Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллографический ряд чисел

    Молекулярно-кинетическая теория плавления [170] исходит из положения, что уменьшение степени порядка в расположении частиц твердого тела начинается задолго до плавления в связи с увеличивающейся тепловой подвижностью частиц с ростом температуры. При этом растет число точечных дефектов структуры, что способствует разрыхлению кристаллической решетки. С дальнейшим повышением температуры в непосредственной близости от пл кристаллографически правильное расположение частиц теряет устойчивость, причем решающая роль в разрушении дальнего по- [c.158]


    Данная глава посвящена двум формам разрушения материалов, связанным с воздействием среды, а именно — коррозионному растрескиванию под напряжением (КР) и водородному охрупчиванию. Будет рассмотрена связь этих видов коррозии с различными металлургическими факторами. В число последних входят химический состав компоненты микроструктуры (такие как тип и структура выделений, размеры и форма зерен) кристаллографическая текстура термообработка и ее влияние на уже перечисленные факторы и, наконец, некоторые технологические процессы, в частности термомеханическая обработка (ТМО), которая привлекает возрастающее внимание как метод оптимизации свойств материалов. Все названные переменные, несомненно, очень важны с точки зрения разработки новых материалов, отвечающих постоянно усложняющимся условиям эксплуатации. [c.47]

    Возможные количества атомов, принадлежащих координационным сферам в координационных решетках, определяются кристаллографическими числами (табл. 1.10), а сами атомы лежат в вершинах соответствующих многогранников (рис. 1.57). [c.86]

    Все изложенные соображения относятся лишь к грани кристалла определенного символа. При катодном выделении металлов, как правило, образуются поликристаллические осадки, т. е. осадки, состоящие из большого числа связанных между собой мелких кристаллов (или зерен) с гранями различных символов, что осложняет картину процесса. Одно из этих осложнений связано с тем, что грани различных символов растут с неодинаковой скоростью, и характер осадка изменяется в процессе электролиза. Для характеристики катодных осадков наряду с кристаллографической структурой используются поэтому и такие понятия, как структура роста, текстура и характер осадка. [c.343]

    Довольно многочисленные исследования, которые проводились в этом направлении, в том числе и рентгенографическими методами, дали несколько противоречивые результаты. По этой причине для кристаллических форм парафина целесообразно сохранить указанные выше описательные наименования до тех пор, пока вопрос об их отнесении к тому или иному кристаллографическому классу и группе не будет решен окончательно и однозначно. [c.61]

    При обмене простых катионов с равным числом зарядов на сильнокислотных катионитах ионы с меньшим кристаллографическим радиусом переходят преимущественно во внешний раствор, так как образуют крупные гидратированные ионы с малой плотностью заряда. В фазе ионита сосредоточиваются ионы с большим кристаллографическим радиусом, обладающие меньшей способностью к гидратации и образующие менее крупные гидратированные ионы с большой плотностью заряда (табл. 24). Примерами таких рядов селективности могут служить ряды некоторых двух-, трех- и четырехзарядных катионов (в скобках указаны кристаллографические радиусы в ангстремах) Ве2+ (0,34) < [c.186]


    Полученные таким образом три взаимно простых числа (АА/) и являются кристаллографическими индексами как данной атомной плоскости, так и всего семейства параллельных ей атомных плоскостей. Например, для плоскости с отрезками на осях /г, /з. [c.354]

    При наличии текстуры положение всех отражений можно найти, исходя из следующих соображений. Если из большого числа кристалликов мы мысленно выделим один и начнем вращать его вокруг кристаллографической оси, например [Ш], то этот кристаллик даст одно за другим те же пятна, которые получались бы одновременно от всех кристалликов, образующих текстуру. [c.366]

    В связи с тем, что спектры ЯКР получают для кристаллов, решающее значение для их интерпретации и извлечения структурной информации имеет знание основ кристаллохимии и кристаллографии, а прежде всего симметрии молекул и кристаллических структур. Как уже указывалось, квадрупольное ядро каждого не только химически, но и кристаллографически неэквивалентного резонирующего атома характеризуется своим сигналом ЯКР, т. е. значениями e qQ и т]. Этим обусловлена мультиплетность т, т. е. число линий ЯКР, соответствующее числу неэквивалентных позиций резонирующих атомов одного и того же изотопа (IV.14). Соотношение интенсивностей линий мультиплета записывается в виде [c.100]

    Представление о плотнейшей упаковке монослоев для ионов неприменимо, поскольку одноименно заряженные ионы в обкладке взаимно отталкиваются. Поэтому Гоо — число доступных для ионов мест, равное числу ионов внутренней обкладки оно определяется из кристаллографических данных и составляет 10 — 10 5 ионов/см , что соответствует площади 1 —10 нм на один ион. [c.186]

    Электрокристаллизация часто сопровождается образованием осадков с предпочтительной ориентацией кристаллов (текстурой). При образовании текстуры в расположении отдельных, кристаллов наблюдается некоторая упорядоченность. Кристаллографические направления кристаллов становятся параллельными какому-то общему направлению, называемому осью текстуры. В поликристаллическом осадке может быть одновременно несколько различных кристаллографических направлений. Чем больше кристаллов, имеющих данное направление роста по отношению к общему числу кристаллов, тем выше степень ориентации или степень совершенства текстуры. Интерес к изучению проблемы образования текстуры в покрытиях объясняется тем, что в некоторых случаях от текстуры зависят свойства покрытий (блеск, твердость и др.). [c.241]

    Образование свежей поверхности металла. В большинстве практических случаев исследователь имеет дело с поликристаллическими образцами металлов, содержащих большое количество примесей. Свен е-образованная поверхность таких образцов, даже если она сформирована в условиях высокого вакуума (<10 Па) или в результате быстрого излома, имеет нерегулярную структуру — несет большое число чужеродных атомов и дефектов. Возможность получения чистой поверхности металлов с регулярной структурой, свободной от примесных атомов появилась в 60—70-х годах в связи с развитием сверхвысоковакуумной техники и разработкой технологии получения совершенных монокристаллов.. Применение ДМЭ и Оже-спектроскопии ныне дает возможность детально исследовать химический состав и кристаллографическую структуру различных граней монокристаллов металлов. [c.34]

    Хотя слово кристалл в повседневном употреблении является почти синонимом симметрии, важно знать, что существуют строгие ограничения, налагаемые на симметрию кристаллов. В то время как в принципе не существует ограничений числа классов симметрии молекул, не так обстоит дело для кристаллов. Что касается формы, то все кристаллы принадлежат к одному из 32 классов симметрии, возможных для кристаллов. Их также называют кристаллографическими точечными группами. На рис. 9-9, а и б приведены примеры точечных групп реальных минералов и соответствующие стереографические проекции элементов симметрии. [c.411]

    Интересное статистическое исследование, касающееся общего числа трехмерных пространственных групп, было выполнено в середине 60-х годов [24]. В истории кристаллографии возникла удивительно подходящая ситуация для такого исследования. Дело в том, что уже было определено большое число кристаллических структур, но среди реальных кристаллов были найдены не все представители пространственных групп. Задолго до этого общее число трехмерных пространственных групп было твердо установлено. Поэтому исследование проводили, чтобы проверить, насколько применяемый статистический метод может служить источником кристаллографической информации. [c.429]

    С помощью рентгеновской кристаллографии можно в общем случае определить точный состав и расположение атомов почти в любой молекуле. Однако на сделанное выше заявление накладываются некоторые ограничения. Во-первых, молекула должна находиться в кристаллическом твердом состоянии, что приводит к геометрическим искажениям, возникающим при упаковке ее с соседними молекулами. Во-вторых, система не должна подвергаться фотохимическому разложению при облучении ее рентгеновским излучением в течение дня [1]. В-третьих, интересующая нас система должна образовывать подходящие для кристаллографического исследования кристаллы, исключающие две проблемы, наиболее распространенные при решении структурных задач двойнико-вание и разупорядочивание [2]. В-четвертых, число атомов, положения которых следует определить, не должно быть слишком большим. [c.360]


    Большой практический интерес представляет выбор в качестве модификаторов структуры твердых углеводородов веществ, не ухудшающих эксплуатационные свойства церезинов. Из теории кристаллизации расплавов известно, что при наличии в них примесей или специально введенного компонента, обладающих кристаллографическим сродством к кристаллизующейся фазе, эти вещества могут являться зародышами кристаллизации твердой фазы. В производственной практике подобные вещества имеют большое значение, так как с их помощью можно управлять процессами кристаллизации. Для интенсификации обезмасливаиия в качестве таких веществ [109] исследованы индивидуальные н-алка-ны с числом атомов углерода 20—24. При выборе условий введения этих углеводородов в суспензию петролатума, полученного при переработке западно-сибирских нефтей, показано, что в отличие от депрессорных присадок более эффективно вводить их сразу после термообработки раствора петролатума. Следовательно, н-алканы принимают участие в образовании зародышей кристаллов. Эффективность н-алканов как модификаторов структуры твердых углеводородов оценивают по тем же показателям, что и в случае применения депрессорных присадок при обезмасливании петролатума. [c.182]

    По различным причинам вращательная вязкость может не достигать максимальной величины. Одна из них—недостаточная напряженность поля, что учитывается формулой (VI 1.32). В числе других причин следует иметь в виду нарушение условия (VII.31), рассмотренное в задачах VI 1.17.3 и VII. 17.4, а также подвижность вектора намагниченности частицы относительно ее кристаллографических осей в случае веществ с малой магнитокристаллической анизотропией (например, магнетит FegOJ. Примером веществ с большой константой анизотропии являются феррит кобальта oO-Fe Og, металлический кобальт. [c.232]

    Микольс [216] измерял работу выхода вольфрама в разли ь мых кристаллографических иаиравлепиях. Полученные им результаты приведены в табл. 5, где, кроме того, указаны для различных направлений заимствованные из работы Странского и Зур.мапа [213] числа ближайших соседей (N1) поверхностного атома вольфрама, а также соседей второй (N2) и третьей (М ,) степеней з да,тения. В настоя1цее время имеются сведения о том, что работа выхода в направлении [ПО] выше, чем указано в таблице [2151 Из приведенных данных можно было бы сделать [c.123]

    Укажем кратко на различия между современными нредста-влепиями и представлениями, существовавшими в период 1934— 1937 г. В противоположность прежним взглядам мы считаем, что поверхность вольфрама обладает некоторой степенью неоднородности. Форму кривой 2 на рис. 33 нельзя объяснить, если не допустить присутствия участков, где адсорбированные ионы связаны с поверхностью прочнее, чем на остальной части поверхностн. Несомненно, что эта неоднородность обусловлена не примесями или посторонними атомами. Она может быть вызвана наличием различг[ых кристаллографических граней. Во-вторых, мы более не придерживаемся точки зрения, что при более высоких заполнениях атомы адсорбированы рядом с ионами. При низких значениях О весь адсорбированный металл находится на поверхности в виде ионов. При увеличении степени заполнения тип связи изменяется и с некоторого определенного значения О весь металл оказьшается адсорбированным в виде атомов. Под влиянием поля металла происходит поляризация этих атомов. С увеличением заполнения диполь-иые моменты адсорбированных атомов уменьшаются вследствие взаимной поляризации и наблюдается минимум работы выхода, когда приходящееся на один атом уменьшение дипольного момента уже больше не компенсируется увеличением числа диполей на единицу поверхности. [c.139]

    Соответствие стехиометрическому составу может быть определено по данным весовых измерений МСС в сочетании с данными по расположению катионов металла и анионов хлора, или прямым химическим анализом. Фактор заполнения определяется по отношению показателей У1/У2, где у1 — расчетное отношение атомов углерода к числу ионов металла для одного слоя, а У2 — эта же характеристика, полученная по данным измерений. Согласно [6-10] фактор заполнения находится в иш ервале 0,6-0,9. Верхнее значение соответствует МСС I ступени, Например, исследование МСС I ступени с СоСЬ показало образование непрерывной сетки внедренного вешества, состоящего из кристаллографически упорядоченных доменов размером порядка 1 мкм. В МСС II ступени слои внедренных веществ не образуют сверхрешетки. При образовании изолированных островков в темнопольном электронном микроскопе наблюдается бахрома из блоков муаров. [c.286]

    Под влиянием этих факторов наряду с размерами кристаллов могут изменяться также форма и ориентация кристаллов, т. е. их взаимное относительное расположение. Преобладание определенной ориентации кристаллов в осадке, т. е. такое расположение кристаллов, когда одно или два кристаллографических направлений оказываются преобладающими, обычно называют текстурой. Чем больше кристаллов, имеющих данное направление роста по отношению к общему числу кристаллов, тем выше степень ориентации, или степень совершенства текстуры. В некоторых случаях текстура, так же как и размер кристаллов, является существенным фактором, определяющим те или иные свойства электролитических осадков (блеск, твердость и др.). Закономерности форм роста кристаллов подробно изучены К. М. Горбуновой [3] и И. А. Пангаровым [5]. [c.338]

    Наконец, немаловажной характеристикой является мультиплетность сигналов ЯКР, которая обусловлена тем, что химически эквивалентные атомы могут находиться в кристаллографически неэквивалентных позициях При этом возникают различия кристаллического поля в местах резонирующих квадрупольных ядер, приводящие к кристаллическим сдвигам частот ЯКР. Число компонент мультиплетов т зависит от числа сортов кристаллографически неэквивалентных мояекул в элементарной ячейке N и числа наборов [c.97]

    В рассмотренных примерах число наборов кристаллографически эквивалентных молекул в ячейке было равно единице (Л =1). Но, например, в кристалле Сз+ОаСЦ число линий ЯКР равно удвоенному числу атомов хлора, т. е. имеется уже два набора кристаллографически неэквивалентных анионов в ячейке. [c.102]

    Например, хлористый натрий в твердом состоянии построен таким образом, что каждый из ионо1В N3+ и С1 окружен шестью ионами противоположного знака, т. е. кристаллографическое координационное число ионов Na+ и С1 равно 6, тогда как аналитическое — 1. [c.32]

    Анионный обмен. Зависимость селективности поглощения анионов от рассмотренных выше факторов сложнее, чем катионов, так как состав большинства анионов, в том числе комплексных, более сложный, а способность их к гидратации меньшая, чем у катионов. Для простых анионов, например одноатомных, с электронной конфигурацией инертного газа, склонность к гидратации уменьшается с увеличением кристаллографического размера иона этим обусловлен, например, ряд селективности Р < С1 < Вг-< 1 на сильноосновных анионитах. Для сложных ионов (анионов слабых или умеренно сильных кислот) степень их гидратации определяется силой соответствующей кислоты — чем слабее кислота, тем больше склонность аниона к гидратации. Если размеры ионов и их склонность к гидратации, определяемая силой соответствующих кислот, действуют в одном и том же направлении, то можно уверенно предсказать ряд селективности, например N07 < NOF С10 < СЮ " < СЮГ HSOJ" < [c.188]

    Термин поверхностный центр в хемосорбции определяется как один или микроскопическая группа атомов на поверхности, которая в каком-либо смысле химически активна. Наряду с рассмотренными выше атомами, связанными, например, с дефектами, кристаллографическими ступеньками и т. д., это может быть, иапример, атом с оборванной связью , катион, нескомпенсированный необходимым числом аииоиов, кислотный или основной центр . Кислотные центры Льюиса обладают свободными орбиталями с высокой энергией сродства к электронам, кислотные центры Врен-стеда обладают тенденцией отдавать протон. Один вид этих центров может переходить в другой. Так, при взаимодействии с водой -f НоО = (L ОН) 4-Hs на поверхности, кислотный центр Льюиса L+ делит электронную пару с ОН , а остающийся адсорбированный протон Н+ может вступать в химические реакции, представляя собой теперь кислотный центр Вренстеда, Если группа ОН связана с катионом менее прочно, чем Н+ с решеточным ионом О , она становится основным центром Вренстеда и вещество будет проявлять основные свойства. Они связаны с электроотрицательностью металла и кислотность окислов уменьшается в следующем ряду  [c.130]

    Образование ароматических фрагментов в гидраТцеллюлозном волокне из глюкозидных остатков начинается с 400 °С. Образующиеся на их основе гексагональные слои растут и совершенствуются в объеме области когерентного рассеяния. При, 500 °С они состоят в среднем из 8—10 слоев и их число практически не изменяется в материале при его обработке до 900 °С. Однако при этом протяженность слоев увеличивается в 1,5 раза, а расстояние между фрагментами соответственно уменьшается с 0,386 до 0,356 нм. В полученном при 900 °С волокне гексагональные слои далеки от графитоподобных, на что указывает средняя длина связи между атомами, равная 0,139 нм. После термообработки при 2500 °С структура все еще остается турбостратной гексагональные слои взаимно не ориенти[ ованы, хотя и обладают достаточно высокой степенью совершенства. Термообработка такого волокна при 2900 °С оставляет структуру турбостратной. Текстурированность волокна из гидроцеллюлозы из-за присутствия кристаллографически аморфного углерода практически не обнаруживается вплоть до 1500°С и надежно выявляется после 2000 °С [133]. [c.235]


Смотреть страницы где упоминается термин Кристаллографический ряд чисел: [c.94]    [c.585]    [c.72]    [c.148]    [c.183]    [c.577]    [c.101]    [c.72]    [c.63]    [c.32]    [c.188]    [c.208]    [c.241]    [c.456]    [c.118]    [c.69]    [c.25]    [c.210]    [c.70]    [c.426]    [c.30]   
Введение в физическую химию и кристаллохимию полупроводников Издание 2 (1973) -- [ c.34 , c.35 , c.42 , c.62 , c.99 ]




ПОИСК





Смотрите так же термины и статьи:

Метод кристаллографического индицирования. Закон целых чисел



© 2024 chem21.info Реклама на сайте