Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Орбиты описание

    Многоцентровые орбитали. Описание химической связи в трехатомных линейных и уголковых, тетраэдрических и треугольных молекулах. Электронная конфигурация молекул и структурные формулы. [c.56]

    Молекулярные орбитали описанного типа называют я-орбиталями. В их образовании могут участвовать только атомные орбитали с ненулевым азимутальным квантовым числом. Атомные -орбитали (/ = 0) не принимают участия в образовании я-орбиталей. Химическую связь, образованную при заполнении электронами л-орбитали, называют п-связью. [c.61]


    Молекулярные орбитали описанного типа называют я-орбиталя-ми. В их образовании могут участвовать только атомные орбитали с ненулевым азимутальным квантовым числом. Атомные 5-ор-битали (/ = 0) не принимают участия в образовании л-орбиталей. [c.67]

    С-Оболочка состоит только из одной орбитали (15-орбитали), описанной в предыдущем разделе. 1-Оболочка состоит из четырех орбита-лей и двух подоболочек. 25-Подоболочка состоит лишь из одной 2 -ор-битали. 2р-Подоболочка состоит из трех 2р-орбиталей. Электрон на 25-орбитали несколько устойчивее и находится немного ближе к ядру, чем электрон на одной из трех 2р-орбиталей, как это показано на энергетической схеме (рис. 5.4). Все три 2р-орбитали имеют одинаковую энергию. [c.113]

    Вклад -орбиталей в гибридные р-орбитали, или процент -характера, можно рассчитать результаты таких расчетов приведены в табл. 2. На основе представления о -характере металлической связи сделано много корреляций, связанных с адсорбционными и каталитическими свойствами переходных металлов. Согласно орбитальной модели, процент -характера, по-видимому, отражает линейную протяженность в пространстве гибридной р-орбитали. Описание структуры металлов и металлической связи в свете представлений метода валентных связей см. также в статье Альтмана и др. [10]. [c.17]

    Г-Оболочка состоит только из одной орбитали (15-орбитали), описанной в предыдущем разделе. -Оболочка состоит из двух подоболочек (2з и 2р) и четырех орбиталей. 25-Подоболочка состоит лишь из одной орбитали (2 -орбитали), которая имеет и = 2, = О и тг = 0. 2р-Под-оболочка состоит из трех 2/з-орбиталей, для каждой из которых п = 2 и / = 1 этим трем орбиталям соответствуют три значения т -. —1, О и -Ь1. Электрон на 2 -орбитали несколько более стабилен и находится немного ближе к ядру, чем электрон на одной из 2р-орбиталей, как это показано на энергетической диаграмме, приведенной на рис. 5.9. Все три 2р-орби-тали имеют одинаковую энергию. [c.117]

    Распространение картины строения атома водорода на многоэлектронные атомы представляет собой один из самых значительных шагов в понимании химии, и мы отложим рассмотрение этого вопроса до следующей главы. При этом мы будем исходить из предположения, что электронные орбитали многоэлектронных атомов подобны орбиталям атома водорода и что они могут описываться теми же четырьмя квантовыми числами и имеют аналогичные распределения вероятностей. Если энергетические уровни электронов изменятся по сравнению с уровнями атома водорода (что и происходит на самом деле), нам придется дать исчерпывающие объяснения этим изменениям в терминах, используемых для описания орбиталей водородоподобных атомов. [c.374]

    При описании строения многоэлектронных атомов мы воспользовались наглядным представлением о функциях вероятности, или орбиталях, как об облачных образованиях, которые мы затем заселяли электронами. Чтобы получить представление о строении молекулы, необходимо найти для заданного расположения атомов набор молекулярных орбиталей и затем заселить эти орбитали имеющимися электронами, помещая, как и раньше, на каждую орбиталь не более двух электронов. Но прежде чем мы поступим указанным образом, посмотрим, что происходит, когда два атома водорода сближаются, образуя молекулу. [c.511]


    Строго говоря, каждая молекулярная волновая функция должна включать атомные орбитали всех атомов молекулы. Во многих случаях в каждую волновую функцию молекулы заметный вклад вносят только какие-либо два ее атома, и это позволяет считать, что такая локализованная молекулярная волновая функция дает достаточно точное описание связи между двумя данными атомами. Но нередко приходится сталкиваться и с исключениями, подобными молекуле бензола, которые напоминают нам о недостатках используемого предположения о локализации связей. [c.574]

    Бензол и в самом деле более устойчив, чем можно ожидать для молекулы с шестью простыми связями С—С, шестью простыми связями С—Н и тремя я-связями С—С. Его дополнительная устойчивость обусловлена тем, что электроны на трех я-связях делокализованы по всем шести атомам углерода. Орбиталь Я , показанная на рис. 13-25, симметрична относительно всех шести атомов углерода. Орбитали я и Яз выглядят несимметричными, но их комбинация оказывается симметричной. Атомы а и ничем не отличаются от остальных атомов углерода можно записать орбитали 2 и Яз таким образом, что атомы / и с покажутся находящимися на оси молекулы. Если не допустить делокализации электронов в молекуле С Н , связь в ней окажется такой, как это описывается структурами Кекуле и Дьюара, изображенными на рис. 13-25 или 13-27. Однако наилуч-шсе описание химической связи в бензоле достигается в рамках модели, схематически изображенной в нижней части рис. 13-27. Как можно подсчитать, пользуясь экспериментальными данными, молекула бензола на 167 кДж моль более устойчива, чем если судить по сумме энергии шести связей С—Н, трех связей С—С и трех связей С=С. [c.575]

    Как используются гибридные. р-орбитали для описания химической связи в ВеНг  [c.596]

    На рис. 20-15 схематически изображены четыре из таких р-орбиталей хлоридных лигандов, перекрывающиеся с одной из трех -орбиталей, которые соответствуют энергетическому уровню Если на такой -орбита-ли имеются электроны, они отталкиваются неподеленными парами электронов на этих р-орбиталях, и в результате энергия уровня С2д повыщается. Поэтому лиганд с заполненными орбиталями, обладающими симметрией п-типа относительно линии связи металл-лиганд, понижает энергию расщепления кристаллическим полем, Д . Пользуясь терминологией теории кристаллического поля, такие лиганды (например, ОН , С1 , Вг , I ) называют лигандами слабого поля. Фторидный ион не настолько эффективен в этом отношении, поскольку его электроны находятся на очень компактных орбиталях. Описанный эффект называется я-взаимодействием лигандов с металлом, или Е М-я-взаимодействием. [c.236]

    Для объяснения большинства соединений, в которых число валентных электронов не меньше числа валентных орбиталей, достаточно воспользоваться представлением о двухатомных химических связях, которое позволяет рассматривать одновременно только пары атомов. Однако, как мы уже знаем из обсуждения бензола (разд. 13-5), локализованные молекулярные орбитали являются лишь приближенным описанием того, что имеет место в действительности. Иногда приходится конструировать делокализованные молекулярные орбитали из атомных орбиталей, принадлежащих нескольким или даже всем атомам молекулы. В случае молекулы бензола можно рассматривать раздельно связи С—Н и а-связи С—С, но шесть р-орбиталей атомов углерода приходится рассматривать совместно. [c.272]

    В последующих курсах по органической химии студенты будут встречать еще одно вводимое здесь представление - гибридизация атомных орбиталей. Преподаватель должен сам рещить, как ему быть с введением математического описания гибридизации, но в любых курсах обязательно следует обратить внимание учащихся на направленный характер полученных гибридных орбиталей и соответствующую молекулярную геометрию. Раздел о кратных связях в соединениях углерода можно использовать для иллюстрации основных положений метода гибридизации орбита-лей. [c.577]

    Гораздо сложнее применить результаты, полученные при расчетах молекулярных орбиталей, к сверхтонкому расщеплению от взаимодействия с атомами, отличными от атома водорода. В отличие от протонов, для которых характерны только описанные выше прямой и косвенный механизмы СТВ, на сверхтонкое расщепление от взаимодействия с С влияют и другие факторы 1) Неспаренные электроны на р(п)-орбитали могут поляризовать заполненные 2s- и Ь-орбитали того же самого атома. 2) Может иметь место прямая делокализация электронной плотности на 2.5-орбиталь а-радикала. 3) Спиновая плотность на соседнем атоме углерода за счет поляризации ст-связи С — С может вызывать появление спиновой плотности на 2л- и 2р-орбиталях углерода, резонанс которого поддается интерпретации. Расчеты [10—13] для сверхтонкого расщепления, вызываемого " К, 8 и оказались более успешными, чем в случае С. Так, удалось интерпретировать спектры кремнийсодержащих радикалов [13]. Обнаружено, что влияние спиновых плотностей на соседних атомах для этих ядер имеет меньшее значение, чем для ядер С. [c.29]

    Рассмотрим далее -конфигурацию. В этом случае возможны 45 способов размещения двух электронов с ш,. = + 1 /2 на пяти ( -орбита-лях. Используя описанную выше процедуру к микросостоянию [c.63]

    В этом случае при описании комплекса методом МО d- и р-орбитали могут смешиваться. Вклад р-орбиталей основного и возбужденного состояний сообщает в некоторой степени разрешенный характер d - р-переходу, и интенсивность его увеличивается. Смешивание в нецентросимметричных молекулярных орбиталях лигандов также приводит к увеличению интенсивности полос. Поэтому, как можно видеть из рис. 10.21, где представлена зависимость е/5 от X, для различных структур получаются различные спектры. Ожидается, что в спектре комплекса (см. рис. 10.20) будут наблюдаться три полосы v,, Vj и Vj, соответствующие трем спин-разрешенным переходам T (F) Vj Tj(F) -> [c.103]


    При образовании я-комплекса связь образуется за счет перехода электронов со связывающей 5-орбитали олефина на незаполненную -орбиталь протона в случае а-комплекса -орбиталь взаимодействует с поляризованной хр -орбиталью. Хотя больщинство исследователей склонно считать, что образуется о-комплекс (и на это указывают квантовохимические расчеты), это не имеет особого значения для описания механизма изомеризации. [c.90]

    Для простоты мы и в вопросах, относящихся к методу МО, ограничиваемся описанием электронных связей только между двумя рассматриваемыми атомами, т. е. на основе двухцентровых орбит, как это было раньше общепринято в химии и как это принято в методе ВС — валентных схем (локализованных электронных пар). Однако для многоатомных молекул это отнюдь не является единственно возможным. В частных случаях могут рассматриваться орбиты, охватывающие три или большее число атомов. В других же случаях метод МО, по крайней мере в некоторых формах его применения, описывая состояние данного электрона в поле действия всех атомных ядер и электронов, содержащихся в молекуле, использует представления о делокализации электрона, как это принято в аналогичных теориях атома. [c.68]

    Совокупность МО молекулы, занятых электронами, будем называть ее электронной конфигурацией. Электронная конфигурация молекулы, так же как и для атома, строится на основе двух фундаментальных положений — принципа наименьшей энергии (электрон занимает в молекуле свободную орбиталь с наименьшей энергией) и принципа Паули (на одной МО не может находиться более двух электронов, при этом спины электронов должны быть антипараллельны). Следовательно, для описания электронной конфигурации основного состояния молекулы с 2п электронами (или 2п —1) требуется п молекулярных орбиталей. Вырожденные орбитали заполняются в соответствии с первым правилом Гунда (см. 10). Электронные оболочки молекул, в которых на каждой заселенной орбитали [c.59]

    Приближенное описание молекулярной орбитали в методе МО ЛКАО [c.60]

    Подход метода молекулярных орбиталей к приближенному описанию свойств молекул заключается в следующем все электроны находятся на многоцентровых молекулярных орбиталях, охватывающих всю молекулу. Такие орбитали называют делокализованными. [c.93]

    Наличие в молекуле аммиака или в ионе аммония, а также в молекулах метана и воды четырех равноценных гибридных орбиталей (вр -гибридизация) предопределяет их равномерное взаимное расположение в пространстве по направлениям от центра молекулы к вершинам описанного тетраэдра независимо от соотношения между участвующими в образовании связи незанятыми орбиталями. Из-за слабого отталкивания, существующего между орбиталями, участвующими в образовании связи, и незанятыми орбиталями, валентный угол изменяется от 109°28 в молекуле метана (все четыре гибридные орбитали участвуют в образовании связи) до 107°18 в молекуле аммиака (одна орбиталь из четырех не занята) и до 104°30 в молекуле воды (не заняты две орбитали из четырех) 1). [c.36]

    Понятие, используемое для описания смещения электронной плотности по цепи атомов, имеющих а- или тс-орбитали за счет их перекрывания. При этом происходит делокализация (перераспределение) электронной плотности, стабилизирующая или дестабилизирующая частицу (молекулу, ион, радикал и т.д.). [c.244]

    В целом ряде квантово-химических задач удается получить более удобное и наглядное описание, если от канонических орбиталей Хартри — Фока перейти к их линейным комбинациям, которые должны быть линейно независимыми, но могут быть и не ортонормированными. Такие орбитали назовем неканоническими. [c.92]

    Для объяснения образования и свойств комплексных соединений в настояш,ее время применяют ряд теорий, в том числе теорию валентных связей. Основные положения этой теории применительно к описанию ко.мплексов уже были рассмотрены выше (с. 65). Образование комплексов теория валентных связей относит за счет донор-но-акнепторного взаимодействия комплексообразователя и лигандов. Так, образование тетраэдрического иона 1Вер4Р можно объяснить следуюш,им образом. Ион Ве " , имеюш,ий свободные 2 - и 2р-орбитали [c.97]

    Вероятность обнаружения электрона на р-орбитали в ядре атома равна нулю. При описании р-орбитали как двух соприкасающихся пучностей с этим связано определенное противоречие. В чем оно заключается [Этот вопрос взят из учебно-методической статьи, опубликованной в журнале J. hem Edu ., 38, 20 (1961).] [c.381]

    При обсуждении э.пектронного строения многоэлектронного атома следует исходить из наличия у него ядра и соответствующего числа электронов, Будем предполагать, что допустимые электронные орбитали, если и не точно идентичны орбиталям атома водорода, то представляют собой нечто подобное им-так называемые водородоподобные орбитали. Тогда можно мысленно построить многоэлектронный атом, последовательно помещая на эти орбитали по одному электрону, причем процесс заселения следует начинать с наиболее низких по энергии орбиталей. Таким образом мы построим модель атома в его основном состоянии, т. е. в состоянии с низшей электронной энергией. Такой способ мысленного построения многоэлектронного атома впервые применил Вольфганг Паули (1900-1958), который назвал описанный процесс принципом заполнения. По существу, однако, процесс мысленного построения атома основывается на трех принципах. [c.386]

    Один из способов описания электронного строения молекулы В2Не, основанный на представлении о локализованных молекулярных орбитах, показан на рис. 13-9. Каждый атом бора использует две 5р -гибридные орбитали для образования связей с двумя концевыми атомами водорода. Каждая из остающихся хр -орбиталей используется для образования трехцентровой связывающей орбитали с Ь-орбиталью атома водорода и. хр -ор-биталью другого атома бора. Согласно такой модели, мостиковые атомы водорода должны быть расположены выше и ниже плоскости, в которой лежат оба фрагмента ВН,, что подтверждается экспериментально. [c.558]

    В самом деле, что заставляет теоретиков, занимающихся изучением строения молекул, немало сил тратить на обсуждение проблем локализации молекулярных орбиталей, выбора оптимального анализа заселенностей и т. д. Ведь в принципе расчет можно провести, используя делокализованные (канонические) молекулярные орбитали, или х<е ограничиться одноцентровым базисом, в результате чего при стандартном анализе заселенностей вся электронная плотность окажется отнесенной к одному атому молекулы. Однако в обоих случаях результаты расчетов не удается интерпретировать в рамках традиционных химических представлений, т. е. в терминах химических связей, неподеленных электронных пар и т. д. И дело не только в необходимости учета старых, давно известных фактов типа аддитивности и трансферабель-ности многих молекулярных свойств, дело еще в стремлении согласовать квантовомеханическое описание с определенным исторически сложившимся стилем химического мышления. Но мы слишком забежали вперед, вернемся к нашей теме и посмотрим, как в квантовой химии рождается понятие молекулярной структуры. [c.106]

    Из проведенного выше обсуждения видно, что метод МО можно непосредственно использовать для интерпретации механизмов делокализации спинов в комплексе и для качественного описания этим же методом лиганда. В последнем случае мы будем интерпретировать спектр, исходя из молекулярных орбиталей лиганда и электронной конфигурации металла для соответствующей симметрии комплекса, и будем пытаться установить, какие молекулярные орбитали лигандов смешиваются с молекулярными орбиталями металла или какие из первых спин-по-ляризованы. [c.179]

    Электрон в атоме водорода протяженный объект, описываемый волновым пакетом, вероятное положение которого характеризуется областью пространства, размеры которой ограничат координатами Ах, Ау, Аг [1]. На основании знания v -фyнкции можно указать лишь вероятность нахождения электрона в данной области пространства, и траектория движения электрона представляет собой лишь приближенное понятие. Несмотря на такие отличительные особенности движения электрона от макрообъектов, электрон и планеты совершают вращательное движение в атоме водорода и солнечной системе по дозволенным орбитам под действием силовых линий электромагнитного и гравитационного полей. Поэтому для описания движения электрона в атоме водорода было использовано следствие третьего закона Кеплера (уравнение 3). [c.11]

    Как следует из определения, в выборе неканонических орбиталей имеется весьма большой произвол, и потому их можно подчинить дополнительным условиям так, чтобы получить орбитали наиболее удобного в рассматриваемой задаче вида. Например, можно построить такие неканонические орбитали, которые локализованы на отдельных атомах молекулы. Описание молекулы с помощью таких орбиталей соответствует интуитивному представлению о том, тао молекула состоит из атомов. При этом в точном расчете численные значения всех характеристик молекулы будут получаться такими же, как и при использовании канонических орбиталей, но интерпретащ1я полученных формул будет более простой и наглядной. Кроме того, во многих случаях облегчается сам расчет и проясняется возможность введения различных приближений. [c.92]


Смотреть страницы где упоминается термин Орбиты описание: [c.561]    [c.54]    [c.371]    [c.522]    [c.597]    [c.73]    [c.91]    [c.177]    [c.181]    [c.38]    [c.94]    [c.99]    [c.101]    [c.108]    [c.138]    [c.49]    [c.104]   
Природа химической связи (1947) -- [ c.84 ]




ПОИСК





Смотрите так же термины и статьи:

Орбита



© 2025 chem21.info Реклама на сайте