Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Таллий радиоактивный

    Для изучения распределения примесей, помимо методов регистрации излучений при помощи различных счетчиков, применялся также метод фоторегистрации излучений — авторадиография. Широкое применение этот метод нашел для контроля однородности лигатур на основе различных редких металлов, например, висмута, сурьмы, индия, галлия, таллия. Радиоактивные индикаторы в виде металла, вводились непосредственно в расплав. Из полученной лигатуры готовился шлиф, с которого снималась радиография. Часть лигатуры затем вводилась в металл, подвергаемый дальнейшей технологической обработке. [c.339]


    ЭМАНАЦИЯ (радой) Еш — первое название радиоактивного элемента нулевой группы периодической системы элементов Д. И. Менделеева с п. н. 86. Массовое число наиболее долгоживущего изотопа 222, Т, = 3,825 дня. Название этого изотопа — радон — присвоено всему элементу. При распаде Э. образуются радиоактивные изотопы таллия, свинца, висмута и полония, с которыми связана радиологическая токсичность Э., особенно [c.292]

    Современная медицина немыслима без использования этого метода. Широко применяются радиоизотопы золота. Четырнадцать радиоактивных изотопов золота могут быть получены как бомбардировкой нейтронами, протонами, дейтронами, а-частицами, так и при воздействии у-излучением на мишени из природного золота, включающего устойчивый изотоп эAu. Используют также элементы иридий, платину, ртуть, таллий. Наиболее широко применяют радиоактивные изотопы золота 1 "Аи и 1 >Аи. Изотоп золота " Au Ру ожно получить, например, в результате следующих ядерных реак- [c.73]

    Существуют различные методы анализа с применением радиоактивных индикаторов. В простейшем случае ионы определяемого элемента осаждают действием реагента, меченного радиоактивным изотопом. Таллий, например, осаждают в виде ТП при действии и затем определяют радиометрически- [c.315]

    Важнейшие области применения. Таллий и его соединения находят все возрастающее применение в различных отраслях науки и техники [185]. Одна из наиболее важных областей применения — инфракрасная техника. Кристаллы твердых растворов (рис. 83) бромида и иодида таллия (КРС-5), бромида и хлорида таллия (КРС-6) прозрачны для широкого диапазона инфракрасных лучей. Поэтому из таких монокристаллов изготавливают окна, линзы и призмы для различных оптических приборов. Монокристаллы хлорида таллия (I) используют при изготовлении счетчиков Черенкова, применяющихся для регистрации и исследования частиц высоких энергий. Кристаллы галогенидов щелочных металлов, активированные добавками бромида или иодида таллия, являются кристаллофосфорами и применяются, в частности, в сцинтилляционных счетчиках для обнаружения и измерения радиоактивного излучения. [c.337]

    Радиоактивные загрязнения удерживаются на поверхности под воздействием сил сцепления между ме-таллом-основой и металлом-осадком при контактном выделении металла с более положительным потенциалом электростатических сил сил поверхностного натяжения, зависящих от размера поверхности (для уменьшения этих сил следует или уменьшить поверхностное натяжение или сократить поверхность) химических связей (часто наблюдаются на полированных металлах), для разрушения этих связей требуется затратить эквивалентное количество энергии [24, 25] механических причин (задержка частиц в порах, трещинах). [c.20]


    Во-вторых, изучение радиоактивных цепочек привело к открытию явления изотопии. Было замечено, что многие радиоактивные элементы, составляющие определенные звенья в цепочке распада, обладают одинаковыми химическими свойствами и их невозможно разделить никакими химическими операциями. Например, при распаде полония и таллия (см. рис. 10) образуются элементы, подобные по своим свойствам свинцу. При распаде радона и висмута образуются два полония. Видно, что эти элементы различаются только атомными весами. Так, свинец имеет три вида атомов с атомными весами 214, 210 и 206 висмут — два вида с атомными весами 214 и 210. Содди в 1911 г. такие разновидности атомов одного химического элемента назвал изотопами, что означает занимающие одно место в периодической системе элементов Д. И. Менделеева. [c.33]

    Радиометрическое титрование позволяет одновременно определять серебро и таллий. При постепенном добавлении титрованного раствора к раствору, содержащему ТР , в первую очередь осаждается иодид серебра радиоактивность раствора при этом не изменяется. -По окончании осаждения серебра начинает осаждаться Ти, что вызывает уменьшение радиоактивности раствора. По полученной кривой титрования [c.116]

    Сцинтилляторы, которые наиболее часто применяются для гамма-спектрометрии, представляют собой одиночные кристаллы йодида натрия, активированного таллием. Сцинтилляционные спектры гамма-излучения состоят из одного или более острых характерных фотоэлектрических пиков, соответствующих энергиям источника гамма-радиации. Поэтому эти спектры полезны для идентификации, а также для обнаружения гамма-излучающих примесей в препарате. Кроме характерных пиков, в спектре обычно имеются и другие пики, обусловленные вторичным воздействием радиации на сцинтиллятор и его окружение, таким, как обратное отражение, аннигиляция позитронов, суммирование совпадений и флуоресцентные рентгеновские лучи. Кроме того, в результате рассеяния гамма-фотонов в сцинтилляторе и окружающих материалах возникают щирокие полосы, известные как спектры Комптона (эффект Комптона). Калибровка прибора производится с помощью известных образцов радиоактивных изотопов, энергетические спектры которых определены. Форма спектров будет различной в зависимости от используемых приборов это определяется различной формой и размерами кристаллов, применяемыми защитными материалами, расстоянием между источником излучения и детектором, а также типами дискриминаторов, используемых в амплитудных анализаторах импульсов. При использовании спектра для установления подлинности радиоизотопов необходимо сравнивать спектр исследуемого образца со спектром известного вещества, радиоактивность которого измерена тем же прибором и при тех же условиях. [c.78]

    Возможно также разделение тяжелых радиоактивных элементов [75], например АсВ—АсС", ThB—Th и АсХ—Fr, а во многих случаях одного и того же элемента в различных валентных состояниях [96]. Интересно отметить, что ион таллия хорошо сорбируется [c.155]

    Радиоактивные изотопы золота, свободные от носителя, можно получить посредством различных ядерных реакций с заряженными частицами из изотопов иридия, платины, ртути и таллия. Однако радиоизотопы, полученные на ускорителях, трудно доступны и дороги. Из числа радиоактивных изотопов золота, которые получают нейтронным облучением в реакторе, изотоп Au можно выделить свободным от носителя из облученной нейтронами пла-тины. Этот изотоп образуется по цепочке реакций [c.53]

    В настоящее время редкие металлы получили применение в самых разнообразных областях науки и техники, причем области применения их из года в год расширяются. Это прежде всего объясняется особыми физическими и химическими свойствами редких металлов, так, например, германий является ценнейшим материалом дЛ1 изготовления полупроводниковых приборов, широко применяемых в различных областях радиотехники и электронике. Для этих же целей применяются индий, теллур, селен и другие. Введение редких металлов в стали и в сплавы цветных металлов обеспечило получение материалов, стойких против коррозии, жаропрочных, обладающих большой механической прочностью и другими ценными свойствами. В химической технологии и металлургии принято разделять редкие металлы на следующие технические подгруппы а) легкие литий, рубидий, цезий, бериллий и др б) тугоплавкие титан, цирконий, гафний, ванадий, ниобий, тантал, молибден, вольфрам, рений в) рассеянные галлий, индий, таллий, германий г) редкоземельные скандий, иттрий, лантан и лантаноиды радиоактивные полоний, радий, актиний и актиноиды. [c.419]

    К1(Т1) — монокристаллы иодистого калия, активированного таллием, применяются при регистрации у- и рентгеновских лучей. Прозрачные, бесцветные кристаллы негигроскопичны и менее хрупки, чем кристаллы иодистого натрия коэффициент преломления 1,68, технический световой выход в процентах светового выхода Ка1(Т1) составляет =45 50 %. Кристаллы выпускаются следующих размеров (мм) 30 х 2, 30 х 10, 30 X 15, 30 X 20, 30 X 30, 30 х 40, 40 х 20, 40 х 25. Присутствие в иодистом калии радиоактивного изотопа К (Г1/2 = 1,28 10 лет Е, = 1,46 МэВ (4 %) = 1,35 и 1,45 МэВ) ограничивает область применения этих кристаллов. [c.73]


    Кулонометрическое титрование имеет в ряде случаев значительные преимущества перед обычным титрованием. Не нужно заранее готовить рабочие растворы и устанавливать их точную концентрацию. В качестве генерирующих титрующих веществ могут применяться вещества, мало устойчивые в обычных условиях и непригодные поэтому для приготовления рабочих растворов. Различные окислители легко определять генерированными ионами двухвалентного олова, одновалентной меди, трехвалентного титана, двухвалентного хрома и др. Так титруют, например, хром, марганец, ванадий, уран, церий и некоторые другие элементы после предварительного перевода их в соединения высшей валентности. Для титрования восстановителей, например, трехвалентных мышьяка и сурьмы, одновалентного таллия, двухвалентного железа применяют генерированные свободный бром и иод, ферри-цианид и др. Подбирая соответствующие индикаторные системы для установления конца электролиза, можно также определять два или более окислителей или восстановителей в смеси, если их потенциалы восстановления различны. Известны, например, методы кулонометрического титрования урана и ванадия, хрома и ванадия, железа и ванадия, железа и титана в смеси. Наконец, кулонометрический метод допускает автоматизацию процесса титрования и управление им на расстоянии, что имеет важное значение при определении, например, различных искусственных радиоактивных элементов. [c.273]

    Большие возможности открывает радиометрическое титрование. Описано определение ряда элементов титрованием фосфатами с радиоактивным фосфором, меди и цинка с применением радиоактивного цинка в качестве индикатора, таллия с применением радиоактивного таллия и ряда других. [c.523]

    Настоящая работа посвящена разделению микрограммовых количеств таллия и галлия и отделению их от алюминия и индия на синтезированных и природных фосфоритах. Для проверки полноты разделения использовались радиоактивные изотопы этих алементов. [c.260]

    Галлий, нндий и таллий встречаются в природе каждый в виде двух изотопов. Природные изотопы индия об.ладают естественной радиоактивностью с длительным, однако, периодом полураспада. Природные изотоны галлия и таллия стабильны. Известно много искусственных радиоактивных изотопов этих элементов. [c.335]

    Все шире используются сцинтилляционные счетчики. Радиоактивное излучение в этом случае направляют на кристаллы сгильбена, антрацена или иодида натрия эффективность счета возрастает при активации этих веществ следовыми количествами иодидов тяжелых металлов, например иодидом таллия. Индуцированную световую вспышку можно с помощью фотоумножителя превратить в электрический сигнал, используемый для измерения. Применяют также жидкие и газообразные сцинтилляторы. [c.386]

    Радиоактивными ядрами являются нуклиды (6), низкое нейтронно-протонное отношение (в), низкое нейтронно-протонное отношение (д), большой атомный номер. 20.14. а) Нет- низкое нейтронно-протонное отношение. Должен быть радиоактивен с испусканием позитрона, б) Нет-низкое нейтронно-протонное отношение. Должен испускать позитрон или (возможно) подвергаться захвату орбитального электрона, в) Нет-большое нейтроннопротонное отношение. Должен испускать бета-частицы. г) Нет-большой атомный номер. Должен испускать альфа-частицы. 20.17. а) Таллий-210 имеет большое нейтронно-протонное отношение. Испускание бета-частиц, в сущности, превращает нейтрон в протон, чем снижает нейтронно-протонное отнощение. б) ддАс имеет низкое нейтронно-протонное отношение. Захват орбитального электрона превращает протон в нейтрон, что повышает нейтронно-протонное отношение, в) азВ имеет низкое нейтроннопротонное отношение. Испускание альфа-частицы снижает как число нейтронов, так и число протонов и понижает атомный номер ядра в сторону значения, для которого пониженное нейтронно-протонное отношение достаточно для устойчивости. 20.19. Ое -> + Че. [c.477]

    С2Н5О/ N ТАЛЛИЙ (Thallium) TI — химический элемент HI группы 6-го периода периодической системы элементов Д. И. Менделеева, п. н. 81, ат. м. 204,37. Природны Т. состоит из двух стабильных изотопов, известны 17 радиоактивных изотопов. Т. открыт в 1861 г. Круксом спектральным методом. Свое название Т. получил [c.243]

    Характеристика. При переходе от металлов к р-металлам отмечается увеличение числа электронов (до 3—4) на внешнем уровне атомов за счет заполнения ими /з-пОдуровня. Это приводит к снижению восстановительной способности элементов и частичной утрате некоторыми из них типично металлических черт мягкости, легкоплавкости. Такие металлы, как алюминий А1, галлйй Ga, индий 1пи таллий Т1, атомы которых содержат на внешнем уровне по два s- и по одному р-электрону, входят в состав П1А-группы периодической системы элементов Д. И. Менделеева, а олово Sn и свинец РЬ, в атомах которых имеется по два внешних р-электрона, — в состав IVA-группы. К р-металлам относятся также висмут (см. гл. XIV, 3) и радиоактивный полоний Ро, в атомах которых третий и соответственно четвертый /7-электроны расположены на шестом уровне, что объясняет легкость их потери атомами и металлический характер этих элементов. [c.304]

    Таллий применяется в полупроводниковой технике. Входит в состав различных полупроводников, в частности стеклообразных, содержащих наряду с таллием мышьяк, сурьму, селен и теллур. Сульфид таллия применяется для изготовления фотосопротивлений, чувствительных в инфракрасной области спектра, в которых действующим веществом является один из продуктов окисления сульфида — Т12502, так называемый таллофид. Радиоактивный изотоп 2 0 4 Р применяется в качестве источника (3-излучения (период его полураспада 4 года) в приборах, контролирующих производственный процесс. Например, такими приборами измеряют толщину движущихся полотен бумаги или ткани. Этот же изотоп, как ионизирующее воздух вещество, используется в приборах для снятия статического заряда, возникающего при трении движущихся частей машин. [c.338]

    Радиоактивная защита основана на использовании в составе необрастающих ЛКП радиоактивных изотопов углерода, кобальта, меди, таллия, иттрия, технеция с добавкой их, по массе 0,1...1,5 %. Радиоактивный технеций Тс с периодом полураспада 2,1-105 лет и его соединения применяют для защиты гидротехнических сооружений, корпусов судов, поверхностей резервуаров, трубопроводов, теплообменников, КИП и другой аппаратуры, эскплуатирующихся в морской или речной воде от обрастаний микроорганизмами. Эффект достигается при нанесении соединений Тс на металлы, древесину, оргстекло, стеклоткань, полимеры и другие соединения. Например, металлический Тс осаждали на аустенитные стали из электролита на основе пертехната аммония (рЯ=1) при плотности тока 1,3 А/дм2 (аноды — платина), толщина слоя до 1,6 мкм. [c.93]

    ТАЛЛИЙ (от греч. thallos-зеленая ветка лат. ThaUimn) Л, хнм. элемент Ш гр. периодич. системы, ат. н. 81, ат. м. 204 383. Природный Т.-смесь двух изотопов ° Т1 (29,5%) и (70,5%). Радиоактивные изотопы с мае. ч. от 206 до 210 и Ti,2 от 1,32 до 4,79 мин - члены природных радиоактивных рядов. Поперечное сечение захвата тепловых нейтронов прир. смеси изотопов 3,4-10 м . Конфигурация внеш. электронной оболочки атома 6s 6p степени окисления -Ь 1 и -ьЗ энергии ионизации при переходе от Т1° к ТР 6,1080, 20,4284, 29,8 эВ работа выхода электрона 3,70 эВ электроотрицательность по Полингу 1,8 атомный радиус 0,171 нм, ионные радиусы, н.м (в скобках указаны координац. числа) Т1 + 0,164 (6), 0,173 (8), 0,184 (12), Т1 + 0,089 (4), 0,103 (6), 0,112 (8). [c.490]

    Серебро и таллий в их смеси определяли методом осадительного радиометрического титрования стандартным раствором иодида калия в присутствии радиоактивного изотопа 204т1. Результаты титрования приведены ниже  [c.231]

    Таллий применяется для получения радиоактивных изотопов как самого таллия, ТР° , по реакциям ТР°з (и, у) или Т]2оз (d, р), так и некоторых других элементов, например, Hg ° по реакции ТР° (п, р) [195]. Радиоактивные изотопы таллия, особенно ТРО , применяются в аналитической химии [2, 5, 25, 26, 85, 107а, 117—119, 187], а также при других исследованиях [85, 507, 740]. [c.9]

    Соосаждение с малорастворимыми галогенидами. При осаждении галогенидов серебра может наблюдаться соосаждение одновалентного таллия [94, 235, 301, 502, 728, 873]. Соосаждение с AgJ применено для отделения таллия от других элементов [149а]. Исследования, выполненные с применением радиоактивного индикатора Th " (т. е. ТР ), показали, что при избытке хлорида или бромида соосаждение одновалентного таллия достигает 84—96% от общего количества таллия, находившегося в растворе напротив, при избытке серебра соосаждение резко уменьшается, достигая в среднем 3—4%. Зависимость соосаждения qT заряда поверхности галогенида серебра свидетельствует об адсорбционном характере этого процесса. Аналогичная картина наблюдается и при соосаждении таллия с HgQ h и Нд2Вгг[502, 554]. [c.71]

    Радиометрическое определение. Пользуясь растворм иодида калия, меченого радиоактивным изотопом можно определять малые количества таллия (684]. [c.115]

    Радиометрическое титрование. К 2 мл анализируемого раствора соли одновалентного таллия добавляют в качестве индикатора невесомос количество радиоактивного изотопа Т1 ° вводят определенный объем титрованного 0,1 N раствора KJ центрифугируют и определяют радиоактивность аликвоты центрифугата. Такие л е исследования повторяют, но с применением других объемов раствора К . [c.115]

    Радиоактивационное определение. Природный таллий представляет собою смесь двух стабильных изотопов и ТР1 При облучении нейтронами из Tl oa по реакции п, Y Образуется радиоактивный изотоп Tl присутствие которого легко можно установить. Метод нейтронной активации позволяет обнаружить и количественно определять до 0,1 V таллия при облучении потоком плотностью 2 10 нейтронов на 1 см 1сек. Чувствительность метода зависит и от [c.116]

    Вследствие широкой распространенности радия в природе, в водоемах в воздухе содержатся продукты его распада — изотопы радона (эманации)—радон ( Кп), торон, и Кп(Тп), актион Кп(Ап). В растворимом состоянии в воде находятся продукты распада эманаций радиоактивные изотопы таллия, свинца, полония и астата. [c.308]

    К особо токсичным относятся отходы, содержащие ртуть, свинец, кадмий, олово, мышьяк, таллий, бериллий, хром, сурьму, цианиды, фосфорорганические вещества, асбест, хлорированные растворители, фторхлоруглероды, полихлориды дифенилов, полициклические и ароматические углеводороды, пестициды, а также радиоактивные отходы. [c.336]

    Описан радиактивационный метод определения фосфора (и таллия) в кремнии [134], основанный на измерении -излучения радиоактивных изотопов и o Tl, активируемых тепловыми нейтронами при облучении в ядерном реакторе. [c.136]

    Окончательно задача размещения радиоактивных элементов в периодической системе была решена Ф. Содди в 1913 г. Приняв точку зрения Д. Стремхольма и Т. Сведберга, он разместил 37 элементов в десяти клетках периодической системы (от таллия до урана). Химически неразделимые элементы, занимающие одно и то же место в периодической системе, Ф. Содди предложил назвать изотопами ( .одд — одинаковый и толо — место, греч.), несмотря на то, что их атомные массы различны. Трудности, возникшие при определении места короткожпвущих элементов, крайне неудобных для химического исследования, были преодолены путем применение так называемого правила сдвига . [c.213]

    С практической точки зрения важна реакция иодирования нуклеиновых кислот в водных растворах. При действии 1 или 1 -ионов в присутствии треххлористого таллия СТ1С1 ) на одиоцепочечные ДНК преимущественно иодируется цитозин, образуя 5-иодопроиз-водные. При реакции с РНК наряду с 5-иодцитозином образуется 5 иодо-6-гидрокси-5,6-дигидроурацил. При использовании радиоактивного 4 удается получить меченые полинуклеотиды с высокой удельной активностью, которые применяются в опытах по гибридизации. [c.387]

    Радиоактивный слой в 60 мкг/см металлического таллия (2=81) [1,4] должен приводить к самоослаблению -излучения в слое порядка 0,3% так как средний эффективный (по отношению к процессу самоослабления в тонких препаратах) атомный номер окиси алюминия (2эф Ю) меньше, то радиоактивный слой, вызывающий 0,3% ослабления излучения, будет иметь толщину 150 мкг ем . Для самоослабления 1% ти расчете в первом приближении [1,4] [c.298]

    В гл, 14 упоминалось о применении кристаллов иодида натрия, активированных следами иодида та.тлия (I) в качестве люминесцирующих кристаллов для обнаружения радиоактивности. Придумайте способ определения количества иодида таллия (I) в криста.тлах иодида натрия без разрушения образца. Оцепите его точность, [c.285]

    Не остались без работы и радиоизотопы таллия. Таллий-204 (период полураспада 3,56 года) — чистый бета-нзлучатель. Его используют в контрольно-нзмерительной аппаратуре, предназначенной для измерения толщины покрытий и тонкостенных изделий. Подобными установками с радиоактивным таллием сни.мают заряды статического электричества с готовой продукции в бумажной и текстильной промышленности. [c.259]


Смотреть страницы где упоминается термин Таллий радиоактивный: [c.172]    [c.519]    [c.126]    [c.69]    [c.117]    [c.108]    [c.122]    [c.108]    [c.3]    [c.722]    [c.723]   
Эмиссионный спектральный анализ атомных материалов (1960) -- [ c.360 , c.369 ]

Химия изотопов Издание 2 (1957) -- [ c.335 , c.428 , c.441 , c.443 ]




ПОИСК





Смотрите так же термины и статьи:

Таллий



© 2025 chem21.info Реклама на сайте