Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Органические реагенты в химическом анализе

    Методы обнаружения ионов можно разделить на химические и физические. Для их химического обнаружения используют высокочувствительные органические реагенты. Из физических способов обнаружения наиболее чувствительны радиометрические методы, которые прежде всего применяют при анализе радиоизотопов. Для определения положения ионов можно использовать, например, низко- или высокочастотную кондукто-метрию, полярографию и т. п. Наиболее употре-бима фотометрия обнаруженных окрашенных пятен в отраженном или проходящем свете. [c.241]


    В XIX в. в химический анализ стали вводиться органические реагенты. Еще в 1815 г. немецким химиком Ф. Штромейером (1776—1835) была описана реакция иода с крахм<шом, в результате которой развивается синяя окраска. И в настоящее время свежеприготовленный раствор крахмала щироко используется в качестве специфического органического реагента на свободный иод. [c.36]

    К числу достаточно распространенных в химическом анализе относятся, например, такие органические реагенты, как дитизон, диметилглиоксим, 1-нитрозо-2-нафтол. [c.227]

    Аналитическая химия — одна из основных химических дисциплин. Ее задачи и цели — обучить студентов методам определения состава вещества. В связи с широким применением органических реагентов, индикаторов, экстрагентов, органических растворителей, ионитов аналитическую химию необходимо изучать на основе не только неорганической, но и органической химии. Современное развитие физики и физической химии меняет направление аналитической химии в сторону использования физических и физико-химических методов анализа. Это, в частности, нашло отражение в Государственной Фармакопее СССР IX и X изданий с начала 60-х годов. [c.3]

    За последние 10—15 лет в аналитической химии алюминия достигнуты большие успехи. Наиболее существенным достижением явилось использование для определения алюминия нового метода объемного анализа — комплексометрии. Для фотометрического определения алюминия предложены новые высокочувствительные органические реагенты, разработаны разнообразные методы отделения алюминия от мешающих элементов. Число всех опубликованных работ по определению алюминия в настоящее время составляет несколько тысяч. В то же время имеется только одна работа, систематизировавшая все достигнутое в аналитической химии алюминия. Это — монография Фишера и других, составляющая часть многотомного издания Фрезениуса и Яндера [733]. Эта монография, вышедшая в 1942 г., к сожалению, в значительной степени устарела. Монографии Р. Пршибила Комплексоны в химическом анализе [347] и Е. Сендэла Колориметрические методы определения следов металлов [360] содержат описание комплексометрических и фотометрических методов определения алюминия, но в них не попали многие очень важные методы, опубликованные за последние 8—10 лет. [c.5]

    Обработка ТГИ химическими реагентами и растворителями является широко распространенным методом исследования. В результате обработки получают различные группы веществ, изучение которых позволяет судить о химическом составе ТГИ. Легко разделяются на составные части наименее зрелые представители ТГИ торфы и сапропели. Разделение ТГИ на группы веществ, каждая из которых обладает одинаковыми свойствами к действию растворителей или реагентов, называется групповым химическим анализом. Например, органическая масса торфа условно разделяется на следующие группы веществ  [c.94]


    В последние годы интерес к аналитической химии кобальта сильно возрос. Это обусловлено разнообразными новыми применениями кобальта и его соединений. Общеизвестно использование кобальта в качестве легирующего компонента специальных сплавов с высокой твердостью и термостойкостью. Многие соединения кобальта обладают высокой каталитической активностью и служат катализаторами синтеза различных химических соединений. Радиоактивные изотопы кобальта широко применяются в медицине. Ряд сложных органических соединений кобальта влияет на обмен вешеств у растений и животных и т. п. Все ъто привело к необходимости разработать новые методы качественного обнаружения и количественного определения кобальта как основного компонента и примеси в технических и биологических материалах весьма разнообразного состава. Особое внимание в работах последних лет обращено на развитие методов определения следов кобальта. Для этого в настоящее время используются главным образом спектрофотометрические, кинетические и электрохимические методы анализа. Много исследований посвящено также синтезу новых органических реагентов для определения кобальта и изучению оптимальных условий их применения. [c.5]

    В монографии систематизирована и рассмотрена вся доступная литература по аналитической химии кобальта вплоть до 1963 г. Главное внимание уделено работа.м последних десятилетий, так как они отражают современный уровень развития аналитической химии и основаны в значительной степени на применении новых органических реагентов и новых физико-химических методов анализа. Была сделана также попытка критически оценить эффективность отдельных методик, пользуясь опубликованными в литературе данными сравнительных экспериментальных исследований. Тем не менее в ряде случаев такая [c.5]

    Известны методы определения серебра в почвах, растениях, природных и сточных водах, в рудах, минералах, силикатах и горных породах, в чистых металлах и неметаллах, в сплавах, полупроводниковых материалах, в гальванических ваннах, в реактивах и фармацевтических препаратах, в фотографических материалах, в смазочных маслах и других объектах. За небольшими исключениями, особенность этих материалов состоит в том, что содержание серебра в них обычно невелико, поэтому главное значение имеют методы определения микроколичеств серебра. Из физических методов наибольшее распространение имеет спектральный анализ. В последние годы публикуется много работ в области радиоактивационного определения серебра и атомноабсорбционных методов. В химических методах чаш,е всего применяется экстракционно-фотометрическое определение серебра в виде дитизоната, реже используется и-диметиламинобензилиденроданин и некоторые другие органические реагенты. [c.172]

    В химических методах качественного анализа предел обнаружения может быть существенно понижен при использовании органических реагентов, особенно в случае образования открываемым ионом смешано-лигандных комплексов. Ддя этих же целей используют ряд приемов практического проведения реакции — таких, как микрокристаллоскопический анализ, капельный анализ, флотация, жидкостная экстракция, метод умножения реакций, каталитические и люминесцентные реакции, реакции на носителях. [c.73]

    Значение реагентов в аналитической химии исключительно велико. Особенно важны органические реагенты, которые обладают большими возможностями и поэтому стали наиболее распространенными. Области применения реагентов в аналитической химии, в частности в неорганическом анализе, весьма многочисленны. Реагенты широко применяют в гравиметрических и титриметрических методах анализа как осадители и соосадители при разделении и концентрировании веществ их используют в качестве маскирующих веществ. Одна из обширных областей применения реагентов — экстракция. Реагенты нужны для ионообменных, электрофоретических и других методов разделения. Аналитические реагенты важны и для многих физических и физико-химических методов анализа,например амперометрии, радиоактивационного, химико-спектрального анализов. Перспективно применение органических реагентов в методах газовой хроматографии для быстрого разделения и определения элементов. [c.5]

    Особое значение реагенты имеют для фотометрии — простого быстрого метода, позволяющего определять очень малые концентрации веществ. Известен ряд неорганических реагентов, используемых в фотометрическом анализе, однако его основой является применение органических реагентов. Они обладают рядом замечательных свойств, в числе которых принципиальная возможность конструирования новых реагентов с более ценными аналитическими свойствами по сравнению с соответствующими прототипами. Последнее стало в какой-то степени возможным благодаря успехам теории действия органических реагентов. Эти успехи в большой мере основаны на применении современных физико-химических и физических методов исследования. Однако здесь еще многое предстоит сделать например, нужно шире использовать достижения координационной химии, структурной химии, методы конформационного анализа, кинетические методы исследования. [c.5]


    В современной аналитической химии органические реагенты широко используют как для разделения, так и определения веществ. Методы анализа основаны на различных химических аналитических реакциях в гравиметрических методах анализа используют реакции осаждения малорастворимых соединений комплексов и солей, для фотометрических методов анализа необходимо присутствие в определяемой молекуле хромофорных групп, комплексонометрические методы титрования полностью основаны на реакциях комплексообразования. [c.56]

    В современном качественном анализе обычно применяют реакции обнаружения ионов с пределом обнаружения 0,1 мкг (10 г) в I мл раствора. Снизить предел обнаружения в химическом анализе можно различными приемами капельной реакцией на фильтровальной бумаге или фарфоровой пластинке, применением органических реагентов, экстракцией (переведением в органическую фазу) и др. [c.109]

    ОРГАНИЧЕСКИЕ РЕАГЕНТЫ В ХИМИЧЕСКОМ АНАЛИЗЕ [c.64]

    С появлением новых физических и физико-химических методов анализа (масс-спектрометрия, автоматические квантометры, активационный анализ, новые приемы полярографии и др.) и, главное, больших перспектив их развития на будущее возникает ряд вопросов о значении химических фотометрических методов анализа вообще и применении органических реагентов, в частности. Интересно также оценить виды на будущее этого наиболее распространенного в настоящее время метода анализа. [c.123]

    Применение избирательных органических реагентов и использование избирательных схем фотометрического определения элементов (здесь мы рассматриваем в основном редкие элементы) составит серьезную конкуренцию физическим и физико-химическим методам, видимо, еще по крайней мере на протяжении 20—30 лет. Преимущества фотометрических методов, не требующих сложной аппаратуры, очевидны чувствительность методов достаточно высока (молярные коэффициенты погашения для лучших реагентов составляют 50—150 тыс.), что позволяет определять от 100 до 0,01 мкг абсолютных количеств вещества или до 10" % элемента в объекте без отделения основы, до 10 %—применяя простые, экспрессные схемы отделения, и до 10 —10 % —с предварительным концентрированием определяемого элемента. Сложные схемы подготовки анализируемого материала, не пригодные для использования их в автоматических анализаторах, вряд ли найдут широкое применение. При содержании элемента менее 10" % применение обычных фотометрических методов оправдывается только в редких случаях. Следует, однако, отметить, что здесь мы совершенно не рассматриваем другие химические методы анализа, которые также связаны с изменением окраски растворов (реакции, основанные на каталитических явлениях, ферментный анализ и др.), которые, возможно, существенно изменят наши представления о соотношении между собою различных видов анализа. [c.124]

    Органические реагенты приобретают все большее значение в химическом анализе в силу высокой чувствительности и избирательности их реакций с ионами металлов. Многие из ранее опубликованных в этой области работ носили чисто эмпирический характер, они в основном были направлены на поиски специфичных или, по крайней мере, высокоизбирательных реагентов на ионы отдельных металлов. За последние годы наметился более фундаментальный подход к изучению органических реагентов, основанный на изучении взаимосвязи между их структурой и избирательностью. Другим важным направлением в развитии этой области явилось количественное исследование различных равновесных систем, имеющих существенное значение. Достаточно высокой избирательности можно достичь в отдельных случаях путем подбора подходящих значений pH и концентрации реагента, а также посредством применения дополнительных комплексантов (маскирующих агентов), усиливающих разницу в поведении различных металлов. При разделениях с помощью экстракции большое значение имеет подбор растворителей немалое влияние на результаты разделения оказывает также скорость экстракции. [c.275]

    Установление возможности быстрого и полного фотохимического разрушения органических веществ в растворах и в твердом состоянии имеет большое практическое значение. Есть все основания предполагать, что фотохимические методы разрушения органических веществ в ближайшее время найдут широкое применение в химическом анализе, особенно для разрушения маскирующих веществ и окрашенных реагентов, мешающих дальнейшему анализу, а также органических растворителей и хелатообразующих реагентов, содержащихся в водных растворах после экстракции и реэкстракции элементов из органических растворов (экстрактов). [c.134]

    Наличие мощных и удобных источников ультрафиолетового света позволяет надеяться, что в скором времени фотохимические методы разрушения и устранения органических веществ найдут в химическом анализе широкое применение. Особенно перспективно фотохимическое удаление органических веществ из растворов вместо трудоемкого мокрого сжигания. Фотохимическая минерализация по сравнению с мокрым сжиганием имеет значительные преимущества, которые заключаются прежде всего в том, что фотохимическая минерализация может быть проведена за несколько минут, а также в том, что в анализируемый раствор не вносятся другие реагенты окислители, кислоты, а с ними примеси (это особенно важно при анализе веществ высокой чистоты). Кроме того, при фотохимическом удалении органических веществ растворы не разбавляются и последующее упаривание их не обязательно. [c.134]

    Задача первого этапа гравиметрического анализа заключается в получении малорастворимого осадка. Затем осадок нужно очистить, высушить, перевести в какую-нибудь устойчивую форму и взвесить (определить массу). Взвешиваемый продукт должен иметь определенный химический состав желательно, чтобы он был негигроскопичен. Условия высушивания и прокаливания осадков лучше всего оценивать по термогравиметрическим кривым (см. гл. 4, раздел И). В некоторых случаях нагревание до 105 °С приводит к полному удалению воды. В других случаях для разрушения фильтровальной бумаги и других органических веществ нужно нагревать осадок до 500 °С иногда для осуществления необходимых химических превращений необходима температура до 1000 °С. При работе с осадками, полученными при помощи органических реагентов, необходимо применять дополнительные меры предосторожности. Многие соединения с органическими реагентами малополярны, многие из них при сравнительно низкой температуре летучи без разложения. Это может приводить к большим потерям, если прокаливание осадка проводится до получения соответствующих окислов металлов. [c.380]

    В целях дальнейшего развития спектрофотометрических методов в ГЕОХИ АН СССР синтезировано и внедрено в аналитическую практику по крайней мере 30 новых высокоэффективных органических реагентов, служащих для определения более 40 химических элементов — редких и рассеянных, актинидов, благородных металлов и др. Некоторые из разработанных на основе этих реагентов методов анализа включены в настоящий сборник. [c.6]

    В основе разнообразных химических и физико-химических методов анализа лежат, как правило, реакции трех типов кислотноосновные, окислительно-восстановительные и комплексообразования. Значение их в практике анализа примерно одинаково, но научные исследования сосредоточены преимущественно вокруг реакций двух последних типов. Теория кислотно-основных взаимодействий неплохо разработана, здесь многое давно устоялось. Правда, в настоящее время внимание привлечено к кислотно-основным реакциям в неводных растворах. Окислительно-восстановительные реакции находят все новые применения в разнообразных физико-химических методах анализа, и поэтому их исследуют весьма интенсивно. Однако особенно большое значение имеет изучение процессов комплексообразования— для фотометрического и флуориметрического анализа с использованием органических реагентов, кинетических методов анализа, методов разделения элементов. [c.39]

    В понятие химические реактивы включаются многочисленные химические соединения, с которыми имеют дело в аналитической лаборатории кислоты, щелочи, аммиак, перекись водорода и другие общеупотребительные соединения. Более важны специальные неорганические и органические реактивы, причем органические приобрели большее значение. Если реактив используется как активное начало в химико-аналитической реакции (осадитель, реактив, дающий окрашенный или экстрагируемый комплекс с определенным металлом), его часто называют реагентом. Этот термин, например, утвердился в тех областях аналитической химии, которые имеют дело с органическими реактивами для фотометрического анализа. Однако, когда говорят о производстве, о продаже или наличии реактивов в широком масштабе, используют термин реактив . Уместно оказать я получил на складе много новых реактивов , но он изучает теорию действия органических реагентов и т. п. Различие это появилось относительно недавно и, кажется, только в русском языке. [c.167]

    А. К. Бабко, по применению методов физико-химического анализа к аналитическим системам с целью отыскания оптимальных условий реакций, особенно в фотометрическом анализе. А. К. Бабко и его последователям принадлежит также заслуга массового введения в практику анализа окрашенных тройных комплексов. Можно отметить работы по серусодержащим органическим реагентам, механизму реакций оксикислот с металлами, состоянию ионов в растворах, хемилюминесцентному анализу (А. Т. Пилипенко), по экстракции, полярографии (И. В. Пятницкий). Широкой известностью пользуются работы киевских химиков в области кинетических методов анализа (К- Б. Яцимирский). [c.205]

    В фотометрическом анализе применяют водные, невод-. ные и смешанные растворы органических реагентов. Для приготовления неводных растворов органических реагентов используют как полярные, так и неполярные органические растворители в зависимости от химической природы реагента и степени гидрофобности образуемого им комплексного соединения. [c.61]

    Вслед за этой теоретической частью с учетом основных выводов из нее рассматриваются все важнейшие методы современного химического анализа, в которых так или иначе применяются органические реагенты, такие, как экстракция, хроматография, титриметрия, гравиметрия, фотометрия, анализ при помощи ионоселективных электродов и др. Эта часть книги отличается полнотой и вместе с тем компактностью подачи материала при достаточной ясности изложения. [c.6]

    Быстрое развитие аналитической химии в последнее время происходило главным образом в области новых аналитических методов, опиравшихся на разработку соответствующей приборной техники однако истинной основой многочисленных методов обнаружения, разделения и определения все еще остается химическая реакция подходящего реагента с определяемым веществом. Решающую роль играют органические реагенты, широко применяемые в спектрофотометрических (колориметрических) методах, титри-метрии (в качестве титрантов и индикаторов), капельном анализе [c.7]

    Следует заметить, что автоматизация химического анализа вовсе не обязательно связана с использованием сложных технических средств, включая ЭВМ. Аналитический анализатор может быть совсем не похож на сложные химико-аналитические приборы, поражающие своим солидным видом, но расходующие довольно много энергии и требующие,— хотя это автоматы — квалифицированного обслуживания. В самом деле, чем не автоматический анализатор старинная реактивная бумага Реактивные бумаги благодаря широкой возможности импрегниро-вать их различными специфическими реагентами начинают новую жизнь. Используя, например, краунэфир и водонерастворимый органический краситель, получают реактивную бумагу для определения калия в крови. [c.15]

    РЕАКТИВЫ ХИМИЧЕСКИЕ — (реагенты химические) — химические препараты высокой или относительно высокой чистоты, предназначенные для анализа, научно-исследовательских работ, лабораторной практики. Реактивами называют также растворы нескольких веществ специального назначения. Например, реактив Несслера для определения аммиака и др. По степени чистоты и назначению реактивы делятся на следующие особой чистоты, химически чистые — X. ч. чистые для анализа — ч. д. а. чистые — ч. очищенные — очищ. технические продукты, расфасованные в небольшую тару — техн. . Кроме этого, реактивы еще подразделяют на группы в зависимости от их состава и назначения неорганические и органические, реактивы, меченные радиоактивными изотопами, комплексоны, фик-саналы, рН-индикаторы и др. При хранении, перевозке, расфасовке и использовании ядовитых, взрывчатых, огнеопасных и т. д. реактивов необходимо соблюдать специальные меры безопасности. [c.211]

    Развитие классической аналитической химии шло в направлении разработки новых органических реагентов для селективного обнаружения и количественного определения элементов, совершенствования методик анализа и внедрения математических методов обработки результатов анализа. Начиная с середины прошлого века, сначала для целей идентификации, а затем и для количественных определений в аналитической химии стали использовать инструментальные методы анализа, обладающие преимуществами в чувствительности, скорости и точности выполнения анализа, необходимые в научных исследованиях и производственном контроле. Развитие инструментальных методов привело к появлению новых направлений (например, аналитическая биохимия, хроматография, радиоаналитическая химия и т. п.). В эпоху научно-технической революции появление принципиально новой методологии — моделирования, алгоритмизации, системного подхода — привело к перестройке и в аналитической химии, которую теперь квалифицируют как науку, занимающуюся получением информации о химическом составе вещественных систем. Полная химическая информация о качественном и количественном составе, получаемая в максимально короткие сроки на минимальном количестве исследуемого объекта, требуется практически во всех отраслях науки, техники и промышленности. Это стало возможным в результате развития в XX в. компьютерной техники и автоматизации производства. [c.6]

    Выделение интересующих (с одновременным удалением мешающих) классов органических соединений при анализе примесей в газах лежит в основе химических методов концентрирования (барботирование анализируемого газа через раствор специфического реагента). На этом принципе построена, например, методика определения в воздухе производственных помещений примесей альдегидов и кетонов Сз—С4 путем их связывания гидразином в моноалкилгидразоны с последующим восстановлением до соответствующих углеводородов по Кижнеру в хроматографической колонке-реакторе 132]. [c.194]

    Изложены общие теоретические основы аналитической химии и качес1 венный анализ. Рассмотрены гетерогенные (осадок — раствор), протолитические, окислительно-восстановительные равновесия, процессы комплексообразования, применение органических реагентов в аналитической химии, методы разделения и концентрирования, экстракция, некоторые хроматографические методы, качественный химический анализ катионов и анионов, использование физических и физико-химических методов в качественном анализе. Охарактеризованы методики аналитических реакций катионов и анионов, нх идентификация по ИК-спектрам поглощения. Приведены примеры и задачи. [c.2]

    В ряде случаев в химическом анализе используют такие реакщи с участием органических реагентов, в результате которых образуются продукты реакщти, обладающие специфическими свойствами — запахом, окрашиванием пламени газовой горелки и т. д. [c.232]

    При сероводородном методе анализа можно наблюдать потерю до 70"о марганца и хрома, потерять малые количества марганца, кадмия и ртути. Длительное время велись работы по замене систематического хода анализа другими метода ш. Наибольшего внимания заслуживает дробный метод, предложенный Н. А. Тананаевым. Дробные реакции гюзволяют обнаруживать достаточно надежно элементы в широком интервале концентраций. Предложено много высокоселективных реакций на отдельные элементы. Важное значение имеют соединения, которые дают различные химические элементы с органическими реагентами, например дитизоном, дифенилкарбазидом, диэтилдитиокар-баминатом. Эти соединения легко экстрагируются органическими [c.150]

    Полярографический анализ требует минимальной предварительной подготовки образца, что предупреждает возможность внесения загрязнений в образец. Полярография может сочетаться, например, с ионообменной хроматографией по методу Кемуля, экстракцией и другими физико-химическими методами анализа. В качестве комплек-сообразователей и маскирующих средств применяют различные органические реагенты. Твердые электроды из благородных металлов в ряде случаев заменяют борокарбидными и графитовыми, которые химически стойки. [c.515]

    Появилось шого физических и химических методов анализа — масс-спектрометрические, рентгеновские, ядерно-физические, новые варианты электрохимических методов, интенсивно развивались фотометрические методы (особенно с использованием органических реагентов). Нужно отметить разработку и широкое расгфостранение атомно-абсорбционного метода (А. Уолш, К. Алкемаде, Б. В. Львов, 50-е годы). [c.19]

    О развитии аналитической химии в России упоминалось ранее. Следует добавить, что несколько членов Петербургской академии наук активно занимались химическим анализом — М. В. Ломоносов (1711—1765), Т. Е. Ловиц (1757—1804), В. М. Севергин (1765—1826), Г. И. Гесс (1802—1850), Ф. Ф. Бейльштейн (1838—1906). В советское время аналитическая химия успешно помогала решать многие научно-технические проблемы государственного значения (освоение атомной энергии, полупроводники и др.). Известны и крупные научные достижения. Н. А. Тананаев разработал капельный метод качественного анализа (по-видимому, одновременно с австрийским, позднее бразильским, аналитиком Ф. Файглем). Большой вклад советские аналитики внесли в изучение комплексообразования и его использование в фотометрическом анализе (И. П. Алимарин, А. К. Бабко, Н. П. Комарь и др.), в создание и изучение органических аналитических реагентов, разви- [c.19]

    В то же время известны многочисленные примеры использования полиядерных комплексов в химическом анализе. Образование гетерополиядерных комплексов М (П) и Ре(Ш) с тартрат-ионами можно использовать для маскирования магния в реакциях с некоторыми органическими реагентами — например, титановым желтым. В других случаях образование полиядерных комплексов, наоборот, способствует протеканию аналитической реакции или изменяет ее направление и аналитические характеристики продуктов реакции. Например, чувствительность спектрофотометрического определения Ре , и ряда других ионов с диоксимами возрастает в присутствии 8п(11 за счет образования разнометалльных полиядерных комплексов, обладающих большей устойчивостью и более интенсивной окраской, чем соответствующие моноядерные комплексы. Образование гетерополиядерных комплексов возможно при экстракции. Так, степень извлечения комплекса Ре(Ш) с люмогаллионом в диэтиловый эфир значительно возрастает в присутствии 8с(Ш), (Ш), Ьа(Ш) [c.145]

    К классу II относится большое число органических реагентов, находящих широкое применение в химическом анализе. Примерами могут служить 1-нитрозо-2-нафтол — реактив на Со , диметилглиоксим и 1,2-циклогександиондиоксим (ниок-сим) — реактивы на NF, оксин и дифеиилтиокарбазон (дити-зон) —реактивы на ионы тяжелых металлов. [c.277]

    Многие органические реагенты довольно быстро разлагаются под действием света. Например, хлороформ, часто используемый в химическом анализе в качестве растворителя или экстрагента, легко разлагается под действием света, и поэтому его необходимо хранить в темных склянках [16]. Хорошо известно, что органические красители, наиболее часто применяемые в химическом анализе, в том числе азокрасители, ди- и триарилме-тановые, хинониминовые и полиметиновые, разлагаются под действием света (выцветают) [38, 100]. [c.13]

    СТЫМ водородом или выделяют РЬ(ЫОз)г концентрированной азотной кислотой [817]. Специфичны и не сопровождаются потерями примесей химические реакции восстановления металлов в кислых >астворах. В качестве восстановителя при анализе чистых ртути 1273] и серебра [1274] предложена муравьиная кислота. Серебро при восстановлении его солей образует коллоид, и для полного удаления его из раствора вводят ртуть с целью образования амальгамы. Реакции осаждения труднорастворимых солей сильных неорганических кислот, характерными примерами которых служат выделение Са, Ва [325], Sr [633] и РЪ [331] в виде сульфатов, РЬ в виде РЬС1г [204, 1206] и Bi в виде Bib [333] достаточно избирательны и протекают при значительной концентрации кислоты. Высокоселективное осаждение элементов основы органическими реагентами требует значительных затрат дефицитных реактивов, чистота которых часто не отвечает необходимым требованиям. Методы разделения, включающие осаждение циркония миндальной кислотой [518, стр. 483], молибдена а-бензоиноксимом [329] и никеля диметилглиоксимом [326], из-за небольшой исходной навески являются скорее способами отделения неблагоприятной для спектрального определения основы, чем методами концентрирования. [c.309]


Смотреть страницы где упоминается термин Органические реагенты в химическом анализе: [c.36]    [c.224]    [c.754]    [c.165]    [c.300]    [c.63]    [c.64]    [c.92]   
Смотреть главы в:

Курс аналитической химии -> Органические реагенты в химическом анализе

Курс аналитической химии Издание 4 -> Органические реагенты в химическом анализе




ПОИСК





Смотрите так же термины и статьи:

Анализ химический

Органические реагенты

Применение избирательных органических реагентов в количественном химическом анализе

Химический реагент



© 2025 chem21.info Реклама на сайте