Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теория молекулярных орбиталей поля лигандов

    Химическая связь в координационных комплексах. Электростатическая теория. Теория валентных связей. Гибридные и хр внешнеорбитальные комплексы. Теория кристаллического поля. Энергия расщепления кристаллическим полем. Низкоспиновые комплексы и высокоспиновые комплексы. Сильные и слабые лиганды. Теория молекулярных орбиталей. я-Взаимодействие между лигандами и металлом. Дативное л-взаимо-действие между металлом и лигандами. [c.204]


    Исследование электронной структуры молекул может быть основано на различных подходах в соответствии со степенью взаимодействия между атомами, образующими связь. В случае комплексных соединений наиболее важными приближениями являются теория поля лигандов и теория молекулярных орбиталей. В следующих двух разделах будут обсуждены принципиальные основы этих теорий. [c.40]

    Теория кристаллического поля, теория поля лигандов и теория молекулярных орбиталей [c.315]

    Теория кристаллического поля не позволяет объяснить наблюдаемую последовательность силы лигандов, т.е. их способность к расщеплению энергетических уровней. Но если принять во внимание орбитали лигандов, причем не только те, на которых находятся электронные пары, обобществляемые с металлом, но и те, где находятся неподеленные электронные пары, непосредственно не связанные с металлом, удается в гораздо большей мере объяснить последовательность энергий расщепления. Такая расширенная теория молекулярных орбиталей содержит в качестве предельных случаев как теорию кристаллического поля, так и теорию валентных связей и обычно называется теорией поля лигандов. [c.233]

    В заключение отметим, что несмотря на успехи теории кристаллического поля, связанные, в основном, с учетом симметрии, особенно для соединений с ионной связью, она ограничена. Опыты по электронному парамагнитному резонансу показывают, что вопреки теории кристаллического поля электронная плотность не сосредоточена на лигандах и центральном ионе, а частично размазана в объеме комплексного иона, т. е. связь в координационных соединениях не ионная, а ковалентная с большей или меньшей полярностью. Для описания такой связи необходимо привлечь теорию молекулярных орбиталей как более общую, чем электростатическая теория ионной связи. [c.125]

    Свойством, которое объединяет переходные металлы в отдельную группу, является существование незавершенной оболочки d-электропов. Влияние этих электронов на валентность, оптические и магнитные свойства переходных металлов. может быть рассмотрено на основе модифицированного варианта теории молекулярных орбиталей, известного пол названием теории поля лигандов. В этом подходе нет каких-либо новых принципов, но его главная особенность состоит в том. что внимание в основном обращается иа высокую симметрию окружения центрального иона металла. [c.544]


    В настоящее время для теоретического объяснения природы связи в координационных соединениях общепризнанными являются три более или менее отличных друг от друга подхода. Хронологически и по увеличению сложности первым методом является электростатическая теория с ее более современной модификацией — теорией кристаллического поля, вторым — метод валентных связей и третьим — метод молекулярных орбиталей. Более исчерпывающая теория, развивающаяся сейчас на основе сочетания теории кристаллического поля и теории молекулярных орбиталей, известна под названием теории поля лигандов. Конечно, следует учесть, что ни одна из этих теорий (за исключением последней) не предназначена для объяснения связи только в комплексных соединениях, но именно в этой области они применяются наиболее успешно. [c.247]

    СВЯЗИ следует принимать во внимание разные факторы. В случае ионных радиус донорного атома лиганда, его заряд, поляризуемость и постоянный дипольный момент. Для ковалентной связи важны энергия связывающей электронной пары, симметрия акцепторной или донорной я-орбитали и т. п. В настоящее время более или менее общепризнанными считаются четыре теории. Электростатическая теория в ее современной модификации — теории кристаллического поля теория валентных связей теория молекулярных орбиталей и, наконец, развивающаяся сейчас на основе сочетания теорий кристаллического поля и молекулярных орбиталей теория поля лигандов. Рассмотрим основные положения этой последней теории в самом общем аспекте. В первом ее варианте — теории кристаллического поля — считается, что лиганды создают электростатическое поле, под действием которого меняется энергия электронных орбиталей центрального иона. Так из пяти -орбиталей некоторые могут стать энергетически более выгодными (рис. 43), т. е. происходит расщепление и тем больще, чем сильнее действие поля лигандов. По своему действию лиганды располагаются в такой [c.97]

    Обе приведенные теории (Косселя и Льюиса) не могут в полной мере объяснить существование и строение комплексных соединений. Следующим этапом развития теории координационных соединений явились теория молекулярных орбиталей, которая как бы развивает и углубляет теорию ковалентных связей, и теория строения кристаллического поля, которая основывается на электрохимических представлениях. И, наконец, в последнее время создана теория, объединяющая теорию молекулярных орбиталей и теорию кристаллического поля. Это — теория поля лигандов. [c.279]

    Описания в методах валентных связей и теории поля лигандов не достаточно точны для объяснения и предсказания многих явлений. Имеются экспериментальные данные, которые показывают, что d-электроны иона металла часто делокализованы между лигандами. Объяснить это может только теория молекулярных орбиталей. [c.105]

    Поскольку теория поля лигандов основана на предположении о том, что донорные атомы представляют собой точечные заряды, ее практические приложения ограничиваются теми комплексами, у которых не происходит интенсивной делокализации электронов между донорными атомами и центральным ионом. Но в" тех случаях, когда такая делокализация имеет место и движение электрона уже более не ограничено центральным полем одного атома, нужно пользоваться таким методом, который допускал бы описание и этих электронных состояний. Соответствующее описание может быть дано в рамках теории молекулярных орбиталей, которая исходит из предположения о том, что после образования связей валентные электроны не остаются локализованными у определенных атомов, а делокализуются по всем а.томным ядрам молекулы. Фундаментальная модель этой теории может быть проиллюстрирована образованием молекулярных орбиталей в простейшей молекуле — частице Нг, состоящей из двух ядер водорода и одного электрона. Эта ситуация изображается конфигурацией, согласно которой наиболее вероятным является нахождение электрона между этими двумя ядрами (ср. рис. 2.7). Функция, описывающая это новое состояние электрона, называется молекулярной орбиталью, [c.48]

    Такое перераспределение электронов, или образование 0- или л -связей, должно влиять на расщепление -орбиталей. Например, сильное поле лиганда мягкого цианид-иона, которое мы объяснили легкостью, с какой облако заряда может быть поляризовано и сдвинуто в направлении иона металла, лучше описывать, считая, что цианид-ион связан с ионом металла и а-, и я-связями. Образование я-связей приводит к уменьшению расстояния металл— углерод и к соответствующему увеличению поля лиганда. Модифицировав теорию кристаллического поля для учета образования ковалентных связей, получим новое приближение, называемое теорией поля лигандов. В этой теории объединены теории кристаллического поля и молекулярных орбиталей. По теории поля лигандов считается, что параметр расщепления А обусловлен полем лигандов независимо от того, какие силы, электростатические или силы связи, порождают это поле. В теории молекулярных орбиталей аналогичной мерой расщепления служит величина А , которая зависит от прочности связей, так как при понижении энергии связывающих орбиталей энергия разрыхляющих орбиталей увеличивается. [c.226]


    Теорию валентных связей рассмотрим первой, поскольку она наиболее понятна и проста. В настоящее время ее применяют сравнительно редко, но она прекрасно служила больше четверти века химии координационных соединений для объяснения некоторых свойств комплексов. Затем обсудим электростатическую теорию с акцентом на теорию кристаллического поля. Хотя она возникла в 1929 г., особый интерес к ней проявился у химиков в течение десяти лет—с 1952 по 1962 г. Эта теория помогает объяснить многие физико-химические свойства координационных соединений. Большое число ограничений и приближений привели к необходимости учета в чисто электростатической теории эффекта ковалентного связывания. В результате появилась теория поля лигандов, которая будет рассмотрена после теории молекулярных орбиталей в применении к комплексам. Теория молекулярных орбиталей является наиболее общей, все остальные можно рассматривать как ее частные случаи. Однако из-за сложности применения ее к многоатомным системам в большинстве случаев с ее помощью нельзя получить точную трактовку строения того или иного комплекса. [c.399]

    V Сопоставление теорий МО, ВС и КП. Теория молекулярных орбиталей дает самый общий подход к описанию свойств комплексных соединений, объединяя идеи как теории валентных связей, так и теории кристаллического поля. Шести сг = -орбиталям октаэдрического комплекса в рамках теории валентных связей отвечают шесть а-связей, возникающих за счет донорно-акцепторного взаимодействия psp -гибридных орбиталей комплексообразователь и электронных пар шести лигандов (рис. 215). Что же касается молекулярных л - и [c.513]

    Как уже было замечено, величина А для данного комплекса зависит от напряженности электростатического поля, обусловленного лигандами. Такими свойствами лигандов, которые влияют на величину А , являются размер, заряд, постоянный дипольный момент Х() и поляризуемость а. Последняя обусловливает возникновение индуцированного дипольного момента д, , поскольку к1 = Еа, где Е — напряженность поля, создаваемого центральным атомом. Полный дипольный момент равен р, = о + -1- Л . Конечно, сила о-связывания, а также возможная дополнительная сила л-связывания лигандов будут влиять на величину А,,, но эти факторы нельзя принимать в расчет в рамках теории кристаллического поля. Влияние этих факторов на параметр расщепления будет учтено в теории молекулярных орбиталей. [c.415]

    Теперь следует рассмотреть качественный аспект применения к комплексам теории молекулярных орбиталей, частным случаем которой является теория поля лигандов. Последняя более наглядна и сочетает удобство и простоту теории кристаллического поля со строгостью и общностью теории молекулярных орбиталей, что [c.423]

    Сг(СбН )а - дибензолхром. Поскольку в таких комплексах содержатся неполярные лиганды, невозможно объяснить образование этих соединений как с шмощою простых электростатических представлений, так и на основании теории кристаллического поля. Связь в этих соединениях легко объяснима с помощью теории молекулярных орбиталей. [c.139]

    Развитию органической химии в значительной мере способствовало применение теории молекулярных орбиталей (метод ЛКАО) для интерпретации сопряженных систем. Кроме того, при применении теории поля лигандов к координационным и другим комплексным соединениям стала намного яснее большая область неорганической химии. [c.7]

    Хронологически и по увеличению сложности первым методом является электростатическая теория с ее более современной модификацией— теорией кристаллического поля, вторым — метод валентных связей и третьим — метод молекулярных орбиталей. Более исчерпывающая теория, развивающаяся сейчас на основе сочетания теории кристаллического поля и теории молекулярных орбиталей, известна под названием теории поля лигандов. Конечно, следует учесть, что ни одна из этих теорий (за исключением последней) не предназначена для объяснения связи только в комплексных соединениях, но именно в этой области они применяются наиболее успешно. [c.238]

    Возникающая в результате образования молекулярных орбиталей комплекса диаграмма энергетических уровней изображена на рис. 20-14. В ее нижней части находятся уровни шести связывающих орбиталей, заполненные электронными парами. Их можно пр)едставить как шесть электронных пар, поставляемых лигандами-донорами, и больше не обращать на них внимания. Точно так же можно исключить из рассмотрения четыре верхние разрыхляющие орбитали, являющиеся пустыми, за исключением предельных случаев сильного электронного возбуждения, которыми можно пренебречь. Несвязывающий уровень и нижний разрыхляющий уровень соответствуют двум уровням, и вд, к которым приводит расщепление кристаллическим полем (см. рис. 20-13). Мы будем продолжать называть их по-прежнему уровнями 12д и е даже в рамках молекулярно-орбитального подхода. Но важно отметить разницу в объяснении расщепления между этими уровнями. В теории кристаллического поля оно является следствием электростатического отталкивания, а в теории поля лигандов-следствием образования молекулярных орбиталей. Как мы убедились в гл. 12 на примере молекул НР и КР, теория молекулярных орбиталей позволяет охватить все случаи от чисто ионной до чисто ковалентной связи. Поэтому выбор между теорией кристаллического поля и теорией поля лигандов основан лишь на рассмотрении одной из двух предельных моделей связи. В комплексе СоР довольно заметно проявляется ионный характер связи, потому что, как можно видеть из рис. 20-14, орбитали лигандов располагаются по энергии ниже орбиталей металла и ближе к связывающим молекулярным орбиталям. Поэтому связывающие молекулярные орбитали по характеру должны приближаться к орбиталям лигандов, а это должно обусловливать смещение отрицательного заряда в направлении к лигандам. Таким образом, связи в данном случае должны быть частично ионными. [c.235]

    Учет л-связей. До сих пор мы пре небрегали я-связью, хотя данные, приведенные в табл. 7-10, наводят на мысль о необходимости ее учета с позиций теории молекулярных орбиталей. зй Орбитали металла имеют ту же симметрию, что и я-молекулярные орбитали лиганда. Следовательно, /гя ОРбитали, которые ранее называли несвязы Бающими, в действительности мо гут принимать участие в обра зовании я-связи. "Метод построения молекулярных орбиталей с участием я-орбиталей лигандов во многом сходен с методом построения молекулярных а-орбиталей. з -Орбитали расщепляются на связывающие и разрыхляющие,как показано на рис. 7-6. Снижение энергии для ая Связывающих орбиталей увеличивает разность в энергии между I2 - и незатронутой разрыхляющей ор биталью. Это увеличивает величину ООд А), и, следовательно, мы можем сказать, что лиганд, способный образовать я-связи, более сильный по сравнению с тем, который не может их образо аать. Согласно теории молекулярных орбиталей, увеличение раз ности в энергиях между и е -орбиталями, обусловленное а-связью, ответственно за спаривание электронов и образование низкоспиновых комплексов. В теории кристаллического поля это приписывается увеличению электростатического поля лиганда, а согласно теории молекулярных орбиталей, расщепление обусловлено увеличением ковалентности связи, а не увеличением электро татического поля. [c.270]

    Теория молекулярных орбиталей была с успехом применена ван-Флеком для дальнейшего развития принципов теории кристаллического поля при этом важнейшее достижение — учет расщепления уровней— удалось сохранить. Представления о кристаллическом поле имели тот недостаток, что электронные системы иона комплексообразователя и лигандов рассматривались до известной степени как автономные и вся схема взаимодействий в комплексе описывалась как взаимодействие точечных зарядов. [c.224]

    Вполне возможно повышение электронной плотности на лигандах в том случае, когда уровень орбиталей лигандов ниже уровня орбиталей иона металла — это происходит у связывающих орбиталей (у разрыхляющих, наоборот, электронная плотность повышается у металла). Теория молекулярных орбиталей позволяет также учесть и возможность образования л-связей за счет 4 -орбиталей иона металла (т. е. орбиталей, которые теория кристаллического поля относит к несвязывающим) и л-орбиталей лигандов. Молекулярные орбитали системы лигандов и атомная орбиталь центрального иона должны обладать одинаковыми свойствами симметрии. В качестве примера рассмотрим октаэдрический комплекс с шестью лигандами. [c.225]

    Сопоставлеиие теорий МО, ВС и КП. Теория молекулярных орбиталей дает самый общий подход к описанию свойств комплексных соединений, объединяя идеи теории валентных связей и теории кристаллического поля (рис. 219), Шести электронным парам связывающих (Т-орбиталей октаэдрического комплекса в рамках теории валентных связей отвечает шесть сг-связей. Они возникают за счет донорно-акцепторного взаимодействия гибридных орбиталей комплексообразователя и электронных пар шести лигандов. Что же касается молекулярных 5Г - и т -орбиталей, то в теории кристаллического поля [c.560]

    Таким образом, прежде всего появилось требование о возможности учета переноса заряда между лигандами и центральным ионом, которому удовлетворяют различные методы теории молекулярных орбиталей. По существу, особым вариантом этих методов, приспособленным к рассмотрению свойств комплексных соединений, и является теория поля лигандов, которая исходит из основных предположений теории молекулярных орбита-лей, а в предельном случае, когда перенос заряда отсутствует, сводится к электростатической модели. Общая формулировка проблемы приводится, например, в работе Джаррета [82]. [c.281]

    Оргел [ИЗ] рассмотрел некоторые свойства ионов переходных металлов на основе теории молекулярных орбиталей и теории поля лигандов. Мы ограничимся, главным образом, применением теории поля лигандов для определения энергии удаления двухвалентных ионов из водного раствора. Понижение энергии комплекса, обусловленное влиянием поля лигандов, определяется симметрией и напряженностью поля (т. е. природой лигандов и их расположением), а также числом и состоянием -электронов. Теория предсказывает, что поле лигандов не должно оказывать влияния на свойства комплекса, если -подуровни заняты полностью или если они заполнены ровно наполовину. Эти два случая реализуются соответственно для ионов 2н и Мн +. В нервом приближении понижение энергии за счет поля лигандов пропорционально (V —5), где V — число неспаренных -электронов. Приняв в рассмотрение некоторые осложняющие факторы, в особенности для иона Сн " , Оргел дал оценки понижения энергии для ряда ионов в квакомплексах. Если вычесть эти поправки из наблюдаемых значений энергии удаления ионов из водного раствора, то получаются исправленные значения, которые возрастают с ростом атомного номера. Если, далее, вычесть из суммы двух первых ионизационных потенциалов иона Си + энергию, необходимую для того, чтобы перевести электрон с -орбитали на 5-орбиталь, то максимум на кривой зависимости ионизационных потенциалов от атомного номера также исчезает. В связи с этим полагают, что наблюдаемые отклонения в зависимости энергий удаления ионов из раствора связаны с влиянием ноля лигандов. Соответствующая поправка может достигать 5% от общей теплоты удаления иона из раствора. [c.194]

    Некоторые свойства ионных кристаллов — соединений металлов с частично заполненными З -оболочками —хорошо объясняются в. рамках теории поля лигандов, созданной на основе предложенной Бете и Ван-Флеком теории кристаллического поля для твердых тел. Согласно теории поля лигандов, химическая связь в кристаллах соединений металлов является чисто ионной, ионы рассматриваются как точечные заряды, а их электрическое поле (с несферической симметрией ) вызывает расщепление Зй-уровня иона металла. Теорик> поля лигандов можно использовать для объяснения строения как комплексных соединений, так и различных твердых веществ, и в общем виде с учетом связывающих орбиталей лигандов она ближе к теории молекулярных орбиталей, чем к теории кристаллического-поля. Для учета отклонений от простого кулоновского взаимодействия точечных зарядов вводятся параметры, включающие степень ковалентности связи, поляризационные искажения за счет соседних зарядов величину отклонения от сферической симметрии ионов с частично-заполненной -оболочкой. С помощью теории групп можно объяснить и предсказать расщепление атомных уровней, соответствующее тому или иному типу симметрии внутреннего электрического поля в кристалле. [c.47]

    Теория электростатического кристаллического поля— простейшая модель, соторая может объяснить, почему -орбитали расщепляются на поднаборы для иона в окружении лигандов. Конечно, с физической точки зрения эта модель нереальна во многих отношениях. Она также неполна для описания связывания металл— лиганд, так как имеет дело только с -орбиталями. Можно рассматривать электронные структуры комплексов с точки зрения теории молекулярных орбиталей. Такая теория имеет более общий характер, более полна и потенциально более точна. Она включает модель кристаллического поля как частный случай. [c.421]

    Переходы с молекулярных орбиталей, локализованных преимущественно на лигандах (связывающих а- или я-молекуляр-ных орбиталей), на несвязывающие или разрыхляющие молекулярные орбитали, преимущественно локализованные на атоме металла. Подобные переходы называют переходами с переносом заряда, от лиганда на жталл. Энергии подобных электронных переходов фактически отражают термодинамическую способность к окислению—восстановлению, имеющему место между лигандом и центральным ионом металла, в частности к восстановлению центрального иона лигандом. Зти переходы не могут быть истолкованы в свете теории кристаллического поля. Полуэмпирическая теория молекулярных орбиталей в состоянии представить разумные модели. По всей вероятности, в ближайшем будущем число работ по этому вопросу существенно возрастет. [c.485]

    В обзоре, составленном Джонсом [126], рассмотрено большинство калориметрических работ для неорганических систем, выполненных до 1961 г. Возрождение интереса химиков-неоргаников к теории кристаллического поля, начавшееся после 1952 г., привело к необходимости получения большого числа данных о ДЯс, нужных для проверки теории кристаллического поля и теории молекулярных орбиталей. К сожалению, в те годы таких данных почти не было, и первоначальные попытки скоррелировать экспериментальные данные с теорией в основном базировались [127] на известных к тому времени значениях теплот гидратации, энергии решетки для дигалогенидов и энергии сублимации металлов. Большой интерес вызывала возможность корреляции экспериментальных значений ДЯсДЛя ионов элементов первого переходного ряда с предсказаниями теории кристаллического поля в связи с ожидаемыми эффектами, обусловленными стабилизацией в поле лигандов и энергией спаривания спинов, что должно было сказаться на величине ДЯ . Однако, несмотря на большой теоретический интерес к подобным калориметрическим данным, было проведено, по-видимому, очень мало исследований, посвященных калориметрическим измерениям для других, не высокоспиновых комплексов двухзарядных ионов первого ряда переходных элементов. [c.64]

    Теория кристаллического поля, с которой Вы познакомились в предыдущей главе, получила ишро-кое распространение для объяснения свойств соединений переходных металлов и, в частности, комплексных соединений. Вместе с тем эта теория, основанная на предположении о чисто ионном характере связи между комплексообразователем и лигандами, оказывается бессильной при интерпретации некоторых свойств комплексов, например, влияния природы лигандов на стабильность комплексных ионов. В последнее время для объяснения относительной стабильности молекул и молекулярных ионов, а также свойств комплексных соединений широко используется теория молекулярных орбиталей (ТМО), которая в отличие от ТКП учитывает и ионный, и ковалентный вклады в образование химической связи. В этой главе Вы более последовательно, чем раньше, ознакомитесь с основными положениями и возникновением использования ТМО в неорганической химии. [c.141]

    Мы интерпретировали искажения в рамках теории поля лигандов, но можно пользоваться и теориями молекулярных орбиталей или валентных связей. По теории молекулярных орбиталей четвертый электрон (для конфигурации d ) помещается на разрыхляющей орбитали ф(, которая локализована вдоль оси г при этом связи между ионом металла и двумя расположенными вдоль этой оси лигандами будут ослаблены. В методе валентных связей один набор гибридных орбиталей, йзр (составленный из орбита-лей 36х2-у2, 45, 4рж и Ару), участвует в образовании четырех коротких связей, а другой набор, рй (из орбиталей 4р и Ыг2 ),— в образовании двух длинных связей. [c.239]

    ПОЛЯ лигандов. Монография Ватанабе [7] по применению операторных методов в теории поля лигандов является новым учебником, который заполняет пробел между элементарной квантовой механикой и теоретическими работами, выполняемыми в настоящее время для систем переходных металлов, йергенсен написал две монографии, в одной из которых [8] с точки зрения теории поля лигандов обсуждаются данные оптической спектроскопии до 1960 г., тогда как во второй [9] дан обзор общей научной литературы по комплексам переходных металлов до 1964 г. йергенсену принадлежат также три обширные обзорные статьи. Двумя наиболее интересными в рамках данного обзора являются статья по развитию взглядов на нефелоауксетичёские ряды и анализу литературных данных до 1963 г. [10], а также обзорная статья по дальнейшему расширению области применения теории поля лигандов в оптической спектроскопии [11]. Третья обзорная статья более общего характера посвящена вопросу использования спектроскопии для изучения природы химической связи [12]. Применение теории групп в теории поля лигандов проиллюстриро вано Коттоном [13]. Накамото [14] всесторонне рассмотрел теорию и приложения (до 1963 г.) инфракрасной спектроскопии в химии переходных металлов. Драго [15] представил хотя и вводное по характеру, но достаточно подробное обсуждение применения физических методов в химии переходных металлов. Бальхаузен и Грей [16] опубликовали свои лекционные записи по теории молекулярных орбиталей, включающие приложение теории молекулярных орбиталей к соединениям переходных металлов. В частности, оптическая и инфракрасная спектроскопия, а также теория поля лигандов нашли отражение в исчерпывающих авторитетных обзорах, поэтому в настоящей книге они не будут рассматриваться. Мы представим лишь основные идеи, необходимые для сопоставления с данными по электронному парамагнитному резонансу. Обсуждение прежних достижений метода электронного парамагнитного резонанса (ЭПР) нашло отражение в предшествующих обзорах и также не [c.8]


Смотреть страницы где упоминается термин Теория молекулярных орбиталей поля лигандов : [c.273]    [c.280]    [c.399]    [c.460]    [c.466]    [c.485]    [c.92]    [c.340]    [c.270]    [c.261]    [c.270]   
Механизмы неорганических реакций - Изучение комплексов металлов в растворе (1971) -- [ c.32 , c.52 , c.84 , c.96 , c.98 , c.100 , c.324 , c.327 ]




ПОИСК





Смотрите так же термины и статьи:

Лигандов орбитали Орбитали

Молекулярное поле

Молекулярные орбитали орбитали

Орбиталь лигандов

Орбиталь молекулярная

Поляна теория

Теория молекулярных орбиталей

Теория поля лигандов



© 2025 chem21.info Реклама на сайте