Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электроды инертные электродов

    Аналогично при наличии в системе, подвергающейся электролизу, несколько восстановителей на аноде будет окисляться наиболее активный из них, т. е, восстановленная форма той электрохимической системы, которая характеризуется наименьшим значением электродного потенциала. Так, при электролизе водного раствора сульфата медн с инертными электродами (например, угольными) на аноде может окисляться как сульфат-ион [c.190]


    Газовые электроды. Газовый электрод состоит из инертного металла (обычно платины), контактирующего одновременно с газом и раствором, содержащим ионы этого газообразного вещества. Примерами газовых электродов могут служить водородный, кислородный и хлорный электроды.  [c.279]

    Поскольку <р° < ф°, то в данном случае будет осу ществляться второй из возможных процессов, и на аноде будет выделяться кислород. Однако при замене инертного электрода медным становится возможным протекание еще одного окислительного процесса — анодного растворения меди  [c.191]

    Среди окислительно-восстановительных электродов выделяют г а-зовые электроды. Газовый электрод состоит из инертного металла (часто платины или платинированной платины), к которому подводится электрохимически активный газ. Молекулы газа адсорбируются на поверхности металла, распадаясь при этом на атомы, а адсорбированные атомы участвуют уже непосредственно в электродном процессе. Поскольку между молекулами газовой фазы и адсорбированными атомами устанавливается равновесие, то при записи электродного равновесия промежуточное адсорбционное состояние часто опускают. Примером газового электрода, обратимого по катиону, является водородный электрод, на поверхности которого устанавливается равновесие  [c.121]

    Возможность выделения чистого металла на инертном электроде определяется его природой (перенапряжением), формой существования в растворе, присутствием посторонних примесей, кислотностью раствора и т.д. В итоге применение электрогравиметрии для аналитических целей ограничено, поскольку одни металлы не могут выделяться на электроде в чистом виде, а другие осаждаются медленно или неколичественно. [c.544]

    Потенциал идеально поляризуемого электрода не зависит от ка-кой-либо электрохимической реакции и может принимать в области идеальной поляризуемости любое значение, определяемое прикладываемым извне напряжением. Теоретически эта область должна быть ограничена напряжением разложения растворителя, т.е. таким напряжением, которое необходимо для электролитической диссоциации растворителя на паре инертных электродов. Для воды это напряжение составляет 1,23 В при 25°С. Если к паре платиновых электродов в водном растворе (например, серной кислоты) приложить разность потенциалов, превышающую 1,23 В, вода начнет разлагаться с выделением кислорода на аноде и водорода на катоде. Однако на многих металлах скорость выделения водорода чрезвычайно мала. По этой причине эффективная область идеальной поляризуемости ртутного электрода простирается вплоть до потенциалов, примерно на 1В отрицательнее потенциала выделения водорода. Область положительной поляризации ртути ограничена не выделением кислорода, а анодным окислением металла с образованием либо ионов ртути(I) (как в растворах нитратов), либо нерастворимых солей ртути(1) (как в растворах хлоридов). В некоторых растворах полный диапазон идеальной поляризуемости ртутного электрода превышает 2 В. Такой электрод, конечно, не является полностью идеально поляризуемым, так как при потенциалах более отрицательных, чем обратимый водородный потенциал, будет наблюдаться выделение водорода, хотя и медленное. Кроме того, различные примеси, от которых невозможно полностью избавиться, в особенности кислород, реагируя на электроде, создают электрический ток. Впрочем, практически ртутный электрод можно считать идеально поляризуемым во многих растворах электролитов. [c.52]


    Ре(Зо/сс-электрод — это электрод из инертного металла, являющегося переносчиком электронов, погруженный в раствор, содержащий одновременно как окисленную, так и восстановленную формы, например, ионы Fe + и Fe2+ или Sn + и Sn2+. Потенциал редокс-электрода выражается уравнением  [c.143]

    Хотя различные варианты потенциометрического способа определения конечной точки без наложения внешней э. д. с. подчиняются совершенно ясной теоретической интерпретации, их общий недостаток состоит в том, что они недостаточно надежны потенциал электрода, по сути, целиком зависит от состояния его поверхности. Поверхность же электрода подвергается воздействию не только реактива Фишера, по и анализируемого вещества и любой примеси, присутствующей в нем. Практически приходится анализировать вещества самой различной природы, и не всегда точно можно предсказать их влияние на потенциал электрода. Не вызывает сомнения, что даже при анализе инертных веществ чувствительность электродов будет уменьшаться по мере их пребывания в растворе. Поэтому для возвращения потерянной чувствительности должна быть разработана четкая методика повторной обработки электродов. [c.53]

    Как уже упоминалось, возможно исследование не только катодных, но и анодных процессов при условии, если ртуть остается инертным электродом, т. е. не подвергается сама анодному окислению. Кроме ртутного капельного электрода, может применяться платиновый электрод малой поверхности. На таком электроде возможно изучение большего числа анодных реакций, так как платина остается инертным электродом во многих случаях анодной поляризации. [c.480]

    Диаметр коронирующего электрода. Коронирующим электродом обычно является проволока, натянутая параллельно осадительному электроду. Так как эффект очистки тем выше, чем больше сила тока, протекающего через газ, и так как сила тока вообще возрастает с уменьшением диаметра коронирующего электрода, то является более выгодным брать последний возможно тонким, ограничиваясь в этом направлении лишь его механической прочностью. Обычно берут диаметр проволоки 1- -2 мм в случае очистки химически инертных газов и 3,5-г-4 мм при очистке газов, содержащих кислые пары. [c.308]

    Прн введении в среду инертного электрода достигается равновесие между электронами в растворе и в металле  [c.229]

    Каждый окислительно-восстановительный электрод или полуэлемент состоит из инертного электрода (платина, уголь), опущенного в раствор окислительно-восстановительной системы. [c.305]

    Pt I Fe , — электрод. Этот электрод состоит из инертного электрода, опущенного в окислительно-восстановительную систему, состоящую из ионов одного и того же металла в разных степенях окисления. Для этого используют 0,001 М раствор Fe(NH4)(S04)2 и [c.305]

    Переходя к отдельным примерам, остановимся на водных растворах и ограничимся сначала, для простоты, процессами, в которых электроды сделаны из инертного материала (например, из платины) и химически в процессе не изменяются. Пусть электролизу подвергается раствор НС1. Ионы С1 движутся к аноду, ионы Н+ — к катоду. На аноде ионы С1", отдавая свои избыточные электроны электроду, превращаются в нейтральные атомы по реакции С1 - С1 + е . На катоде ионы Н+, принимая от электрода недостающие им электроны, превращаются в нейтральные атомы по реакции Н- + е- Н. В этом заключается первая фаза процесса. Образующиеся нейтральные атомы С1 и Н в свободном состоянии неустойчивы и соединяются попарно в двухатомные молекулы по реакциям С1 + С1 СЬ и Н + Н- Нг- В результате на аноде выделяется газообразный хлор, а на катоде — водород. [c.444]

    Окислительно-восстановительные электроды (редокси-электроды) представляют собой инертный металл, опущенный в раствор, содержащий окисленную и восстановленную с рмы. Уравнение Нернста для данных электродов имеет вид [c.314]

    Хингидронным электродом называется электрод из инертного металла (платины), погруженный в исследуемый раствор, к которому [c.294]

    Собирают электролитическую ячейку с разделенным анодным и катодным пространствами. Используют инертные, скажем, платиновые электроды и начинают электролиз. Электрод, расположенный в электродном пространстве, содержащем определяемое вещество, называют рабочим электродом (РЭ). Второй электрод — это вспомогательный электрод (ВЭ). Для определения и контроля потенциала рабочего электрода служит неполяризуемый электрод сравнения (ЭС) им может быть любой известный электрод сравнения — каломельный, хлорсеребряный и т. д. В ходе электролиза с помощью специального устройства, описанного далее, контролируют потенциал рабочего электрода относительно электрода сравнения так, чтобы его значение на протяжении всего электролиза оставалось постоянным. Для перемешивания раствора служит, например, магнитная мешалка. [c.253]

    Электроды в таком случае называют инертными, а потенциал определяется равновесием между адсорбированным на инертном электроде и растворенным веществом. Пример подобного электрода — платинированная платина, на которой адсорбирован водород, находящийся в равновесии с ионами водорода в растворе. При [c.129]


    В насыщенном растворе хингидрона у инертного электрода устанавливается равновесие  [c.144]

    Рассмотрим еще один пример. Гальваническая пара состоит из двух инертных электродов, погруженных в растворы окислителей. В каждом из них в данный момент установилось химическое равновесие между окисленной (Ох) и восстановленной (Red) формами растворенного вещества  [c.239]

    Окислительно-восстановительные электроды. Все электроды, которым соответствует потенциалопределяющие реакции с участием электронов, представляют собой окислительно-восстановительные системы. Однако принято в особую группу выделять электроды, в потенциалопределяющих реакциях которых не участвуют простые вещества — газы, металлы. Эти электроды называются окислительновосстановительными редокси-электроды). Они, как правило, состоят из инертного вещества с электронной проводимостью (например, платина), погруженного в раствор, содержащий вещества с различной степенью окисления Red и Ох. В общем виде схема электрода -и уравнение потенциалопределяющей реакции записываются так  [c.483]

    Среди материалов для изготовления инертных электродов наиболее предпочтительны ртуть и благородные металлы. В порядке уменьшения частоты применения благородные металлы можно расположить в следующий ряд платина, золото, серебро, палладий, родий, иридий (последние три металла используются значительно реже). Преимущество электродов из благородных металлов в том, что при прохождении электрического тока они не вступают в химические реакции с компонентами электролита, и, следовательно, рабочий диапазон потенциалов поляризации электрода зависит только от состава раствора. Однако при использова-80 [c.80]

    Электровосстановление серебра в неводных растворах изучено подробно [796, 766, 765, 814, 1022, 906, 742, 745, 743, 780, 1175, 1233, 1134, 989, 1226, 792, 17, 1121, 29]. Процесс является одноэлектронным, обратимым. В результате образования амальгамы восстановление на ртутном электроде проходит особенно легко. Однако во многих растворителях (например, ДМФА, ДМСО, АН и др.) волна восстановления серебра лежит в области анодного окисления ртути и поэтому может быть прослежена лишь на платиновом или другом инертном электроде. Восстановление на платине несколько затруднено, что приводит иногда к квазиобрати-мому электродному процессу. Для ионов серебра прослеживается корреляция между Е / , и донорным числом растворителя. В целом электрохимическое поведение ионов серебра аналогично электрохимическому поведению ионов одновалентной меди, особенно в нитрильных и спиртовых растворах, где наблюдается специфическое взаимодействие этих катионов с растворителем. [c.83]

    Электроды. Инертный электрод применяется в тех случаях, когда требуется установление простого электрического контакта с раств01юм без возникновения каких-либо химических реакций. Наиболее подходящими для этой цели являются благородные металлы, обычно платина, иногда золото или серебро, хотя в некоторых случаях хороших результатов можно достичь, применяя угольный электрод. [c.138]

    Р1 Мп /Мп " — окислительн о-в осстановительный электрод. Этот электрод состоит из инертного электрода, опущенного в окислительно-восстановительную систему, состоящую из растворов солей марганца различной валентности. Приготовляют 0,1 Л1 раствор перманганата и раствор 0,001 М сернокислого марганца. Для приготовления электрода смещивают 25 мл раствора перманганата с Ъ мл раствора сернокислого марганца. Во избежание выпадения осадка двуокиси марганца при смешении растворов, раствор перманганата подкисляют 2—3 каплями концентрированной серной кислоты. В полученную окислительновосстановительную систему погружают инертный электрод. [c.376]

    Почему при электролизе расплавленного AI I3 и водного раствора AI I3 на инертных электродах получаются разные продукты Какие продукты образуются в каждом случае  [c.216]

    Нарисовать электролитическую ванну для электролиза раствора Ni b на инертных электродах. Указать направление движения электронов и ионов. Привести электродные реакции и указать анод и катод. [c.216]

    Так, на фосфорной печи мощностью 48 МВт через прогоревшую часть кожуха электрода в месте неплотного прилегания к нему контактной щеки электродержателя произошла утечка электродной массы, и печной газ попал в кожух электрода, вслед за этим последовал взрыв, от которого в двух местах разорвалась царга и оборвался электрод по нижней части кромки контактных Плит. Несмотря на то, что печь работала на повышенной нагрузке (при пониженном модуле нислотности и завышенной скорости перепуска электродов), продувка электродов инертным газом не проводилась. [c.70]

    Pt I Г, U — э л е к т р о д. Такого типа электрод состоит из платинового электрода, погруженного в окнслительно-восстановн-тельную систему, приготовленную из 0,1 и. растрюра йодида калия и растворенного в нем 0,001 г-экв/л кристаллического нода. Затем 20—25 мл полученного раствора наливают в стакан и погружают в него инертный электрод. [c.305]

    Pt I Mn , Mn — электрод. Этот электрод состоит из инертного электрода, онущенного в окислительно-восстановительную систему, содержащую соли марганца различной валентности. Приготовляют 0,1 М раствор перманганата и 0,001 М раствор сульфата марганца. Для приготовления системы смешивают 25 мл раствора перманганата с5 мл раствора сульфата марганца. Во избежание выпадения осадка двуокиси марганца при смешении растворов раствор перманганата подкисляют двумя-тремя каплями концентрированной серной кислоты. В полученную окислительно-восстановительную систему погружают платиновый электрод. [c.305]

    Pt I Сг Сг " — электрод. Этот электрод состоит из инертного электрода, онущенного в смесь 25 мл 0,1 М раствора хромата калия К.2СГО4 и 5 мл 0,001 М раствора хромовых квасцов. В случае помутнения (выпадение основных солей хрома) подкисляют полученную смесь одной-двумя каплями концентрированной серной кислоты. [c.305]

    В трехэлектродных ячейках в качестве вспомогательного электрода используют какой-либо инертный электрод (слой ртути на дне, платиновую пластинку и т. д.). Преимущество трехэлектродных ячеек — возможность нотенциостатического задания и контроля потенциала рабочего электрода. [c.294]

    I. Катодное концентрирование. 50 мл НС1 упаривают в фарфоровой чашке примерно до 1 мл, охлаждают, добавляют 0,5 мл нитратного фона, примерно 20 мл воды, тщательно перемешивают и переносят количествег1Но в электролизер. Опускают рабочий электрод и электрод сравнения. Продуванием в течение 30 мин инертного газа удаляют кислород. Затем проводят электролиз при потенциале —1200 мВ (для графитового электрода), при перемешивании. Электролиз ведут 30 мин. Выключают магнитную мешалку, включают развертку анодной поляризации и регистрирующее устройство. Измеряют максимум силы тока анодного растворения. Массовую концентрацию свинца находят методом добавок. [c.302]

    Смесь ионов ферри- и ферроцианида в растворе, представляющая собой обратимую окислительно-восстановительную систему, является потенциалопределяющей в случае использования инертного электрода (обычно платинового). Потенциал такого электрода выражается согласно уравнению Нернста  [c.129]

    Бывает, что обе формы находятся в растворе — тогда происходит обмен электронами между инертныл электродом и ионами. Так, катион Ре + может отнять от платины один электрон и восстановиться до Ре2+. Платина при этом зарядится положительно, а в растворе появится отрицательный заряд за счет избыточного аниона (например, С1 —от РеС1з). Отнятие последующих электронов становится нее более и более затруднительным и устанавливается, наконец, равновесие между положительно заряженным электродом и слоем анионов. В конечном счете происходит химическая реакция Ре + + е —> Fe +. Равно возможна и противоположная реакция  [c.130]

    Если в раствор 2п304 опустить инертные электроды (платиновые или угольные) и подать на них постоянное напряжение около 0,5 В, то через непродолжительное время ток в цени прекращается. Если же на электроды подать напряжение примерно 3 В, то наблюдается быстрое понижение силы тока в цепи до установления некоторого постоянного значения. Объясните эти наблюдения. [c.206]


Смотреть страницы где упоминается термин Электроды инертные электродов: [c.258]    [c.259]    [c.177]    [c.193]    [c.545]    [c.165]    [c.266]    [c.304]    [c.198]    [c.198]    [c.262]   
Химия несовершенных ионных кристаллов (1975) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Возникновение разности потенциалов на границе инертный металлический электрод— раствор, содержащий ионы, участвующие в токообразующем процессе

Даниэля Якоб с инертным электродом

Даниэля Якоби с инертным электродом

Инертный газ

Реакции, осложненные сильной специфической адсорбцией инертных комплексов на электроде

Редокс-потенциал инертными электродами

Сварка плавящимся электродом в защитной среде инертных газов

Электрод газ инертный металл

Электрод инертный

Электрод инертный

Электролиз с инертными электродами

Ячейка, в которой один из электродов является проводником, обладающим проводимостью за счет посторонних ионов, а в качестве другого используется инертный проводник с электронной проводимостью

Ячейки с одним обратимым и одним инертным электродом, обладающим электронной проводимостью



© 2025 chem21.info Реклама на сайте