циклогексан, в которых ст-связи не напряжены. Но он намного устойчивее циклопропана, если речь идет о римыкании цикла. В связи с пониженным перекрыванием связывающих орбиталей в циклопропане и циклобутане энергия С-С-связи в них на 50—40 кДж/моль ниже, чем в алканах, тогда как энергия С-Н-связей такая же, как вторичная С-Н-связь в алканах. [c.324]

    При постепенной сужении кольца циклопентана, в котором практически нет углового напряжения, мы получим сначала циклобутан, затем циклопропан и, наконец, двучленный цикл -этилен. Но для последнего уже нет речи об угловом напряжении, так как атомы углерода в нем оказываются в ином, не яр -, а д/> -гибридном состоянии, для которого характерно перекрывание орбиталей атомов углерода вне оси, проходящей через эти атомы, приводящее к образованию тс-связи, менее прочной, чем обьЛная ст-связь. [c.22]

    Трехчленные циклы должны быть планарными, однако уже циклобутан не является плоским [10] и подвергается инверсии конформации с энергетическим барьером, равным примерно 5,9 кДж-моль . В результате выхода одного углеродного атома из плоскости цикла происходит уменьшение напряжения, которое должно быть в планарной форме за счет заслоняющих взаимодействий связей С—Н. Напротив, спектроскопические исследования оксетана указывают на то, что его молекула практически планарна. Хотя неплоские формы разделяет инверсионный барьер, равный примерно 0,17 кДж-моль , энергия колебаний, выводящих один из атомов из плоскости цикла, в нулевой точке оказывается достаточной для преодоления этого малого барьера, в результате чего четырехчленный оксетановый цикл можно рассматривать как колеблющийся относительно планарной формы. [c.367]

    ВИЯХ необратимо, как показано на схемах (41) [67] и (42) [68]. При использовании в качестве карбанионной компоненты сложного эфира оксокислоты а-сложноэфирную группировку можно избирательно отщепить кислотным гидролизом. Аналогично взаимодействуют со сложными эфирами непредельных кислот енамины [69] схема (43) . Вначале образуется напряженный дизамещен-ный циклобутан, который при кислотном гидролизе претерпевает раскрытие цикла в результате фрагментации, как показано в (39). Региоселективность этой реакции в случае енаминов, полученных из а-замещенных кетонов, зависит от растворителя. По-видимому, два замещенных енамина находятся в быстром, по сравнению со скоростью реакции конденсации, равновесии, и пропорции конечных веществ отражают их индивидуальные концентрации и кон-. станты скорости реакции с этилакрилатом. Четвертичное соединение образуется в значительной степени лишь в диоксане, когда оно составляет 35% продукта (схема (44) [70]. [c.211]


Смотреть страницы где упоминается термин Циклобутан напряжение цикла: [c.142]    [c.208]    [c.262]    [c.142]    [c.75]    [c.115]    [c.135]    [c.129]    [c.89]    [c.169]    [c.159]    [c.372]    [c.184]   
Конфирмации органических молекул (1974) -- [ c.150 ]




ПОИСК





Смотрите так же термины и статьи:

Напряжение в цикле

Циклобутан



© 2025 chem21.info Реклама на сайте