Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метан гибридизация орбиталей

    МЕТАН (СН4), гибридизация и теория отталкивания электронных пар валентно оболочки. Для того чтобы воссоздать картину атома углерода, удерживающего при себе четыре группы, необходимо обратиться к его возбужденному электронному состоянию. Возбужденное состояние атома включает.образование четырех новых внешних орбиталей путем гибридизации 25-орбитали и всех трех 2р-орбиталей. (Квантовая механика постулирует, что мы должны создавать столько же новых орбиталей, сколько вступает в гибридизацию.) Четыре гибридные орбитали обладают одинаковой энергией, и каждая из них обозначается 2 вр (2 означает главное квантовое число, а зр указывает на то, что орбиталь является гибридной и состоит на одну четверть из -орбитали, а па три четверти из р-орбиталей). [c.49]


    Равноценность химических связей в метане можно объяснить, используя представление о гибридизации орбиталей. Гибридизацией называется изменение формы и энергии различных орбиталей одного атома, приводящее к образованию одинаковых (гибридных) орбиталей. [c.303]

    Одно из определений гибридизации атомных орбиталей гласит Гибридизация - это способ, с помощью которого молекула принимает геометрию, обусловленную отталкиванием валентных электронных пар . В этом контексте 5р -гибридизация может быть определена как концепция, призванная объяснить эквивалентность С-Н-связей в метане. [c.50]

    Направленность гибридных орбиталей часто служила основанием для рассуждений о направленности химических связей, особенно при дополнительном условии, что наиболее прочные химические связи образуются по направлениям максимального перекрывания орбиталей двух соседних центров (критерий, использовавшийся при построении гибридных орбиталей Л. Полингом в начале 30-х годов). Более того, конструкции двух, трех и четырех эквивалентных орбита-лей, которые могут быть построены из одной 5 и трех р орбиталей у данного центра и которые получили название вр, зр и зр гибридных орбиталей, служили в свое время обоснованием линейного, тригональ-ного и тетраэдрического расположения соседних атомов (заместителей) у данного центра, хотя, как следует из всего вышесказанного, не гибридизация определяет расположение заместителей, а именно расположение заместителей определяет характер гибридизации орбиталей у данного центра. В частности, прямыми расчетами было показано, что если в базисе отсутствует 5-функция, то с тремя р-функциями, определяющими в конечном итоге сферическое распределение заряда у данного центра, получаются те же самые результаты для оптимального расположения четырех заместителей, например атомов водорода в метане, что и при использовании построений с гибридными орбиталями. [c.354]

    Следует, однако, отметить, что константы спин-спинового взаимодействия не являются только функцией s-характера орбиталей. На примере С—Н-связей в ряду галогензамещенных метанов было показано, что без учета изменений эффективного заряда на 2з-орби-талях углерода можно прийти к неправильному выводу относительно характера гибридизации орбиталей, участвующих в образовании связей [665]. Во избежание такого рода ошибок при анализе пара- [c.144]

    В результате такого перехода образуются четыре неспаренных электрона (один 5- и три р-) 2зр . Это возможно потому, что состояния 25 и 2р очень близки в энергетическом отношении. Затраченная при этом энергия (676,2 кДж/моль) затем с избытком компенсируется при образовании четырех связей. Но, учитывая строение электронной оболочки атома углерода в возбужденном состоянии, можно ошибочно предположить, что, например, в молекуле метана имеются четыре неравноценные связи одна 5 — 5-связь и три 5—р-связи. Это противоречит экспериментальным данным, согласно которым в симметрично построенных соединениях углерода (метан, четыреххлористый углерод и др.) все связи С — Н или С — С1 совершенно одинаковы. Теоретическое объяснение этого факта основывалось на возможной гибридизации (смешении) атомных орбиталей (Л. Полинг, Ж. Слейтер, 1931). Было показано, что химические связи не могут существовать в изолированном, чистом виде они обязательно влияют друг на друга. Так, в случае метана [c.16]


    Эта независимость двухцентровых орбиталей удобна для описания Направленности четырех связей С—Н в метане, их равной длины и аддитивности энергии связи молекулы. Метан ведет себя так, как если бы в его молекуле существовали четыре независимые связи С—Н, каждая из которых бы осуществлялась локализованной парой электронов, по одному с орбитали атома водорода и по одному с гибридной орбитали атома углерода. Однако в действительности электроны делокализованы, а гибридизация — не физическая реальность, а удобный математический прием. [c.199]

    Объяснить прочность И равноценность химических связей в метане СН сопоставлением тетраэдрической модели углерода и гибридизацией 5- и р-орбиталей. [c.175]

    В соединениях с водородом углерод имеет степень окисления —4. Простейший углеводород — метан, его химическая формула СН4. Молекула метана имеет тетраэдрическую структуру, связанную с р -гибридизацией электронных орбиталей в возбужденном состоянии атома углерода. Метан является первым представителем гомологического ряда предельных углеводородов С Н2п-ь2 (см. гл. XI). [c.273]

    Например, при образовании молекулы метана гибридизации подвергаются орбитали атома углерода одна 5-и три р-орбитали. Вид и число орбиталей, участвующи. с в гибридизации, определяет ее тип. Так, в метане проявляется 5рЗ-гибридизация. Рис. 19.1 показывает, как из одной 8- и трех р-орбиталей образуются четыре одинаковые гибридные р -орбитали. В пространстве эти орбитали расположены относительно друг друга под одинаковыми углами и направлены к вершинам тетраэдра. [c.303]

    Рассмотрение гибридизации и размеров орбиталей помогает объяснить другие свойства молекул, кроме длин связей, например относительную кислотность некоторых углеводородов (разд. 8.10) и относительную основность некоторых аминов (разд. 36.11). Следовало ожидать, что более короткие связи будут более прочными установлено, что энергия диссоциации связи С—Н в этилене [104—122 ккал (435,43-10 —510,79-10 Дж)] больше, чем в метане [102 ккал (427,05-10 Дж), разд. 2.161. Как будет показано в разд. 10.18, изменение характера гибридизации может иметь большее значение, чем обычно считают, поскольку оно влияет на устойчивость молекул. [c.145]

    Очевидно, что атом углерода при связывании с четырьмя другими атомами не использует одну освободившуюся 25-орбиталц и три 2р-атомные орбитали, поскольку это должно было бы приводить к образованию трех взаимно перпендикулярных связей (с тремя 2р-орбиталями) и одной отличной от них, не имеющей направления связи (со сферически симметричной 25-орбиталью), чего в действительности нет. В таком -соединении, как, например, метан, все четыре СН-связи, как известно, тождественны и расположены симметрично (тетраэдрически) одна по отношению к другой под углом 109°28 Это можно обг/ясиить тем, что одна 25- и три 2р-атомные орбитали объединяются с тем, чтобы образовать четыре новые идентичные орбитали, способные давать более прочные химические связи (см. стр. 21). Эти новые орбитали известны под названием 5/> -гибридных атомных орбиталей, а их возникновение называют, соответственно, гибридизацией. Следует, однако, иметь в виду, что вопреки приведенной выше схеме гибридизация не есть реально протекающий физический процесс термин гибридизация отражает лишь используемый нами способ рассмотрения реального распределения электронов в молекуле, который состоит в том, что реальные орбитали мы рассматриваем как результат объединения 5- и р-орбиталей. [c.20]

    Таким образом, четыре простые (ординарные) ковалентные связи в метане образованы перекрыванием четырех тетраэдрических (гибридных) орбиталей атома углерода с 15-орбиталями атомов водорода. Атом углерода в молекулах метана и других насыщенных углеводородов находится в состоянии вр -гибридизации. [c.31]

    Математическое описание образования гибридных 5р -орби-талей атома С (в метане) более сложное, но принципиально не отличается от описания гибридных 5р-орбиталей. В результате 5р -гибридизации получаются четыре эквивалентные орбитали, направленные в пространстве к вершинам тетраэдра. Каждая из гибридных 5р -орбиталей имеет два лепестка больший (со знаком плюс) и меньший (со знаком минус) контурная диаграмма электронной плотности для такой орбитали показана на рис. 4.14, а. В дальнейшем будет использоваться схематичное изображение граничной поверхности гибридной орбитали (рис. 4.14,6) и ее условное изображение в виде только связывающего лепестка (рис. 4.14,в). [c.98]

    Теперь проанализируем некоторые схемы гибридизации с точки зрения типов атомных орбиталей, необходимых для построения гибридов. Поскольку необходимые орбитали свободны, то возможно существование определенного набора гибридов. Однако существуют некоторые энергетические требования, которые также важны. Еслн одной или большему числу орбиталей, требующихся для гибридизации, соответствует значительно большая энергия, чем у других, то энергетически невозможно, чтобы для атома в действительности была достигнута полная гибридизация. Так, если обратиться к метану (рис. 3.2) и предположить, что энергия возбуждения намного выше, скажем >П5 ккал/г-атом (а не 96 ккал/г-атом), то конфигурация СНг должна быть более устойчива, чем СН4. Другой пример сера, хотя и имеет б электронов во внешнем слое, образует небольшое число соединений, в которых используются шесть гибридных <1 8р -орбиталей, так как энергия, необходимая для возбуждения атома серы из [Ме]35 3р -основного состояния в [Ме]353р 3 -состояние, столь велика, что не компенсируется (за редким исключением) энергией образования шести связей. По энергетическим соображениям возможна также и смесь гибридных состояний. Две схемы гибридизации, дающие набор тетраэдрически направленных орбиталей, а именно хр и 5 , являются только крайними случаями, и возможно, что набор тетраэдрических гибридов образуется с использованием 5-орбитали и части каждого из двух наборов й у, И рх, Ру, рх- Для углеродз величина -характера, несомненно, неизмеримо мала, так как низшая свободная -орбиталь, а именно Ы, настолько выше 2р-орбитали, что ее использование возможно только с крайним энергетическим дефицитом. В тетраэдрических ионах МпО ", СгО и т. д. Зй-орбитали имеют примерно ту же энергию, что и 4 х-орбиталь, а 4р-орбитали несколько большую. Гибридизация орбиталей атомов Мп и Сг в этих случаях, вероятно, представляет смесь и 5р -гибридов с -характером, большим, чем р-характер. [c.100]


    Понятие гибридизации введено в квантовую химию только как математический прием. Использование его для модельных представлений не, является строгим. Возможны квантовохимические расчеты и бе введения представлений о гибридизации орбиталей. Данные фотоэлектронпой спектроскопии указывают на иеравноценноеть четырех СН-связей в метане. [c.31]

Рис. 38. Виды атомных орбиталей. Для простейших — ближайших к ядру 1я-электронов по оси абсцисс отложена относительная величина г/со, где Со — радиус орбиты, рассчитанный по теории Бора. Максимум радиальной волновой функции наблюдается именно тогда, когда г=ац, что дает представление о неплохой точности боровского приближения. Однако тот же график свидетельствует некоторая, не равная нулю вероятность встречи с 15-электроном существует и тогда, когда расстояние до ядра равно За . Реальная картина атома значительно сложнее, так как здесь отражены результаты расчетов водородоподобного — содержащего всего один электрон — атома. В многоэлектронном же атоме надлежит учесть еще и взаимное влияние электронов, в частности, смешивание , гибридизацию орбиталей, представляющих собой подуровни одного и того же энергетического уровня. Однн из важнейших случаев гибридизации показан внизу. Орбнталь 2 , частично перекрываясь с тремя 2р-орбиталями, порождает четыре совершенно не перекрывающиеся друг с другом — ортогональные — гибрида, р -орби-тали. Они уже направлены по отношению друг к другу не под прямым углом, а под углом 109°28, который соответствует реально существующему углу между связями в тетраэдрических молекулах типа СН4 (метан) Рис. 38. <a href="/info/942052">Виды атомных</a> орбиталей. Для простейших — ближайших к ядру 1я-электронов по оси абсцисс отложена <a href="/info/26482">относительная величина</a> г/со, где Со — <a href="/info/70990">радиус орбиты</a>, рассчитанный по <a href="/info/2385">теории Бора</a>. Максимум <a href="/info/728999">радиальной волновой функции</a> наблюдается именно тогда, когда г=ац, что дает представление о неплохой точности боровского приближения. Однако тот же график свидетельствует некоторая, не равная нулю вероятность встречи с 15-электроном существует и тогда, когда расстояние до ядра равно За . Реальная картина атома значительно сложнее, так как здесь отражены <a href="/info/1014892">результаты расчетов</a> водородоподобного — содержащего всего <a href="/info/761927">один электрон</a> — атома. В многоэлектронном же атоме надлежит учесть еще и <a href="/info/7185">взаимное влияние</a> электронов, в частности, смешивание , <a href="/info/2377">гибридизацию орбиталей</a>, представляющих <a href="/info/1795776">собой</a> подуровни одного и того же <a href="/info/463287">энергетического уровня</a>. Однн из важнейших случаев гибридизации показан внизу. Орбнталь 2 , частично перекрываясь с тремя 2р-орбиталями, порождает четыре совершенно не перекрывающиеся друг с другом — ортогональные — гибрида, р -орби-тали. Они уже направлены по <a href="/info/159284">отношению друг</a> к другу не под прямым углом, а под углом 109°28, который соответствует <a href="/info/1561359">реально существующему</a> углу <a href="/info/26849">между связями</a> в <a href="/info/1679829">тетраэдрических молекулах типа</a> СН4 (метан)
    Метан, СН4, имеет четыре эквивалентных атома водорода, присоединенных к центральному атому углерода. Для соединения с четырьмя атомами водорода углероду приходится использовать все свои валентные орбитали. Путем гибридизации одной 2з- и трех 2р-орбиталей можно получить четыре эквивалентные 5р -гибридные орбитали (рис. 13-5). Каждая 5р -ги-бридная орбиталь имеет на одну четверть 5-характер и на три четверти р-характер. Все четыре хр -орбитали направлены к вершинам правильного тетраэдра, поэтому хр -орбитали иногда называют тетраэдрическими гибридами. В результате перекрывания каждой хр -гибридной орбитали с 1х-орбиталью атома водорода образуются четыре локализованные связывающие орбитали. Наилучщее перекрывание между и 1х-орбиталями получается при помещении четырех атомов водорода в вершины правильного тетраэдра, как это показано на рис. 13-6 (где изображен куб, чередующиеся вершины которого образуют вершины упоминаемого тетраэдра). В молекуле метана восемь валентных электронов (четыре от атома углерода и по одному от каждого из четырех атомов водорода), которые должны [c.555]

    Можно предположить, что углы между связями р -угле-родного атома всегда должны быть углами правильного тетраэдра, т. е. равняться 109°28 однако это справедливо только в тех случаях, когда углерод связан с четырьмя одинаковыми группами, как в метане, неопентане или тетрахлориде углерода. В большинстве же случаев величина валентного угла несколько отличается от значения для правильного тетраэдра например, в 2-бромопропане угол С—С—Вг составляет 114,2° [63]. Точно так же у 5р - и кр-атомов углерода обычно наблюдается небольшое отклонение от идеальных величин валентных углов 120 и 180° соответственно. Такие отклонения объясняются некоторыми различиями в гибридизации у кр -углерода, связанного с четырьмя различными атомами, эти четыре гибридные орбитали, как правило, неэквивалентны, т. е. каждая из них не содержит в точности 25 %, 5- и 75% р-электронов. Поскольку в большинстве случаев четыре атома или группы имеют разную электроотрицательность, каждый из них предъявляет свои требования к электронам углерода [64]. Чем больше электроотрицательность заместителя, тем больший р-характер проявляет атом углерода например, в хлорометане связь С—С1 имеет р-характер более чем на 75 % и за счет этого р-характер остальных трех связей понижен, так как имеются всего три р-орбитали (и одна ), которые должны быть поделены между четырьмя гибридными орбиталями [65]. В напряженных молекулах валентные углы могут очень сильно отклоняться от идеальных значений (разд. 4.23). [c.37]

    В органических соединениях наиболее часто встречаются ковалентные связи, образованные обобществле-нисм пар электронов в результате перекрывания атомных электронных орбиталей двух взаимодействующих атомов, В зависимости от типа перекрывания орбиталей в органических соединениях существуют о- и я-связи. Образование а-связи наблюдается при перекрывании орбиталей двух атомов таким образом, что максимум их перекрывания (и, следовательно, максимум электронной плотности связи) находится на линии, соединяющей центры атомов. Атомы углерода образуют с-связи всегда при помощи гибридных орбиталей (sp , sp или sp). Атомы углерода образуют я-связь при боковом перекрывании р-орбиталей двух взаимодействующих атомов с образованием двух максимумов электронной плотности по обе стороны от линии, соединяющей центры атомов, я-связь менее прочная, чем а-связь, и образуется только тогда, когда между атомами уже есть о-евязь. Атом углерода в состоянии sp -гибридизации образует 4 а-связи, направленные в пространстве под углом 109.5 друг относительно друга. Такой атом называют тетраэдрическим (пример СН4 — метан). Атом углерода в состоянии sp -гибридизации образует 3 ст-связи, направленные в одной Плоскости под-углом 120 , и одну я-связь, направленную перпендикулярно этой плоскости (пример СН2=СН2 - [c.91]

    В гл. 2 уже говорилось о том, что метан содержит два типа связывающих молекулярных орбиталей тотально симметричную 1/1 и три вырожденные орбитали 1/2, и /4, каждая из которых имеет узловую плоскость. Это не означает, что существует какое-то различие в связывании четырех атомов водорода. Водородные атомы размещены те-траэдрически вокруг центрального атома углерода, и связи имеют равную энергию. Чтобы рассчитать энергию диссоциации связи и другие физические характеристики связей углерод - водород, удобно скомбинировать 2в- и три 2р-орбитали атома углерода, и тогда получатся гибридные орбитали 8р (символ 8р указывает, что гибрид получен из одной 28- и трех 2р-орбиталей). Эти гибридные орбитали углерода перекрываются с Ь-орбиталями четырех атомов водорода, образуя четыре тетраэдрические связи. Гибридизация-это математический прием, позволяющий рассчитать энергию и пространственную ориентацию атомов в молекуле. Если исследовать энергетические уровни в метане, например, методом фотоэлектронной спектроскопии, то в действительности мы обнаружим два энергетических уровня, о чем говорилось в гл. 2. Кроме того, величину константы спин-спинового взаимодействия Н—в спектре ЯМР можно интерпретировать через 5-характер центрального атома углерода. [c.35]

    Главные оси четырех sp -орбиталей углерода в метан направлены к вершинам тетраэдра, и валентные углы рав ны 109,5° Таким образом, теория гибридизации дала тео ретическое обоснование тетраэдрической модели атома уг лерода Вант-Гоффа и Ле Беля, предложенной ими в 1874 г Что дала гибридизация в итоге" Во-первых, несмотря н сохранение общей энергии системы (атома), гибридизац дала sp -гибридные орбитали, лучше приспособленные перекрывания, то есть образуются более прочные связи со гласно принципу максимального перекрывания (рис 111) Во-вторых, sp -гибридные орбитали с углами 109,5° обеспечивают минимальное отталкивание между четырьмя связывающими парами электронов [c.71]

    Строение внешнего энергетического уровня углерода, содержащего четыре электрона, следующее 2 8 2 рх2 рУ. Таким образом, место по третьей оси ординат I является свободным. Однако энергетически оказывается выгодным раоспаривание обоих 2 -элект-ронов и переход одного из них на рг-орбиталь (т. е. образование уровня 2 52 рх2 ру2 Рг), при этом образуются четыре химические связи. Это определяет направление связи от центра атома углерода к четырем углам тетраэдра. Таким образом, для метана и его производных принимается полная (зр ) гибридизация, т. е. равнозначность всех орбиталей в метане все связи являются только 0-связями. [c.81]

    Следует различать стадию возбуждения атома, например, углерода (переход 18 2з 2р 1з 2з 2р ), что имеет место в действительности для свободного атома при затрате энергии, и стадию гибридизации, как наглядный способ изображения результата связывания, например, атома С с четырьмя атомами Н при образовании молекулы метана. Гибридизация валентных орбиталей атома, образующего связи с более чем одним ато-мом-партнером, сама по себе не есть следствие его возбуждения она постулируется только для интерпретации эквивалентности сформированных связей. Атом С образует четыре одинаковые с энергетической и геометрической точки зрения связи С—Н в метане не потому, что он реально проходит стадию хр -гибриди-зации своих орбиталей перед их перекрыванием с 15-орбиталями атомов Н, но потому, что образование одинаковых связей термодинамически более выгодно, чем трех одинаковых связей (за [c.99]

    Электроотрицательность элемента не является постоянной характеристикой для его атомов в различных молекулах, а зависит от его валентного состояния и окружения. Это утверждение является, по существу, важнейшим достижением концепции Полинга. Степень удерживания атомом электронов определяется двумя факторами его зарядом и гибридизацией его валентных орбиталей. Положительно заряженный атом (ион, атом в молекуле) обладает большей способностью удерживать электроны, чем строго нейтральный атом. С другой стороны, х-орбитали атомов имеют низкую энергию и, следовательно, прочно удерживают электроны. В зависимости от вклада х-орбитали в гибридизацию электроотрицательность изменяется. Известно, что реакционная способность углеводородов (подвижность атомов водорода) зависит от класса углеводорода, т. е. от типа гибридизации атомных орбиталей углерода [48]. Так, в метане СН4 (хр -гибридизация, вклад х-орбитали равен 25 %) атомы водорода мало реакционноспособны, а электроотрицательность углерода и водорода примерно одинакова. В этилене С2Н4 (хр -ги-бридизация, вклад х-орбитали равен 33 %) атомы водорода более подвижны, т. е. электроотрицательность углерода выше, чем у водорода. Наконец, в ацетилене С2Н2 (хр-гибридизация, вклад [c.117]

    Понятие электроотрицательности важно также в теоретической органической химии, где можно установить корреляцию между химической реакционной способностью и плотностью электронного заряда на отдельных атомаЗс. Энергия ионизации -электрона больше, чем р-электрона, так как -электрон находится под более сильным воздействием ядра. Это означает, что чем больше -характер гибридной (зр) орбитали, тем больше будет эффективная электроотрицательность атома, на котором образуется эта орбиталь. Таким образом, электроотрицательность атома углерода в ацетилене (5р-гибридизация) больше, чем в метане, где углерод использует гибридные р= -орбитали. Этим объясняются кислотные свойства ацетилена, например легкость, с которой один из его атомов водорода может быть замещен натрием. [c.131]

    Принято называть р -гибридизацией описанный выше наиболее распространенный случай, когда данный атом углерода с помощью одной 25-орбитали и трех 2р-орбиталей образует четыре 0-связи с четырьмя атомами (например, метан, этан). При двойной связи, используя одну орбиталь на образование я-связи, атом углерода с помощью одной 25-орбитали и двух 2р-орбиталей образует три а-связи с тремя атомами, это называют 5/7 -гибридиза-цией (этилен). И, накрнец, р-гибридизацией называют случай, когда при наличии тройной связи (ацетилен) или двух двойных [c.62]


Смотреть страницы где упоминается термин Метан гибридизация орбиталей: [c.13]    [c.100]    [c.537]    [c.53]    [c.232]    [c.257]    [c.522]   
Как квантовая механика объясняет химическую связь (1973) -- [ c.173 ]




ПОИСК





Смотрите так же термины и статьи:

Гибридизация

Гибридизация орбиталей с орбиталями

Метан промотирование, гибридизация и локализованные орбитали

Орбиталь гибридизация



© 2025 chem21.info Реклама на сайте