Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ферменты комплекс с субстратом

    Субстрат + фермент (комплекс субстрат - фермент) (Ю) [c.126]

    Как правило, в случае катализа ионами металлов и ферментами концентрация катализатора мала по сравнению с концентрацией субстратов и концентрация свободного (не связанного в комплекс) субстрата [S] практически не отличается от полной концентрации субстрата S. Тогда [c.264]

    Однако чаще всего константы скорости образования комплексов субстратов или различных эффекторов с активными центрами ферментов несколько ниже диффузионного предела ( 10 —10 М -с- ) см. гл. VII. Это может быть связано с тем, что лиганд при комплексообразовании с активным центром встречает стерические затруднения со стороны рядом расположенных полипептидных цепей белка. С таким [c.29]


    Ферментативная реакция — это, как правило, многостадийный процесс, в котором на первой стадии образуется комплекс между ферментом и субстратом (комплекс Михаэлиса), Чаще всего эта стадия представляет собой сорбцию субстрата на ферменте, обусловленную, например, их гидрофобным, полярным и (или) ионным взаимодействием (см, гл. I), На образование комплекса Михаэлиса, предшествующее химическому взаимодействию, указывают многочисленные экспериментальные данные, в том числе и кинетические (см, гл. V и VI) некоторые фермент-субстратные комплексы были выделены в чистом виде [1]. Возникает вопрос, в какой мере способствует (и способствует ли) образование фермеит-субстратного комплекса ускорению катализируемой реакции. [c.34]

    КУ] /С и, фермент насыщен субстратом и, следовательно, скорость процесса (2.1) кинетически контролируется химическим превращением фермент-субстратного комплекса  [c.38]

    Внутримолекулярное (псевдомономолекулярное) превращение фермент-субстратного комплекса. Кинетические закономерности катализа в условиях, когда фермент насыщен субстратом (при [КУ] >> К ), несколько другие. В этом случае кинетика ферментативного процесса определяется внутримолекулярным химическим превращением комплекса ХЕ-ЯУ и следует уравнению (2.8). Это уравнение удобно записать по аналогии с (2.17) иначе  [c.41]

    В этой схеме предполагается, что скорость перемещения молекул субстрата к активному центру и от него гораздо больше скорости их реакции с образованием продуктов Р. Это означает, что между ферментом и субстратом быстро устанавливается равновесие, описываемое уравнением (25.4). Предполагается также, что при равновесии большая часть активных центров фермента не занята субстратом, когда субстрат 8 присутствует в системе в нормальных концентрациях. Допустим теперь, что мы изучаем и строим график (см. рис. 25.7) скорости ферментативной реакции в зависимости от повышающейся концентрации субстрата 8. При низких концентрациях 8 большая часть активных центров фермента не используется. При повышении концентрации субстрата 8 равновесие, описываемое уравнением (25.4), смещается вправо, что приводит к увеличению числа фермент-субстратных комплексов. Это в свою очередь повышает общую скорость реакции, поскольку она зависит от кон- [c.452]

    Изучение переходного состояния имеет важнейшее значение не только для органической химии. Все биохимические процессы фермент — субстратного взаимодействия также протекают через активированный комплекс. Специфичность биохимических процессов обусловлена не тем, что субстрат и фермент строго соответствуют друг другу как ключ и замок, такое соответствие приводило бы лишь к комплексообразованию с минимумом энергии для системы. Как показал Кошланд, подобное соответствие является индуцированным, оно возникает в момент взаимодействия фермента и субстрата и сопровождается деформациями молекул. Так, гидролиз гликозидной связи лизоцимом сопровождается изменением конформации пиранозы в полу-кресло только такая конформация соответствует стереохимии реакционного центра фермента. [c.164]


    На примере лизоцима был впервые рассмотрен конкретный механизм напряжения субстрата в активном центре, благодаря чему возросла за последние годы популярность этого фермента как объекта физико-химической энзимологии. Сама гипотеза напряжения, или деформации, восходит к Холдену [76] и Полингу [77, 78] и состоит в том, что активный центр фермента может быть структурно комплементарен субстрату в переходном состоянии реакции (для большей строгости здесь следовало бы говорить о взаимной комплементарности фермента и субстрата). В этом случае при образовании фермент-субстратного комплекса в ферменте пли субстрате, а скорее в обоих реагентах могут возникать напряжения или деформации, которые, в свою очередь, приводят [c.162]

    Константа Михаэлиса имеет большое значение при изучении ферментативных реакций, так как она служит мерой сродства между ферментом и субстратом чем больше их способность к образованию комплекса Е5, тем меньше Кт, и наоборот. Значение константы Михаэлиса зависит от природы исследуемого фермента, а в тех случаях, когда он действует на несколько субстратов, — и от природы субстрата, на который он действует. [c.151]

    Изменение pH может действовать на ферменты по-разному оно может влиять на соединение фермента и субстрата с образованием комплекса Е5, а также замедлять или ускорять разложение этого комплекса с высвобождением продуктов реакции. При значительном изменении pH ферменты становятся неустойчивыми, разрушение фермента может происходить по одну или по обе стороны от оптимального значения pH. [c.151]

    Рассмотрим определение константы диссоциации фермент-субстратного комплекса флуоресцентным методом. Взаимодействие фермента с субстратом описывается общей схемой  [c.178]

    Стереоспецифичность механизма действия фермента была впервые отмечена Фишером (1894), который сказал Иначе говоря, я могу сказать, что фермент и субстрат должны подходить друг к другу как ключ к замку . В современной терминологии эта концепция выражается в виде идеи о промежуточных активных комплексах между ферментом и субстратом. [c.727]

    В обычных условиях ферментативной реакции фермент-субстратный комплекс — образование эфемерное, так как сразу же после его возникновения происходит основная реакция. Однако, если реакция по тем или иным причинам заторможена (например, при низкой температуре), то фермент-субстратный комплекс становится способным к длительному существованию. Такая ситуация возникает, в частности, для ферментативной реакции типа А + В -> С + В при недостатке одного из субстратов. Например, фермент и субстрат А образуют нормальный комплекс, но в отсутствие субстрата В он не способен к дальнейшему превращению и потому стабилен. Именно такой механизм образования стабильного фермент-субстратного комплекса, согласно излагаемой гипотезе, лежит в основе специфического, взаимного распознавания и сцепления клеток в ряде случаев межклеточных взаимодействий. [c.160]

    Можно провести много аналогий между гетерогенным ката лизом при полимеризации олефинов и тем способом, которьш осуществляется катализ природных химических реакций, в ча стности ферментативный катализ. Действительно, гетерогенны катализ во многих отношениях напоминает ферментативный. Мо лекула субстрата сталкивается с активным центром на поверхно сти твердого катализатора, образуя адсорбционный комплекс Адсорбированный субстрат реагирует в одну или несколько ста дий под влиянием каталитических групп активного центра. на конец продукт десорбируется (пли удаляется) из активного цент ра. Таким образом, и для ферментативного, и для гетерогенного катализа говорят об активном центре и образовании комплекса субстрата с активным центром. Осмысление этих понятий помогает сопоставить неферментативный и ферментативный катализ. Тем не менее существует и принципиальное различие, поскольку большипстпо ферментов несут только один активный центр па молекулу, тогда как в гетерогенных катализаторах на одну ча- [c.198]

    Отличительное свойство фермента — специфическое связывание субстрата реакция ограничена ферментсубстратным комплексом. Таким образом, чтобы понять, как работает фермент, необходимо знать не только структуру нативного фермента, но также структуру комплексов, образуемых ферментом с субстратом, промежуточными соединениями и продуктами. [c.202]

    Нерешен также и вопрос о ковалентном катализе. В ряде ферментативных реакций образуются промежуточные соединения с ковалентной связью между ферментом и субстратом [29, 48, 49]. В качестве примера можно указать на протеазы, где в ходе ферментативной реакции образуется ацилфермент (см. гл. IV). Трудно сказать, почему реакция не протекает прямо, а идет через образование промежуточного соединения с ферментом (или коферментом). В этом отношении Дженкс [29] указал, что именно здесь могут быть заложены важные химические закономерности ферментативного катализа, которые в настоящее время почти или вообще не поняты . Не исключено, однако, что причина простая, а именно, что в ковалентно-связанном промежуточном соединении легче, чем в сорбционном фермент-субстратном комплексе, реализуются различного рода механизмы напряжения, которые позволяют использовать свободную энергию сорбции химически инертных субстратных фрагментов на ферменте на понижение активационного барьера скоростьлимитирующей химической стадии (см. 4 этой главы). Возможно, наличие промежуточных соединений в ферментативных механизмах отражает лишь сложную картину участия в реакции большого числа функциональных групп, многие из которых вообще склонны образовывать ме-тастабильные продукты (как, например, имидазольная группа [29]). Иными словами, образование промежуточных соединений хотя и сопровождает ферментативный катализ, но, возможно, не имеет прямого отношения к наблюдаемым ускорениям. [c.66]


    В последнее время работами Хесса с сотрудниками [5—7] на примере а-химотрипсина был развит новый метод изучения кинетики начальных стадий ферментативных реакций, получивший название метода вытеснения профлавина . Метод основан на том факте, что краситель профлавин (3,6-диаминоакридин) при связывании с а-химотрипсином в водном растворе изменяет свой спектр поглощения в ультрафиолетовой области. Величина разностного спектра поглощения, имеющего максимальное значение при длине волны 465 нм, пропорциональна -концентрации комплекса фермент-профлавин. Введение в систему фермент-профлавин субстрата, конкурирующего с красителем за связывание на активном центре а-химотрипсина, приводит к двум последовательным процессам вытеснения профлавина. Первый, очень быстрый процесс, заключается в обратимом вытеснении красителя из комплекса его с ферментом за счет образования нековалентного фермент-субстратного комплекса. Второй процесс, времена прохождения которого лежат обычно в пределах разрешения установок типа остановленной струи , вызван химическим взаимодействием субстрата с ферментом (например, образованием ацилферментного промежуточного соединения), что приводит к дополнительному уменьшению концентрации комплекса фермент-профлавин. Изучение кинетики второго процесса при различных концентрациях субстрата в дополнение к изучению кинетики ферментативной реакции в стационарном режиме позволяет сделать заключения о стадийности изучаемой реакции, а также найти значения констант скоростей промежуточных стадий ферментативной реакции. [c.188]

    Ферменты ускоряют биологические реакции, снижая энергию активации, не изменяя положения равновесия. Механизм их действия состоит в образовании комплекса фермента с субстратом, который вс гуиает в реакцию, после чего комплекс распадается с oбpaзoвa шeм исходного фермента и продукта. Скорости реакций, катализируемых ферментами, зависят от активности или количества фермента, концен-фации субстрата, pH и состава раствора, температуры, присутствия активаторов и нигабиторов. [c.274]

    Сопоставляя па данном этапе рассмотрения концепции Хироми и Тома, мы видим, что отнесение константы Михаэлиса к соответствующим микроскопическим параметрам в рамках обеих концепций идентично (сравните выражения 14 и 15, с одной стороны, и 43 — с другой). Однако смысл каталитической константы в обеих концепциях различается (см. выражения 17 и 44). Если по гипотезе Хироми каталитическая копстапта пропорциональна гидролитическому коэффициенту ко, который является строго характеристическим для данного фермента, и определяется исключительно соотношением констант ассоциации субстрата в продуктивном и непродуктивном фермент-субстратном комплексах (17), то по гипотезе Тома величина гидролитического коэффициента зависит от способа связывания фермента с субстратом и от степени полимеризации последнего. На наш взгляд, это придает настолько больн1ую гибкость расчетам на основании концепции Тома, в особенности с помощью машинного анализа, что может в отдельных случаях делать бессмысленными определения показателей сродства индивидуальных сайтов активного центра. фермента, поскольку все наблюдаемые кинетические эффекты могут быть объяснены в рамках вариации гидролитического коэффициента при изменении структуры олигомерного субстрата и способов его связывания с ферментом. То же можно отнести и к определению константы скорости второго порядка ферментативного расщепления субстрата (см. выражения 18 и 45). [c.65]

    Макроскопическая константа Михаэлиса (точнее соответствующая ей константа ассоциации) для гидролиза л-мера, Кт,п, равна сумме микроскопических констант ассоциации субстрата с активным центром фермента (строго это выполняется в том случае, когда химическое превращение фермент-субстратного комплекса происходит намного медленнее, чем его диссоциация на исходные фермент и субстрат, 2,л,п<Сй 1,г,я, см. схему 80)  [c.108]

    В полиферментных системах, примером которых является цел-люлазная (см. схему 117), установление стационарного состояния по отдельным компонентам обычно происходит в двух совершенно различных временных масштабах. Первым устанавливается стационарное состояние по фермент-субстратным комплексам (на схеме 117 не показано), когда скорости их образования и распада значительно превосходят разницу между этими скоростями (здесь и далее рассматривается кинетика при избытке субстрата по сравнению с концентрациями ферментов в системе). Как правило, данное условие начинает выполняться уже в начальный период реакции (в секундном диапазоне или еще быстрее), когда система в целом еще нестационарна по промежуточным метаболитам. Переход всей полиферментной системы в стационарное состояние, в котором концентрации промежуточных метаболитов практически не меняются во времени (точнее, когда скорости их образования и распада значительно превосходят разницу между этими скоростями), происходит обычно достаточно медленно (нередко стационарное состояние вообще не достигается), для большинства изученных целлюлолитических реакций в реальных условиях в течение нескольких часов [24—26]. Это позволяет считать при анализе предстационарной кинетики полиферментных систем, что стационарное состояние по фермент-субстратным комплексам устанавливается практически мгновенно и что образование и распад промежуточных метаболитов происходит в соответствии с обычным уравнением Михаэлиса — Ментен. Тогда в условиях превраи ения исходного субстрата на небольшую глубину, принимая гомогенное распределение ферментов и субстратов в целлюлазной системе и считая превращения практически необратимыми, кинетику ферментативного гидролиза целлюлозы (см. схему 117) описывает следующая система дифференциальных уравнений  [c.125]

    Превращение основного состояния фермепт-субстратного комплекса в переходное ведет к увеличению прочности связывания фермента с субстратом (точнее, измененных или активированных фермента и субстрата) и к уменьшению активационного барьера реакции. При этом в согласии с основными положениями теории переходного состояния уменьшение свободной энергии активации соответствующей стадии ферментативной реакции определяется разницей свободных энергий реального и гипотетического фер-мент-субстратного комплекса. Иначе говоря, во сколько раз напряжения ухудшают возможное связывание субстрата с активным центром, во столько же раз возрастает скорость соответствующей стадии ферментативной реакции ири условии снятия этих напряжений в переходном состоянии на данной стадии [79—82]. Следовательно, если напряжения или деформации, существующие в фермент-субстратиом комплексе, снимаются в переходном состоянии реакции, то они выгодны для фермента на стадии каталитического превращения комплекса. Чем более выражены такие наиряжения в фермент-субстратном комплексе, тем выше каталитическая копстапта ферментативной реакции. Согласно классификации фермеит-субстратных взаимодействий именно те взаимодействия, прочность которых возрастает прн образовании переходного состояния ферментативной реакции, называются специфическими [81, 82]. [c.163]

    Более внимательное рассмотрение изложенной выше концепции приводит к выводу, что для специфических фермент-субстратных взаимодействий "вовсе не обязательны напряжение или деформация субстрата. Достаточно, чтобы взаимодействие фермента с субстратом было лучнге в переходном состоянии по сравнению с основным состоянием фермент-субстратного комплекса. Этот вопрос детально рассмотрен в первой части книги [81]. Например, если субстрат в ходе его ферментативного превращения и, следовательно, структурной перестройки изменяет свою конформацию так, что прочность его взаимодействия с ферментом в переходном состоянии возрастает, то уменьшается свободная энергия активации и ускоряется реакция. При этом субстрат совершенно не обязательно должен подвергаться какой-либо деформации (т. е. изменению длин ковалентных связей и искажению валентных углов) при образовании комплекса Михаэлиса. Он может связаться с ферментом, помещая свою реакционноспособную связь в непосредственной близости от каталитически активных групп, но так, что прочность связывания при этом еще достаточно далека от потенциально достижимой. Тем самым субстрат как бы резервирует свободную энергию связывания для переходного состояния, что также приводит к ускорению ферментативной реакции. [c.163]

    В реакциях связывания фермента с субстратом ион металла часто нейтрализует отрицательные заряды анионных групп. Так, ион цинка в модельной системе катализирует перенос фосфорильной группы от фосфорилимидазола (1мР0а) к атому кислорода 2-пиридинкарбальдоксима (ПКА), причем образуется тройной комплекс, в котором ион цинка экранирует фосфатную группу, что облегчает атаку нуклеофилом, несущим отрицательный заряд (по Т. Г. Спи-ро). [c.365]

    Атом кислорода обладает больщим отрицательным индукционным эфсректом, чем атом углерода, следовательно, ОН в а-1,4-глюкозидной связи будет иметь и большую плотности электронного облака по сравнению с атомом Сь Снижение плотности электронного облака у последнего вызывается также индукционным воздействием атома кислорода глюкопиранозного кольца. Пунктирные и штриховые линии показывают соединение фермента с субстратом, вед -щее к перераспределению электронной плотности в фермеит-субстратном комплексе и исчезновению перекрытия электронных орбит между С1 и О. [c.173]

    Наиболее вероятный механизм действия а-амилазы — двойное замещение, сущность которого заключается в разрыве глюкозидной связи в результате про-тоиврования кислородного мостика МН-группой имидазола. В образующемся при этом фермеит-субстратном комплексе субстрат связан ковалентной связью с карбоксильной группой фермента. На этой стадии реакции происходит первое Валь-девовское обращение. На второй стадии, когда комплекс гидролизуется, происходит второе Вальденовское обращение и, таким образом, сохраняется а-аномерная конфигурация продукта реакции (Д. М. Беленький). [c.174]

    ФЕРМЕНТАТИВНЫЙ КАТАЛИЗ, обусловлен действием ферментов. Играет исключительно важную роль в обмене в-в в живых организмах. Характеризуется чрезвычайно высокой активностью и специфичностью (селективностью), гл. причины к-рых 1) сорбция субстрата на ферменте и образование активного комплекса (комплекса Михаэлиса) в результате гидрофобных, полярных и ионных взаимодействий. В этом комплексе происходит сближение и ориентация реагирующих групп фермента и субстрата. В результате р-ция м. б. ускорена в 10 и более раз 2) полифункцион. характер хим. взаимод. между ферментом и сорбиров. субстратом, при к-ром молекула субстрата подвергается атаке сразу неск. каталитич. группами активного центра фермента. Полифункцион. катализ может привести к ускорению р-ции в 10 и более раз 3) отличие характеристик среды [c.617]

    Активация фосфодиэстеразы при действии комплекса Са +—КМ сопровождается увеличением величины Vmax от 3 до 50 раз и уменьшением эффективной константы сродства фермента к субстрату не более чем в 5 раз в зависимости от способа очистки и времени хранения фермента. Индуцированную комплексом активность фосфодиэстеразы ингибирует большое число различных по своей химической структуре соединений, известных под общим названием антагонисты кальмодулина (АКМ). К ним, в частности, относятся лекарственные препараты, широко применяемые в медицине. при лечении шизофрении, бронхиальной астмы, злокачественных опухолей и других заболеваний. Взаимодействие антагонистов кальмодулина возможно не только с каль-модулином, но и с фосфодиэстеразой, однако последний эффект обычно не учитывают, так как он появляется при значительно более высоких концентрациях антагонистов, чем первый. Действие этих веществ можно представить следующей упрощенной схемой  [c.379]


Смотреть страницы где упоминается термин Ферменты комплекс с субстратом: [c.85]    [c.197]    [c.215]    [c.274]    [c.38]    [c.40]    [c.151]    [c.216]    [c.223]    [c.77]    [c.144]    [c.170]    [c.296]    [c.184]    [c.85]    [c.197]    [c.178]    [c.324]    [c.496]   
Общая микробиология (1987) -- [ c.216 ]




ПОИСК





Смотрите так же термины и статьи:

Субстрат

Фермент субстрат



© 2025 chem21.info Реклама на сайте