Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализаторы цианистого водорода

    На 1 кг исходного пропилена получается 0,73 кг акрилонитрила, 0,11 кг ацетонитрила и 0,13 кг H N. Дальнейшие исследования катализатора и усовершенствование процесса могут привести к повышению выхода акрилонитрила до 1,01 кг на 1 кг пропилена. Регенерация части цианистого водорода, являющегося побочным продуктом, может повысить выход. [c.121]

    Цианистый водород получается при окислении смеси аммиака и метана в присутствии катализатора—металлической сетки из [c.325]


    Акрилонитрил получают из ацетилена и цианистого водорода при атмосферном давлении. Катализатором служит водный раствор однохлористой меди, содержащий некоторое количество хлористого водорода и хлориды щелочных металлов (содержание воды 36 вес. %). Производительность составляет от 16 до 24 кг/м раствора в час. [c.331]

    Цианистый водород получают сжиганием природного газа в присутствии аммиака на платиновом катализаторе. Продукты реакции после охлаждения поступают в аммиачно-абсорбционные башни для удаления из пих аммиака. Его улавливают раствором сульфата аммония и разбавленной серной кислотой. [c.162]

    С промышленной точки зрения метан является более перспективным исходным материалом для синтеза цианистого водорода, чем ацетилен. Реакции (1) и (2) весьма эндотермичны, и в случае применения обычного трубчатого реактора интенсивный подвод большого количества тепла для поддержания температуры 1500° представляет в промышленных условиях очень значительные трудности. Выше упоминалось о проведении реакции в электрической дуге как об одном из решений этой проблемы. Вторым решением является сожжение части реагирующих газов внутри реактора. Последний способ был применен при осуществлении реакции (2) и используется сейчас при промышленном производстве цианистого водорода из нефтяного сырья. Этот метод разработан в начале тридцатых годов Андрус-совым [6], который пропускал при 1000° над платиновым катализатором смесь аммиака, кислорода и метана, полученного гидрированием угля или из коксовых газов. В смеси должно находиться достаточное количество кислорода, чтобы могла протекать реакция [c.376]

    Цианистый водород можно получать непосредственно из аммиака и окиси углерода в присутствии катализаторов дегидратации, например окиси алюминия  [c.377]

    Существует два способа присоединения цианистого водорода к ацетилену. По первому из них смесь газов можно пропускать при 400—500° над цианистым барием как катализатором [24]. Степень превращения и выходы оказываются невысокими. Кроме того, приходится сталкиваться с проблемой выделения акрилонитрила из горячих газов. В настоящее время по этому процессу не работают. [c.382]

    С цианистым водородом акрилонитрил конденсируется в присутствии щелочных катализаторов, образуя динитрил янтарной кислоты  [c.384]

    Интересно развивался промышленный синтез нитрила акриловой кислоты. Вначале использовали взаимодействие ацетилена с цианистым водородом в присутствии катализаторов в жидкой и газовой фазах в дальнейшем в связи с резким увеличением потребности был освоен прогрессивный метод синтеза нитрила акриловой кислоты окислительным аммонолизом пропилена. [c.11]


    Недостатком метода является образование большого количества трудноотделимых побочных продуктов, низкая производительность катализатора, большие капиталовложения по ацетилену и цианистому водороду, опасность процесса. Данный метод значительно уступает более экономичному окислительному аммонолизу пропилена. [c.236]

    При нагревании до 500 ° и в присутствии ТЬОг в качестве катализатора окись углерода взаимодействует с аммиаком с образованием цианистого водорода  [c.198]

    Для получения акрилонитрила этим методом сначала смешивают ацетилен с цианистым водородом (12 1) и образовавшуюся смесь, нагретую до 80° С, под небольшим давлением подают в реактор, в котором находится катализатор — подкисленный раствор однохлористой меди, хлористых натрия и калия. Из образовавшейся парогазовой смеси акрилонитрил полностью поглощается [c.175]

    При взаимодействии окиси этилена с цианистым водородом в присутствии диэтиламина и каустической соды в качестве катализатора [119] образуется этиленциангидрин по реакции [c.635]

    Эквимолекулярные количества окиси этилена и цианистого водорода вводят в реактор 1. В реакторе они смешиваются с раствором катализатора из цианида натрия и диэтиламина. Время пребывания реагирующих веществ в реакторе от получаса до часа. Давление в реакторе немного выше атмосферного, температура 60°. Выход этиленциангидрина составляет 85—90%. [c.636]

    Выходящая из аппарата 1 реакционная смесь насосом 13 подается на колонну для отгонки легколетучих 2, где продукт освобождается от окиси этилена и цианистого водорода. Часть этиленциангидрина, выходящего из нижней части аппарата 2, абсорбирует окись этилена и цианистый водород в абсорбере 3 до их возврата в реактор. Абсорбция проводится при температуре 21° и давлении 0,66 ати. Остальное количество кубового продукта из аппарата 2, содержащее этиленциангидрин в количестве, эквивалентном образовавшемуся в реакторе, испаряется в испарителе 4 при 150° и 100 мм рт. ст. Отработанный катализатор выбрасывается. [c.637]

    Активным катализатором при этом является платина. Реакция не сопровождается образованием побочных продуктов. По литературным данным [81, 82] выход цианистого водорода превышает 80% на введенный аммиак и 91% на метан. Реакция эндотермична. Высокая температура, необходимая для инициирования и дальнейшего протекания реакции, должна поддерживаться при помощи внешнего обогрева. Полузаводская установка с применением обогреваемого газом реактора, содержащего керамические трубы, облицованные платиновым катализатором, эксплуатировалась в ФРГ [6]. Установлено [3, 4], что если наряду с метаном и аммиаком реакционная смесь содержит кислород, то цианистый водород получается с несколько меньшим выходом, но реакция протекает без необходимости дополнительного обогрева вследствие положительного теплового эффекта ее. Эту реакцию синтеза цианистого водорода можно представить уравнением [c.224]

    Реакция (3), вызывающая расходование 8—12% общего количества превращенного аммиака, представляет собой непроизводительную потерю, которую можно несколько уменьшить сокращением продолжительности контакта. В практических условиях реакцию проводят, пропуская смешанный газовый поток через большое число слоев платиновой тонкой сетки при температуре около 1000° С продолжительность контакта чрезвычайно мала. Аммиак и метан подают в приблизительно эквимолекулярном отношении с несколько меньшим, чем стехиометрическое, количеством воздуха. Степень превращения аммиака в цианистый водород составляет около 60%. Метан и кислород расходуются полностью, превращаясь в окись углерода, водород и воду, содержащиеся в отходящем газе. Несколько более высокая степень превращения, а также больший срок службы катализатора могут быть достигнуты при использовании реакторов специальной конструкции [c.225]

    Механизм реакций, протекающих в присутствии кислорода, еще не выяснен, хотя для его объяснения и предложены различные теории. Общеизвестно, что на платиновом катализаторе протекает окисление аммиака в окись азота. Эта окись азота взаимодействует с метаном на том же катализаторе, образуя цианистый водород по уравнению [c.226]

    Аналогично получению цианистого водорода из метана и окиси азота взаимодействие окиси азота с пропиленом приводит к образованию акрилонитрила. Так, при 450—500° С в присутствии серебра на кремнеземе в качестве катализатора при степени превращения пропилена 11—12% получается акрилопитрил с выходом 11—12% [35]. В 1959 г. также сообщалось [c.227]

    Широкое применение находит синтез нитрилов пропусканием смеси. органической кислоты с аммиаком над дегидратирующими катализаторами. Таким способом в нитрилы перерабатывают жирные кислоты из различных видов сырья последующим гидрированием их превращают в весьма ценные длинноцепочечные амины. Однако в настоящее время эти амины встречают конкуренцию со стороны аналогичных продуктов, получаемых взаимодействием цианистого водорода с алкенами разветвленного строения, вырабатываемыми полимеризацией изобутилена [69]. [c.230]

    Большое внимание уделяли синтезу этилендиамина, при котором не образовались бы высшие полиамины однако до сих пор еш е не разработаны методы, пригодные для промышленного применения. При гидрировании аминоацетонитрила, полученного из цианистого водорода, формальдегида и аммиака, образуется этилендиамин [72]. Для этого гидрирование необходимо проводить быстро, что достигается применением большого относительного количества катализатора и высоких давлений водорода. [c.234]


    В — при 530°С. И — реакторы из стали с высоким содержанием Сг, А1 и 51 (сихромаль) при получении цианистого водорода из окиси углерода и аммиака в смеси с окисью алюминия, окисью цинка и пятиокисью ванадия в качестве катализатора. [c.500]

    Новое весьма важное направление переработки пропилена — его окисление в присутствии катализаторов в акролеин, являющийся дешевым сырьем для органического синтеза. Акролеин легко полимеризуется. Хлорированием в жидкой фазе при комнатной температуре из него получают а, Р-дихлорпропиональде-гпд — полупродукт для получения хлоракрилатпых смол и фармацевтических препаратов. Акролеин может вступать в реакцию со спиртами, кислотами, водой, бисульфатом натрия, ангидридами кпслот, цианистым водородом, аммиаком, аминами п этиленовыми соединениями, образуя при этом ценные вещества. Его можно также гидрохлорировать и гидрировать. [c.78]

    Синтез акрилонитрила из ацетилена протекает вследствие взаимодействия последнего с цианистым водородом на катализаторах. Указанный способ широко распространяется и является конкурирующим с методом получения акрилонитрила из этилена п синильной кнслоты. В 1958 г. мощность производства акрилонитрила в США достнгла 135 тыс. mizod. Акрилонитрил, как указывалось ранее, необходим для получения специального нитрильного каучука, а также полиакрилонитрила, служащего для выработки разработанного в СССР искусственного волокна нитрон — заменителя шерсти. [c.80]

    Современную технологию этого процесса можно показать на примере производства цианистого водорода из коксового газа, обогащенного метаном [7]. Содержание метана в газе было увеличено за счет гидрирования части окиси углерода, присутствующей в том же газе. Смесь газов, которую вводили в реактор, содержала 12—13% метана, 11 —12% аммиака и остальное — главным образом сухой воздух. Катализатором служила платинородиевая сетка. Процесс проводили при 1000°. Выходящие из реактора газы, содержавшие около 8% цианистого водорода, немгдленно охлаждали до 150°, после чего непрореапфсвавший аммиак удаляли промывкой водным раствором кислого сульфата аммония. Освобожденные от аммиака газы промывали водой, охлажденной до 5°, и получали 3%-ный раствор синильной кислоты, перегонка которого давала 100%-ный цианистый водород. Выход цианистого водорода равнялся 70%, считая на метан, и 60%, считая на аммиак. Вместо того чтобы улавливать непрореагировавший аммиак в [c.376]

    В процессе Андруссова (метод частичного сожжения) пользуются катализаторами, применяемыми при окислении аммиака в окись азота (одна из стадий производства азотной кислоты гл. 3, стр. 54). Образование цианистого водорода из окиси азота и органических соединений наблюдал еще Кульман в 1839 г. Позднее запатентован способ получения цианистого водорода, согласно которому смесь окиси азота и метана или его гомологов пропускают при 1000° над платиновым катализатором [11]. [c.377]

    Линии I — цианистый водород II — окись этилена III — катализатор IV — пар V — отработанный катализатор VI — топливо VII — органический теплоноситель VIII — к аппарату 7 IX — от аппарата 14 X — к вакуум-насосу XI — отдувка XII — вода из системы XIII — акрилонитрил XIV — остаток XV — к аппарату 12. [c.636]

    В 1939 г. Курц [124] получил акрилонитрил из ацетилена и цианистого водорода с катализатором, состоящим из 1 моля СиС1 и 0,8 моля КН4С1, т. е. катализатора, применяемого для превращения ацетилена в моновипил-ацетилен. [c.637]

    Реакция Гаттермана была усовершенствована Адамсом (1923), который заменил цианистый водород и галогенид металла цианистым цинком. При пропускании хлористого водорода через смесь фенола или его эфира с цианистым цинком в абсолютном эфире или бензоле выделяется цианистый водород, необходимый для конденсации, и образуется хлористый цинк, служащий катализатором. В качестве примера реакции по измененной методике можно привести получение л-тимолаль-дегида (т. пл. 133 °С) из тимола  [c.377]

    При формилировании фенолов и их эфиров окисью углерода и хлористым водородом не образуются соответствующие окси- и алкоксиальде- гиды ароматического ряда последние, однако, могут быть получены непосредственно из фенолов и их эфиров при обработке не окисью углерода, а цианистым водородом. В качестве катализатора для этой реакции применяют хлористый алюминий или хлористый цинк. [c.299]

    Присоедииение цианистого водорода. Равновесие в реакции между цианистым водородом и кетоном или альдегидом обычно сильно сдвинуто в сторону циангидрина. Реакция протекает при действии жидкого безводного H N в присутствии щелочного катализатора K N - . Для того чтобы избежать применения сильно ядовитого и летучего H N, реакцию ведут в водных растворах K N или Na N с добавлением минеральной кислоты . Наиболее удобный способ проведения реакции заключается в действии Na N на бисульфитное производное карбонильного соедине- [c.567]

    HN Цианистый водород K N + MgS04 Цианистый натрий 300—500 30° (охлажд.), в присутствии гидрохинона В водном растворе 20° В водном растворе 80° Окись кадмия или окись магния Конц, водный раствор Na N Щелочные агенты Без катализатора То же Дииитрил янтарной кислоты То же Сукцинимид 90 79—93 80 85 28 294 13, 241 242 243 [c.110]

    Цианистый водород присоединяется также к алкенам, но и в этом случае для протекания реакции наличие катализатора является существенным. В качестве катализаторов применяют окись алюминия, цианид кобальта на окиси алюминия, кобальт на окиси алюминия и дикобальтоктакарбонил [4]. При введении в алкен алкоксиль-ных или карбоксильных заместителей присоединение протекает более легко. При присоединении к ненасыщенным соединениям типа R H= HX, где X= OOR, N, OR, NO2 или gHs, добавление катализатора не требуется, так как эту роль играет избыток цианида. Второй электроотрицательный заместитель этого типа в а-положении еще больше облегчает присоединение. Для а,Р-ненасыщенных альдегидов, таких, как R H =СНСНО, образование циангидрина преобладает над 1,4-присоединением подобная реакция также наблюдается при присоединении к некоторым кетонам [1]. Реакцию 1,4-при- [c.457]

    При высоких температурах окись углерода непосредственно взаимодействует с аммиаком [19]. При этом вследствие неблагоприятных условий равновесия требуется большой избыток окиси углерода, но достигаются высокие выходы цианистого водорода. Метанол при пропускании с аммиаком и воздухом над окисномолибденовым катализатором гладко взаимодействует с аммиаком, образуя цианистый водород [28]. Цианистый водород образуется также непосредственно из метана и аэота в электрической дуге [60]. [c.226]

    Прочные позиции завоевало производство акрилонитрила прямым соединением цианистого водорода с ацетиленом, впервые осуществленное в промышленном масштабе в ФРГ. На новых установках ацетилен получают как из карбида кальция, так и процессами окислительного крекинга природного газа. Реакцию проводят в жидкой фазе. Парофазная реакция также возможна, но, по-видимому, менее целесообразна в техническом отношении. Цианистый водород и ацетилен пропускают в раствор катализатора, содержащий хлористую ртуть, воду и достаточное количество соляной кислоты для поддержания кислотной среды. Образующиеся продукты выделяются из реакционной смеси в виде паров и улавливаются конденсацией. Выход акрилонитрила составляет 80% наряду с ним образуются многочисленные побочные продукты, в том числе ацетальдегид, лактонитрил, винилацетилен и цианобутадиен. При последующей очистке акрилонитрила особые трудности вызывает присутствие двух второстепенных побочных продуктов — дивинилацетилена и метилвинилкетона. Однако акрилонптрил, получаемый на современных установках, работающих по описанному процессу, удовлетворяет самым жестким требованиям, выдвигаемым при дальнейшей его полимеризации. Недавно построенная установка в результате существенных усовершенствований [7] обеспечивает экономичную работу, давая повышенные выходы целевого продукта при меньшем образовании побочных продуктов. , [c.228]

    Сравнительно недавно было опубликовано сообщение [871 о разработке вполне рентабельного процесса дегидратации лактонитрила. Эту реакцию проводят путем впрыска лактонитрила в поток горячих газов, состоящих из продуктов сгорания природного газа с добавкой водяного лара. Затем смешанный поток направляют в печь, футерованную керамикой. В печи поддерживают температуру 600—625° С продолжительность контакта изменяется в пределах 1—5 сек. В качестве парофазного катализатора применяют фосфорную кислоту. При процессе происходит частичное разложение лактонптрила на цианистый водород и ацетальдегид, но по опубликованным данным степень превращения в акрилонптрил достигает 70% за один проход, а общий выход лактопитрила приближается к 90%. Реакция протекает по уравнению [c.229]

    Цианистый водород в присутствии хлористой меди — хлористого аммония в качестве катализатора взаимодействует также с 2-бутен-1,4-диолом, образуя 1,4-дициапо-2-бутен [37]. Бутендиол для этой цели можно получать из формальдегида и ацетилена, но, по-видимому, трудности получения этого исходного полупродукта снижают рентабельность такого метода синтеза гексаметилендиамина. [c.230]

    Синтез оксамида осиоваи на реакции окисления цианистого водорода в дициаи [—(СЫ)а—] с последующим его гидролизом. Реакция окисления цианистого водорода диоксидом азота протекает при низких температурах в присутствии катализатора — нитрата двухвалентной меди  [c.236]

    Ro втором методе применяется смссь цианистого водорода и хлористого водорода ei присутстпии катализатора или без него, причем этот метод даст возможность вводить альдегидную группу в фенолы, нафтолы и.их простые эфиры, а также, в особых условиях, в ароматические углеводороды и родственные им соединеиия [2]. В настоящей главе рассматривается этот последний метод  [c.45]

    Окси-4-ме( илтиазол-5-альдегид (25%) был получен при использовании цианистого водорода и хлористого водорода в отсутствие катализатора, С)диако 4-метилтиазол п реакцию не вступает [c.60]


Смотреть страницы где упоминается термин Катализаторы цианистого водорода: [c.668]    [c.668]    [c.112]    [c.66]    [c.84]    [c.400]    [c.496]    [c.638]    [c.183]    [c.45]    [c.52]   
Справочник азотчика (1987) -- [ c.236 ]




ПОИСК





Смотрите так же термины и статьи:

Барий цианистый как катализатор при реакции ацетилена с цианистым водородо

Катализаторы синтеза цианистого водорода

Катализаторы, для изомеризации галоидо бутадие цианистым водородом

Присоединение цианистого водорода к виниловым эфирам, катализаторы

Уголь активированный как катализатор при присоединении цианистого водорода к ацетилену

Цианистый водород



© 2025 chem21.info Реклама на сайте