Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вязкость хлоридов

    V.9.5. Вычислить и сравнить скорости оседания в воздухе частиц аэрозоля хлорида аммония радиусом 10 , 10 и 10" м плотность дисперсной фазы р= 1,5-10 кг/м , плотностью воздуха можно пренебречь вязкость дисперсионной среды (воздуха) л = 1,8-10 - Па-с температура 7 = 293 К. [c.124]

    Вязкость хлорида калия во всем интервале температур, при которых производились измерения, совпала с данными работы [9], [c.96]


    Риг. 2. Зависимость вязкости. хлоридов от температуры  [c.77]

    Для хлорида натрия наши данные совпадают с литературными [1, 4, 5] только при 950—1000° С. При 810—820° С вязкость хлорида натрия в наших опытах получилась на 25—30% ниже. [c.97]

    Из наших данных по вязкости хлорида натрия по формулам и методу Г. М. Панченкова [11] была рассчитана теплота испарения хлорида натрия, которая оказалась равной 39 500 кал моль, что почти совпадает с экспериментально измеренной величиной 40 810 КАл/лоль [11]. [c.97]

    В таблице приведены результаты измерений вязкости расплавленных хлоридов натрия, калия, магния и бария. Вязкость хлорида бария измерена впервые. По нашим данным, его вязкость оказалась в 2,2—2,4 раза меньше по сравнению с результатами, полученными в работе [1]. Это вероятно объясняется недостаточностью защиты расплавов от гидролиза в опытах [1]. [c.96]

    IV.5.15. Вычислить если известно, что потенциал течення, определенный при продавлнвании раствора хлорида калия через корундовую диафрагму под давлением 20-10 Па, равен 22,510 В. Удельная проводимость раствора 1,37-10 Ом- -м- , коэффициент эф1фектив-ности диафрагмы а=1,8 вязкость раствора т]=1 -10 Па-с е = 81. [c.85]

    Формамид обладает необычной диэлектрической постоянной (110), существенно превосходящей диэлектрическую постоянную воды. Этот растворитель находится в жидком состоянии в удобной для работы области температур (2,5-193 °С) и имеет низкое давление паров при комнатной температуре. По вязкости он превосходит ДМФ (3,3 сП по сравнению с 0,80 сП для ДМФ). В отличие от ДМФ формамид лишь эпизодически применялся в качестве растворителя электролитов, причем область рабочих потенциалов в формамиде оказалась уже, чем в ДМФ. Более высокая диэлектрическая постоянная вообще не дает особых преимуществ формамиду перед ДМФ, так как диэлектрическая постоянная последнего также достаточно велика, чтобы обеспечить адекватную проводимость растворов. В основном с помощью формамида можно варьировать условия опыта путем изменения определенных свойств растворителя. Формамид - хороший растворитель для различных неорганических соединений, включая хлориды, нитраты и сульфаты ряда переходных и щелочноземельных металлов. Подобно воде, формамид растворяет более полярные органические соединения и смешивается с водой он очень гигроскопичен и легко гидролизуется с образованием уксусной кислоты и аммиака. Формамид использовался и качестве растворителя при полярографии на КРЭ некоторых переходных элементов и ряда органических соединений. [c.21]


    Температурная зависимость вязкости хлоридов элементов III—V групп [c.78]

    В качестве запирающих жидкостей при хранении газов наиболее часто июпользуют воду или, лучше, водные растворы солей, а в отдельных случаях — растворы кислот, глицерин, вазелиновое масло и другие жидкости. Обычно применяют следующие солевые растворы 20%-ный раствор сульфата натрия, содержащий 2—5% серной кислоты почти насыщенный раствор хлорида натрия, состоящий из 22 вес. ч. хлорида натрия и 78 вес. ч. воды насыщенный раствор хлорида кальция, приготовленный растворением хлорида кальция в равном по весу количестве воды при 30 °С (при охлаждении раствора из него выделяется избыток, хлорида кальция). Недостатком последнего раствора является его большая вязкость. [c.20]

    Исследовано [226] влияние на скорость фильтрования жидкости изменения вязкости ее тонкого слоя, непосредственно соприкасающегося со стенками пор. Опыты проведены с тонкодисперсным песком и глиной, через слои которых фильтровались вода и раствор хлорида натрия. Установлено, что граничная вязкость раствора электролита, деленная на объемную вязкость раствора, изменяется в зависимости от концентрации электролита. При этом в области концентраций до 10% указанное отношение вязкостей уменьшается, а при дальнейшем увеличении концентрации остается постоянным. Это объяснено наличием в тонкодисперсных пористых системах ориентированных граничных фаз. Отмечено, что в грубодисперсных пористых системах влияние граничной вязкости не наблюдается. [c.202]

    Электролит — хлорид натрия, сульфат аммония или какую-либо другую соль — обычно добавляют для изменения вязкости мицеллярного раствора. [c.187]

    Исходные данные расход раствора хлорида натрия = 50 м /ч плотность раствора р = 1197 кг/м вязкость раствора ц,ж — 1,89-10 Па-с, поверхностное натяжение а = 7 -10 кг/м температура десорбции 20 С  [c.221]

    Перекачиваемой средой (ингибиторами) могут быть водный раствор хлорида кальция, метанол, солярное масло, газовый конденсат и другие жидкости, не агрессивные к материалам проточной части, температурой от —30 до +50 °С и кинематической вязкостью до 2 см /с. [c.35]

    Соли металлов Хлорид натрия или сульфат меди 0,01-1,0 Снижение гидравлического сопротивления - повышение коэффициента теплопроводности жидкости и снижение ее вязкости А. с. 621945 [c.273]

    В зависимости от содержания хлора вязкость получаемых масел изменяется весьма широко, Когазин II, содержащий 40% хлора, с успехом применяют в кожевенной промышленности. Его получают, пропуская хлор в когазин II при 95—100° в освинцованном реакторе. После прекращения выделения хлористого водорода (реакция завершается, когда продукт реакции имеет плотность 1,075 при 60°) продукт перемешивают с кальцинированной содой и в заключение обрабатывают сульфатом натрия. Стабилизируют хлорид добавкой 0,4% феноксипропеноксида. Такие масла легко эмульгируются и применяются в текстильной промышленности как замасливающее средство. [c.251]

    ДЕНИЖЕ РЕАКТИВ, раствор HgSO< в разбавл, H2SO4. Примен. для обнаружения третичных спиртов, с к-рыми при нагрев, образует желтый или красный осадок. Такие же осадки дают олефины и сложные эфиры третичных спиртов. Реактив предложен Гж, Дениже в 1898. ДЕПАРАФИНИЗАЦИЯ, проводится с целью снижения содержания в нефт. фракциях высших (начиная с Сю) алиф. предельных углеводородов. Из-за сравнительно высоких т-р плавления последних ухудшаются эксплуатац. св-ва нефтепродуктов (дизельных топлив, смазочных масел и др.), получаемых на основе нефт, фракций. Д, фракций дизельного топлива и маловязких вакуум-днстиллятов осуществляют с иомощью карбамида (или тиокарбамида), образующего с нормальными парафинами клатраты. Нефт, кырье смешивают с водным или спиртовым р-ром карбамида (тиокарбамида), к смеси для снижения вязкости среды и улучшения массообмена добавляют р-ритель (изооктап, метилен-хлорид, бензин), а для ускорения образования клатрата — активатор (низший алиф, спирт, кетой). Отделение клатрата (отстоем, фильтрованием, центрифугированием и др.) и удаление легкокипящих компонентов приводят к снижению т-ры застывания нефтепродуктов. [c.151]

    Электролит для получения магния должен обладать высокой электропроводностью (выше, чем у магния), большой плотностью, малой вязкостью, высоким поверхностным натяжением на границах расплав— воздух и металл — электролит. При выборе электролита можно пользоваться диаграммами зависимости физикохимических свойств электролита от его состава (рис. XVI-5). Для улучшения этих свойств к электролиту добавляют хлориды натрия, кальция, калия и бария в таких количествах, чтобы содержание хлорида магния составляло не более 18%. [c.513]

    Щелочные растворы индикатора чувствительны к действию окислителей, поэтому индикатор добавляют непосредственно перед титрованием и вводят в раствор небольшое количество аскорбиновой кислоты или гидроксиламина. Поскольку водные растворы эриохрома Т неустойчивы, обычно его в сухом виде смешивают с хлоридом натрия (для разбавления). Для этой же цели добавляют раствор триэтаноламина, разбавленный для снижения вязкости небольшим количеством абсолютного спирта или концентрированным аммиаком. [c.186]


    Примечание. Вязкости тройной системы из хлоридов магния, лития и калия подробно освещены в статье Л. К. Кузнецова и X. Л. Стрельца [94). [c.200]

    Электропроводность и вязкость растворов N 504 — Н1СЬ при изменении их соотношения и при температуре 60° С исследованы Н. Н. Куликовой и А. П. Селигерской. Оказалось, что удельная электропроводность повышается пропорционально с ростом доли N 012 и в растворе хлорида она в 2,5 раза выше, чем в растворе сульфата той же концентрации. Вязкость хлорида никеля значительно ниже, чем сульфата, что весьма существенно, если учесть необходимость фильтрации больших объемов электролита. [c.510]

    Последняя, как известно, у шлаков значительно больше, чем у расплавленных солёйГНёредкб вязкость шлаков в сотни и тысячи раз превосходит вязкость хлоридов. Естественно, что это обусловливает сильное снижение к. Более того, если сравнивать величины и у шлаков и солей при одинаковой вязкости. или точнее говоря, сопоставлять произведения щ, то в первом случае они окажутся больше, чем во втором. [c.167]

    Пт п мпературнпп зависимости вязкости хлоридов была вычислена вязкость их в точке кипения. Эти значения, а также литературные дан ные приведены в табл. 2. Наши измерения находятся в удовлетворительном согласии с данными других авторов. Исключение составляет хлорид iibiiiibHKa. Расхождение в значениях вязкости для As ls составляет 25%. [c.79]

    Полученные экспериментальные данные по вязкости хлоридов были использованы для опенки их коэффициентов самоднффузии. Расчет производился по форм ле [c.79]

    Введение некоторых количеств неорганических солей в водный раствор эмульгатора способствует снижению критической концентрации мицеллообразования (ККМ), повышению солюбилизации эмульгируемых мономеров, снижению поверхностного натяжения и повышению устойчивости образующегося латекса, улучшению его реологических свойств. В отсутствие электролитов образуется латекс, характеризующийся высокой вязкостью, вследствие чего нарушается нормальный отвод теплоты реакции полимеризации. В особенности высокую вязкость имеют латексы, полученные с применением жирнокислотного эмульгатора. В производстве бутадиен-стирольных каучуков применяются хлорид калия и тринат-рийфосфат (НазР04 12НгО), которые вводят в раствор эмульгатора совместно или в отдельности. Выбор указанных электролитов основан на отсутствии их влияния на скорость полимеризации и высаливание эмульгатора. [c.245]

    Проведены опыты в трех стеклянных колоннах высотой 30, 60 и 120 см н диаметром 38 мм, заполненных плотным слоем песка пористостью 0,35—0,40, по вытеснению водного раствора хлорида натрия одной концентрации таким же раствором другой концентрации [246]. При этом установлено, что процесс вытеснения протекал различно в завнсимостн от того, использовался ли в качестве вытесняющей жидкости раствор большей концентрации и соответственно большей вязкости или применялся раствор меньшей концентрации и соответственно меньшей вязкости. После того как вязкость менее концентрированного раствора при добавлении необходимого количества сахарозы стала равной вязкости раствора большей концентрации, процесс вытеснения протекал одинаково, независимо от того, какая из жидкостей использовалась в качестве вытесняющей, В данном случае закономерности процесса вытеснения соответствовали закономерностям этого процесса при использовании более концентрированной и более вязкой вытесняющей жидкости. [c.220]

    Как известно, нефть вместе с сопутствующей ей пластовой водой залегает в геологических формациях, состоящих из таких пород, как песчаники, известняки, доломит и др. Породы, в которых залегает нефть и с которыми контактирует пластовая вода (хлориды, сульфиды, карбонаты и др.), определяют состав и концентрацию минеральных солей, содержащихся в ней. В процессе добычи нефти обычно сопутствующая пластовая вода своим напором вытесняет нефть из пористых пород пласта к скважинам. В зависимости от структурных свойств пласта, скорости отбора нефти, ее вязкости и по другим причинам приток воды к скважине вместе с нефтью может быть разным. В начальный период добычи на новом месторождении из скважин часто получают безводную или малооб-водненную нефть. Однако со временем обводненность добьшаемой нефти увеличивается с различной скоростью и на старых промыслах иногда достигает 80-90%. Средняя обводненность добьшаемой в нашей стране нефти в настоящее время превышает 50%. [c.5]

    Для определения показателя эмульсионности нефти необходимы общий анализ нефти (определение плотности, вязкости при двух температурах, содержания асфальтенов, силикагелевых смол, парафина, хлоридов и коксуемости)  [c.31]

    В слабокислой среде с увеличением содержания в растворе НС1 степень диссоциации аминогрупп повышается. В результате электростатическое отталкивание групп — НЫН возрастает и происходит развертывание молекулярных клубков полиамфолита. Это сопровождается увеличением вязкости и уменьшением мутности раствора. При значительном содержании НС1 (большое количество хлорид-ионов) степень диссоциации основных групп понижается в результате образования солевой формы КЫНзС1, а эффективные размеры молекулы снова уменьшаются. [c.152]

    Пример в 792 кг неочищенного ОМ, нагретого до 85"С, вводится 1.180 кг NaOH в виде 25%-ного раствора и 1.980 кг Na I насыщенного водного раствора, интенсивно ггёремешива-ется 2 часа, подвергается 24-часовому отстаиванию, отделяется вода и мехпримеси и получается 720 кг очищенного масла с вязкостью 25.52 мм /сек при 50°С и 6.22 мм сек при 100°С, температура застывания — 25°С, кислотное чиЬло — 0.08 мг КОН/г, содержание хлоридов 29 мг/л, воды 0.8%, кокса — 0.5%, золы — 0.3%, серы — 0.9%, [c.236]

    Удаление электролита увеличивало толщину диффузного двойного слоя, в результате чего в стационарном состоянии внутри агрегатов удерживалось значительно больше непрерывной фазы. Это увеличивало эффективную объемную концентрацию дисперсной фазы, так как при низкпх скоростях сдвига агрегаты перемещались как отдельные единицы. Добавка электролита к диализованному латексу изменяла зависимость, и вязкость уменьшалась при увеличении концентрации электролита до тех пор, пока не достигала минимального значения. Это сопровождалось изменением режима от неньютоновского до ньютоновского. Лаурилсульфат натрия был гораздо менее эффективным, чем хлорид натрия. Например, i,И iQ моль лаурилсульфата натрия на 1 г латекса снижали вязкость при 1 сек от 505 до 425 пз, а та же концентрация хлорида натрия снизила вязкость до 0,367 пз. [c.298]

    Mg b, а электропроводность и напряжение разложения — близкие к таковым для КС1. Температура плавления смесей четырех хлоридов при замене в указанном выше составе некоторого количества КС1 на a lz около 500° С. Добавки хлоридов калия и натрия уменьшают также вязкость электролита и снижают гидролиз Mg la- [c.291]

    Следует отметить, что плотность тока выделения водорода в существенной степени зависит от условий электролиза, главным образом от наличия загрязнений на поверхности ртутного катода. Содержащиеся в растворе примеси, например ионы железа и других металлов, разряжаются на катоде, что приводит к увеличению вязкости ртутного катода, снижению линейной скорости его протекания и, в некоторых случаях, появлению на поверхности ртутного катода островков выделившихся металлов, на которых перенапряжение водорода существенно ниже, чем на ртути. Все это способствует ускорению выделения водорода, подщелачиванию раствора электролита, повышению концентрации в растворе хлороксидных соединений и снижению выхода по току щелочного металла как за счет ускорения выделения водорода на катоде, так и за счет увеличения плотности восстановления растворенного хлора и хлороксидных соединений. Поэтому основными условиями достижения высоких выходов по току щелочного металла являются хорошее перемешивание ртутного катода, что достигается при высокой линейной скорости его движения, и высокая чистота поступающего на электролиз раствора хлорида металла, а также достаточно высокая плотность тока электролиза, существенно превышающая скорость побочных реакций. [c.87]

    Процесс растворения нефелина в соляной кислоте происходит в избытке кислоты с образованием монокремниевой кислоты и гидроксида алюминия, хлоридов натрия и калия. Процесс идет при комнатной температуре с выделением некоторого количества теплоты. Последующее образование геля происходит путем агрегации с образованием в зоне областей трехмерных полимерных сеток. Такие области микрогеля продолжают увеличиваться, потребляя кремнезем из золя до тех пор, пока твердый микрогель не займет примерно половину всего объема. При этом вязкость становится очень большой и золь достигает точки геля . Максимальная по времени устойчивость золей с наиболее продолжительным периодом гелеобразования наблюдается при pH = 1,5 3. [c.270]

    Полученные значения температур сведены й табл. 3. Учитывая, что растворы, содержащие хлорид, роданид и сульфат аммония, подчиняются правилу [6] для растворов электролитов с обшил ионом (с достаточной для инженерных расчетов точностью), можно использовать данный метоА предсказания физико-химических величин без до полнительной проверки. Имеются сведения [7] . позволяющие использовать правило [6] длярасче та теплоемкости и вязкости смешанных растворов по свойствам бинарных систем  [c.27]

    ВХВД-40 (сополимер хлористого винила с винилиден-хлоридом), титановых белил и технического углерода (сажи) в органических растворителях. Грунтовка ХС-010 (ГОСТ 9355—60) представляет собой раствор смолы ВХВД-40 с тальком, железным суриком и свинцовым кроном, а лак ХС-76 (ГОСТ 9355—60) —раствор смолы ВХВД-40 в органических растворителях. Грунтовка, эмаль и лак наносятся методом пневматического распыления. Лакокрасочный материал до рабочей вязкости доводят растворителем Р-4 (ГОСТ 7827—74). Для обеспечения необходимой сплошности и антикоррозионных свойств толщина покрытия должна составлять 85— 100 мкм. [c.50]

    Так как полихлоропрен способен к термопулканизацип, вводить какие-либо ингредиенты и готовить латексную смесь не надо. Коагулянт полный раствор хлорида кальцин (я 25 % мае.), содержащий в качестве загустителя белую сажу (4,2 % мае.), готовят в реакторе, и после контроля по вязкости подают в первую панну макания. Латекс из емкости храпения по стек. 1янным трубопроводам, сливают во вторую ваппу макаиия. [c.305]

    Окислы двухвалентных металлов (2п0, Mg0, РЬО) реагируют с хлорированным полипропиленом (наиболее предпочтителен полимер с молекулярным весом >20 000 и содержанием хлора >20%) с образованием эластомеров, обладающих прекрасной озоностой-костью. Эту реакцию часто проводят в присутствии меркапто-бензтиазола [72, 78, 80, 81]. Пленки, волокна и формованные изделия из полипропилена можно подвергнуть действию хлора так, чтобы хлорирование проходило лишь в тонком поверхностном слое. Благодаря повышенной полярности хлорированной поверхности улучшается ее способность окрашиваться и воспринимать печать, чернила, лаки, клеи, фотоэмульсию и т. п. [82—85]. Хлорированный полипропилен размягчается легче, чем нехлорированный (рис. 6,4), вследствие чего улучшается его свариваемость. Раствор низкомолекулярного хлорированного полипропилена в смеси с красителями образует несмываемые чернила [86]. Хлорированный полипропилен в чистом виде или в смеси с немодифицированным полипропиленом может быть рекомендован для склеивания металлов, бумаги, стекла, а также поливинилхлорида и поливинилиден-хлорида [87]. Пленки из хлорированного полипропилена применяются в качестве проницаемых мембран [88] с высокой удельной ударной вязкостью при изгибе [69]. Большой интерес представляет галогенирование твердого полипропилена в целях удаления [c.135]


Смотреть страницы где упоминается термин Вязкость хлоридов: [c.110]    [c.166]    [c.285]    [c.225]    [c.190]    [c.558]    [c.229]    [c.206]    [c.242]    [c.170]   
Справочник по производству хлора каустической соды и основных хлорпродуктов (1976) -- [ c.315 ]




ПОИСК





Смотрите так же термины и статьи:

Вязкость хлорида алюминия

Вязкость хлорида цинка

Калия хлорид вязкость растворов

Плотность и вязкость растворов, содержащих хлорид натрия

Серебра хлорид, растворимость Серы двуокись вязкость

Хлорид натрия Поваренная соль вязкость растворов

Хлориды металлов относительная вязкость растворов



© 2025 chem21.info Реклама на сайте