Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полибутадиен молекулярный вес

    Гидрированный полибутадиен близко напоминает по физическим свойствам полиэтилен. Принципиальное отличие его в том, что он имеет более высокую прочность на разрыв, более низкие жесткость, твердость и температуру хрупкости. Сопоставление всех этих свойств наводит на мысль, что гидрированный полибутадиен имеет более высокий молекулярный вес, чем промышленный полиэтилен, и до некоторой степени меньшую кристалличность. Это находится в соответствии с известными дан- [c.169]


    При литиевой полимеризации (в стерильных условиях и при умеренных температурах) почти отсутствуют реакции передачи и ограничения полимерных цепей, и рост макромолекул протекает по механизму живых цепей. Средняя молекулярная масса полимеров увеличивается с увеличением глубины превращения мономера и уменьшается с увеличением концентрации катализатора. Литиевые полиизопрен и полибутадиен характеризуются линейным строением макромолекул и узким ММР [5]. В табл. 1 [c.56]

    Приведенные выше данные свидетельствуют о непосредственной связи технических свойств полибутадиенов с их молекулярными параметрами микроструктурой, молекулярной массой, молекулярно-массовым распределением и разветвленностью полимерных цепей. Однако качество СК до настоящего времени оценивается большим числом показателей, характеризующих технологические и физико-механические свойства резиновых смесей и их вулканизатов. Оценка качества каучуков, и в частности бутадиеновых, по их молекулярным параметрам представляется более точной и объективной, но количественное определение молекулярной массы, ММР и разветвленности требует применения сложной (и дорогостоящей) физической аппаратуры, трудоемких методов и поэтому не нашло применения в промышленной практике. В последние годы был проведен цикл исследований, показавших, что достаточно [c.195]

    Прививка акрилонитрила идет в основном на цепи средней молекулярной массы. Полибутадиен и привитой сополимер бутадиена с акрилонитрилом, содержащие концевые карбоксильные группы, представляют собой ньютоновские жидкости, эффективная вязкость которых не зависит от приложенного напряжения сдвига. Зависимость логарифма вязкости от обратного значения абсолютной температуры представляют линии, весьма близкие к прямым. По тангенсу угла их наклона определено среднее значение мольной энергии активации вязкого течения Яв.т- Для полибутадиена с концевыми карбоксильными группами Ев.т равна 36 кДж/моль, а для привитого сополимера с акрилонитрилом — 58 кДж/моль. [c.430]

    Указанные закономерности верны для полимеров с любыми функциональными группами. Это понятно для каталитической полимеризации, когда функциональные группы вводятся уже после сформирования молекулярных цепей. Однако и в области радикальной полимеризации, инициаторы одного класса, но с различными функциональными группами, приводят к одинаковым молекулярным параметрам полимера. Ниже представлены результаты фракционирования полибутадиенов, полученных на инициаторах перекисного типа  [c.436]


    В связи с тем, что металлический натрий трудно равномерно распределить в мономере, получаемый полибутадиен обладает значительной неоднородностью (по молекулярному весу и другим свойствам). В непосредственной близости от стержней образуется твердый и эластичный продукт, в зонах, более удаленных от катализатора,—мягкий и пластичный. Весьма трудоемка также операция извлечения стальных стержней из вязкого блока полимера. [c.230]

    В работах Г. В. Виноградова с сотр. [40, 48, 49] исследованы динамические свойства полибутадиенов,, полиизопренов и других каучуков. Используя оригинальный методический прием — реологические исследования монодисперсных полимеров различной молекулярной массы, удалось четко выявить особенности их поведения при больших напряжениях и скоростях сдвига. [c.38]

    Для предупреждения сшивания и обеспечения стабильности свойств конечных продуктов хлорирование полибутадиенов с молекулярной массой 1 ООО—1 000 000 рекомендуется проводить газообразным хлором в 0,3—5%-НОМ (лучше 1%-ном) растворе ароматических углеводородов при температуре от —30 до 10 °С в течение 20—60 мин [100].  [c.16]

    Анализ материала по составу резин для боковин шин показывает, что для повышения их усталостной выносливости предлагается использовать полибутадиены с очень высоким содержанием 1,4-цис звеньев [27, 48], хотя в американском патенте [89] в резиновую смесь для боковины шины и рекомендуется вводить небольшие количества (5-10 частей) 1,4-транс-полибутадиена. Остальная каучуковая компонента (90-95 частей) может быть из другого каучука НК, СКИ, цис-СКД, СКС, 3,4-полиизопрен, сополимер стирола, изопрена и бутадиена. Содержание 1,4-транс звеньев в полибутадиене составляет 75-85 %, а молекулярная масса М равна 205000. Доказывается, что резины такой смеси обладают повышенным сопротивлением разрастанию трещин. Высокое же сопротивление раздиру и утом- [c.125]

    Основные требования, предъявляемые к полибутадиену промышленностью пластмасс, заключаются в отсутствие окраски, минимальном содержании минеральных примесей, хорошей растворимости в стироле и заданной средней молекулярной массе (обычно [c.174]

    В литературе имеется сравнительно немного диаграмм взаимной растворимости в системе полимер — полимер — растворитель [32— 34] и только две работы по диаграммам растворимости полимер — полимер. К числу последних относится работа Джи с сотр. [35], которые исследовали равновесие в смеси олигомеров полиизобутилен — полидиметилсилоксан разного молекулярного веса, а также работа [36] но равновесию в системе олигомеров полистирол — полибутадиен (рис. 2). Качественно эти работы подтверждают теорию Скотта, однако данных слишком мало для того, чтобы дать новые идеи для развития теории. [c.15]

    Агрегация является следствием обычной несовместимости блоков двух типов. Явление несовместимости различных полимеров следует оценивать с общих позиций термодинамики [24, 36]. Теория разделения фаз в полимерных смесях, в том числе содержащих растворитель, до известной степени подтверждается экспериментально. Располагая такой экспериментально проверенной теорией [23, 37, 38, 46, 52], развитой применительно к блоксополимерам, оставалось выяснить, до каких пределов получаемые данные по разделению фаз в полимерных смесях позволяют делать правильные заключения об агрегации в блоксополимерах. С этой целью смешивали полистирол с молекулярным весом, равным молекулярному весу полистирольных блоков в сополимерах [33], с полибутадиеном М = 3,9-10 ) с таким расчетом, чтобы содержание полистирола составляло 17 или 29%. При 25 °С растворы этих смесей в бензоле прозрачны до некоторого предельного весового содержания смеси полимеров 25 (табл. 1). При более высоких концентрациях раствор мутнеет. Значения Гав зависят от количества вводимого полистирола и его молекулярного веса. [c.186]

    В противоположность некоторым теоретическим предсказаниям [23, 46, 52], агрегация или разделение фаз в блоксополимерах происходит при несколько более высокой концентрации, чем в смесях полимеров. Таким образом, связывание блоков различного типа до некоторой степени способствует их взаимной растворимости. Полистирольные блоки с молекулярным весом 2-10 растворяются в полибутадиене (мол. вес 75-10 ) вплоть до концентрации около 20% [33]. [c.187]

    Примером характеристики вязкостных свойств растворов гибкоцепных полимеров, инвариантной относительно молекулярных масс и действительной в очень широком диапазоне концентраций, могут служить данные для растворов полибутадиенов узкого ММР, представленные на рис. 2.38. [c.213]

    НЫМИ ПО молекулярным весам полибутадиенов и полиэтиленов, а также известной частотой присоединения в положения 1,2 при эмульсионной полимеризации бутадиена. Значит ожидаемое соотношение метильных групп к метиленным в сполна гидрированном полибутадиене должно было бы быть приблизительно около 1 18, что значительно выше, чем в полиэтилене, которое обычно принимается равным около 1 30. [c.170]

    В настояшее время в опытном и промышленном масштабе выпускаются как изопреновые (СКИЛ, карифлекс и др.), так и бутадиеновые (СКДЛ, интен и др.) каучуки литиевой полимеризации. Для улучшения технологических свойств этих полимеров необходимо регулирование их ММР на рис. 2 приведены кривые ММР (гель-хроматограммы) полиизопренов типа карифлекс. а в табл. 2 — данные по молекулярной структуре ряда марок промышленных полибутадиенов литиевой полимеризации. [c.57]


    В настоящее время считается общепризнанным, что вязко-упругие свойства полимеров целиком зависят от их релаксационного спектра [19]. С другой стороны, релаксационный спектр линейных полимеров однозначно связан с характером их ММР. Отсюда вытекает важный принцип молекулярного подхода к оценке технологических свойств резиновых смесей — технологические свойства резиновых смесей на основе непластицирую-щихся каучуков практически полностью определяются молекулярно-массовым распределением исходного полимера, т. е. в первом приближении, ето средней молекулярной массой и индексом поли-дисперсности, М /М . К этой группе каучуков относятся титановый цис-полибутадиен (СКД), двойной сополимер этилена с пропиленом (СКЭП), гранс-полипентенамер (ТПП), а также полимеры литиевой полимеризации и некоторые другие эластомеры. [c.79]

    При увеличении скорости (напряжения) сдвига значение а в уравнении (1) снижается, а Ь — возрастает, т. е. чувствитель ность вязкостных измерений к полидисперсности полимеров повы шается. Так, например, в серии измерений, выполненных при 20 С для цис-полибутадиенов было найдено а = 1,1, Ь = 2,0. Показа тель ML-4, 20° С хорошо отражает технологические свойства линей ных полибутадиенов, в частности, вальцуемость резиновых смесей которая при фиксированной молекулярной массе исходных каучу ков определяется их индексом полидисперсности [21], [c.81]

    Катализаторы на основе соединений кобальта и никеля образуют 1,4-полибутадиен, а комплексы титана и ванадия — транс-1,4-полибутадиен. Стереоселективность катализатора, молекулярная масса и непредельность полимеров, образующихся под влиянием систем, содержащих А1С1з, в большинстве случаев повышаются в присутствии электронодонорных соединений, способных в той или иной мере подавлять катионную активность кислоты Льюиса, входящей в состав катализатора. [c.100]

    Помимо rt-аллилникельгалогенидов в качестве катализаторов полимеризации 1,3-диеновых углеводородов могут быть использованы я-аллильные комплексы и других переходных металлов. Чистые я-аллильные комплексы родия образуют гране-1,4-полибутадиен, а комплексы ниобия, титана и хрома — полибутадиен с высоким содержанием 1,2-звеньев [32, 49, 50]. Бис(я-аллил)ко-бальтгалогениды и трис(я-аллил)урангалогениды дают цис-, 4-полибутадиены [49, 51]. Бис(я-аллил)никель в присутствии бис(я-аллилникельхлорида) превращает бутадиен в циклические олигомеры с молекулярной массой 500—600 [52]. [c.104]

    В работах советских исследователей была показана возможность использования этого соединения при полимеризации сопряженных диеновых углеводородов в среде органического растворителя [25]. На основе 1,3-бутадиена получены жидкие полибутадиен-диолы (ОВД), отличающиеся высокой бифункциональностью и имеющие узкое молекулярно-массовое распределение [26, 27, с. 109—113 28]. Об этом свидетельствуют результаты фракционирования полибутадиендиолов, представленные ниже  [c.422]

    Определенный интерес представляет образование свободных радикалов в ненасыщенных каучуках в атмосфере озона при воздействии напряжения. На основных этапах описанной выше реакции озона с ненасыщенными связями полимера свободные радикалы не образуются. Однако в г ис-полибутадиене, натуральном каучуке и акрилонитрил-бутадиеиовом каучуке было получено большое число кислотных радикалов [206, 208]. В качестве одной из возможных причин образования этих радикалов из озонидов или амфотерных ионов можно назвать неизвестные вторичные этапы деградации, возможно связанные с отделением водорода или миграцией протона [197, 206, 208]. Другая возможная причина образования радикалов, без сомнения, связана с разрывом недеградированных молекул каучука и взаимодействием этих основных радикалов с молекулярным кислородом. Концентрация свободных радикалов в бутадиеновом и акрилонитрил-бутадиеновом каучуках характеризуется такой же зависимостью от деформации и концентрации озона, как и визуальные повреждения материала, т. е. поверхностные трещины в образцах каучука, деградирующего в атмосфере озона. Следует упомянуть следующие существенные результаты [206, 208]  [c.315]

    Полимеризация в растворе позволяет регулировать молекулярную массу и молекулярно-массовое распределение полимера, получать структурно-однородные продукты. Она находит все более широкое применение в технологии производства многих промышленных полимеров. Для получения стереорегулярных полимеров, блок-сополимеров этот способ часто является единственно возможным для промышленного производства. Полимеризацией в растворе получают все стереорегулярные эластомеры цис-, А-по-лиизопрен и полибутадиен), блок-сополимеры бутадиена и стирола, некоторые виды статистических их сополимеров, полиэтилен высокой плотности, стереорегулярнын полипропилен, сополимеры этилена и пропилена, некоторые виды полистирола, полиметил-метакрилата и другие полимеры. [c.82]

    Стереоспецифичность титановых систем зависит от природы галогена, связанного с атомом титана в ряду Т1С14—Т1Вг4— ни содержание цис-1,4-звеньев в полибутадиенах возрастает от 60 до 90%. Установлено, что наличие атомов иода направляет процесс полимеризации в сторону образования г с-1,4-звеньев. Иодсодержащие катализаторы получают либо взаимодействием алюминийалкилов с тетраиодидом или смешанными иодидхло-ридами титана, либо на основе тетрахлорида титана с добавкой молекулярного иода, иодида алюминия или алкил алюминий иодида. [c.169]

    При замене в этиленпропиленовом терполимере 3 в ч НК БСК хлорсульфированным полиэтиленом, полибутадиеном по лученные резины обладают более высоким относительным удли нением посте старения, чем резина на основе чистого СКЭПТ Добавление указанных полимеров оказывает заметное влияни( на скорость вулканизации, а также повышает сопротивление раздиру, остаточную деформацию и позволяет повысить степеш В тканизации благодаря увеличению молекулярной сетки [c.118]

    Ю. к. Овчинниковым и г. С. Марковой [56—60]. Ими изучены натуральный и бутилкаучук, полидиметилсил-оксан, полибутадиен, бутадиен-стирольные и бутадиен-нитрильные каучуки и др. На кривой распределения интенсивности было обнаружено несколько максимумов, соответствующих межмолекулярному взаимодействию. Для молекул асимметрической формы (длинных цепей) единственным объяснением является параллельная упаковка участков молекул в расплаве. Минимальные размеры параллельной упаковки составляют 1,3—1,5 нм и заметно меньше по величине по сравнению, например, с полиэтиленом. Интересно, что при 20 °С среднее меж-молекулярное расстояние в аморфном полибутадиене практически не отличается от обнаруженного в кристаллическом полибутадиене и что при повышении температуры до 150 °С это расстояние меняется мало (от 0,435 до 0,46 нм) [58]. В сополимерах молекулы раздвинуты заметно больше, чем в гомополимерах. [c.40]

    Р,ис. 4.14. Зависимость скорости растворения энантоата цинка 10- / о,9 пред ]) и стеарата цинка 10 / о,9пред (2) от их исходной концентрации Соо В полибутадиене при 108°С. Смол и Смиц — соответственно концентрацин молекулярно- и мицелляриорастворенного стеарата цинка при произвольно выбранном значении с . [c.248]

    В результате тщательного изучения свойств полибутадиена и бутадиен-стирольных сополимеров, синтезированных при разных соотношениях мономеров по горячему и холодному рецептам, в качестве оптимальных эмульсионных каучуков общего азначе-ния (т. е. для шин и формовых резиновых технических изделий) в свое время были приняты сополимеры 70—75 масс. ч. бутадиена и 30—25 масс. ч. стирола [2, с. 165]. Это объяснялось не столько несколько лучшим комплексом физико-механических показателей резин на основе таких сополимеров (по некоторым показателям, в частности, эластичности на отскок, сопротивлению истиранию, морозостойкости они уступали соответствующ им резинам из полибутадиена), сколько гораздо худшими технологическими свойствами бутадиенового гомополимера (поведением на резиносмесительном оборудовании, шприцуемостью и т. п.) при той же средней молекулярной массе. Даже при весьма высокой пластичности (вязкость по Муни около 25 при 100°С) полибутадиен не удавалось [c.173]

    Е. к. Богачева и Ю. А. Эльтеков [72] показали, что время установления адсорбционного равновесия для полистирола с молекулярным весом 43 ООО и 290 ООО примерно одинаково. Иногда для одного и того же полимера наблюдали как увеличение, так и уменьшение скорости адсорбции с ростом молекулярного веса, например при адсорбции полибутадиенов с узким молекулярновесовым распределением на саже НАР из растворов в гептане (рис. И) [861. Как видно из рис. 11, скорость адсорбции уменьшается с увеличением молекулярного веса равновесная адсорбция возрастает, в результате чего происходит пересечение кривых. В случае полибутадиена большого молекулярного веса (рис. 12) наблюдается обратная картина скорость адсорбции уменьшается с молекулярным весом. Наблюдаемое уменьшение скорости адсорбции при больших молекулярных весах может быть связано только с недоступностью поверхности адсорбции для больших молекул. [c.27]

Рис. 47. Зависимость адсорбции от молекулярного вееа в системе полибутадиен —сажа Рис. 47. <a href="/info/301012">Зависимость адсорбции</a> от молекулярного вееа в системе полибутадиен —сажа
    На основании данных, представленных в работе Динджера и Шустера, можно полагать, что имеет место равенство молекулярных весов не прореагировавших макромолекул сополимера стирола с акрилонитрилом и макромолекул сополимера, привитого на полибутадиен. [c.162]

    Полибутадиен с карбоксильными концевыми группами (ПБ-3000) почти одинаково с СБАК влияет на термостойкость и ударную вязкость композиции, по существенно меньше повышает предел прочности. Из данных по мутности (процент мутности образцов ЕНЬ-4221, модифицированных 10 ч. СБАК и ПБ-3000, составляет 17 и 85%, соответственно) совершенно ясно, что эластомер ПБ-3000 очень плохо совместим с отвержденной эпоксидной смолой. Полибутадиеи с молекулярным весом 2000, не содержащий концевых карбоксильных групп, полностью не совместим с эпоксидной смолой и сегрегирует после ее отверждения. [c.268]

    Проведенный анализ позволяет с уверенностью заключить, что строение молекулы эластомера и природа функциональных групп оказывает влияние на совместимость компонентов системы и на кинетику взаимодействия каучука с эпоксидной смолой, что в свою очередь влияет на молекулярную и морфологическую структуру ге-терофазной системы. Полученные данные указывают на важность присутствия акрилонитрильпого сомономера и карбоксильных групп, влияющих на полярность каучука и, соответственно, на его совместимость с эпоксидной смолой. Далее, можно полагать, что сильно полярные полимеры, такие как сополимеры бутадиена и акрилонитрила с карбоксильными концевыми группами, заметно повышают ударную вязкость и предел прочности циклоалифатических эпоксидных смол, тогда как аналогичные эластомеры с пониженной полярностью, например полибутадиен с карбоксильными концевыми группами, повышают ударную вязкость, но снижают прочность композиций. [c.269]


Смотреть страницы где упоминается термин Полибутадиен молекулярный вес: [c.384]    [c.31]    [c.77]    [c.93]    [c.181]    [c.196]    [c.9]    [c.16]    [c.174]    [c.295]    [c.108]    [c.209]    [c.243]    [c.244]    [c.260]    [c.136]    [c.205]   
Химия искусственных смол (1951) -- [ c.51 ]




ПОИСК





Смотрите так же термины и статьи:

ПоЛибутадиен



© 2024 chem21.info Реклама на сайте