Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

напряжение потенциальная энергия

    Для того чтобы дать общую формулировку второго начала, ознакомимся с понятием интенсивности, или напряженности,, энергии (энергетического потенциала). Мы знаем, что потенциал электрической энергии выражается в вольтах. Температура тела может рассматриваться как показатель, выражающий напряженность тепловой энергии, как бы тепловой потенциал. В силовом поле земли то из двух тел равной массы, которое находится по вертикали выше другого, обладает более высоким потенциалом механической энергии (напряженность потенциальной энергии). При этом направление перехода энергии определяется только степенью напряженности энергии (энергетического потенциала), а не общим запасом энергии данного вида или массами взаимодействующих систем. Например,, в ведро воды опускают раскаленную булавочную головку. Теплота сама собой переходит от булавки к воде, т. е. оттуда, где-в. сумме ее меньще, туда, где ее количество больше. Таким образом, система с малым общим запасом энергии, но находя- [c.119]


    Для того чтобы дать общую формулировку второго начала, ознакомимся с понятием интенсивности или напряженности энергии (энергетического потенциала). Мы знаем, что потенциал электрической энергии выражается в вольтах. Температура тата может рассматриваться как показатель, выражающий напряженность тепловой энергии, как бы тепловой потенциал. В силовом поле земли то из двух тел равной массы, которое находится по вертикали выше другого, обладает более высоким потенциалом механической энергии (напряженность потенциальной энергии) и т.д. При этом направление перехода энергии определяется только степенью напряженности энергии (энергетического потенциала), а не общим запасом энергии данного вида или массами взаимодействующих систем. Например, в ведро воды опускают раскаленную булавочную головку. Теплота будет переходить от головки в воду, хотя последняя содержит калорий в тысячи раз Дольше, чем булавочная головка, причем и теплоемкость металла меньше, чем воды. Мы видим, что теплота сама собой переходит от булавки к воде, т. е. оттуда, где в сумме ее меньше, туда, где ее количество больше. Таким образом, система с малым общим запасом энергии, но находящаяся в состоянии высокого ее напряжения, передает часть своей энергии другому [c.88]

    Энергия адсорбции неполярных молекул на поверхности ионных решеток. Если адсорбент построен не из атомов, а из ионов, то к рассмотренным дисперсионным силам притяжения добавляются индукционные силы притяжения диполя, индуцированного в молекуле адсорбата электростатическим полем, создаваемым ионами решетки адсорбента. Доля индукционных сил в величине потенциальной энергии адсорбции пропорциональна поляризуемости молекулы адсорбата 2 и квадрату напряженности электростатического поля над поверхностью адсорбента  [c.493]

    Для плоско-напряженного состояния плотность потенциальной энергии равна  [c.115]

    Левая часть равенства (3.13) представляет собой приращение внутренней энергии тела. Приращение поверхностной энергии имеет знак плюс, так как на эту величину увеличилась внутренняя энергия тела. Приращение потенциальной энергии деформации имеет знак минус, так как эта доля внутренней энергии выделяется телом (вследствие релаксации напряжений в связи с появлением новых, свободных от нагрузок, поверхностей тела). Тогда условие [c.180]


    В условии (3.28) работа внешних сил и потенциальная энергия деформации не связаны теоремой Клапейрона (из-за релаксации напряжений с ростом трещины). Формально можно представить в виде суммы [c.192]

    При низких значениях напряженности поля энергия взаимодействия может увеличиваться за счет деформации в эллипсоиды вязких оболочек из ПВС и взаимной поляризации диполей на близких расстояниях [25, 31]. Со временем в дисперсионной среде накапливаются ионы А1 , которые могут снижать потенциальный барьер вследствие сжатия двойного слоя или нейтрализации адсорбционного заряда. [c.106]

    При очень низких температурах вблизи О К тепловое движение практически отсутствует (область / на рис. 11.4). Поэтому отсут-вует и кинетическая энергия, необходимая для того, чтобы происходил переход из одного минимума потенциальной энергии в другой. В этих/условиях микротрещины практически не растут при любых напряжениях, меньших некоторого критического Ок, которому соответствует критическое перенапряжение в вершине микро-трещины ак, причем их отношение равно коэффициенту концентрации напряжения у вершины микротрещины. [c.307]

    Потенциальная энергия кинетических единиц (атомов), участвующих в разрыве химической связи в вершине микротрещины, представлена на рис. 11.7 как функция расстояния между ними в направлении растяжения. Левый минимум потенциальной кривой соответствует неразорванной связи в вершине, правый — разорванной. Форма зависимости потенциальной энергии от расстояния между атомами в вершине меняется при изменении растягивающего напряжения о. При некотором безопасном напряжении ао ве- [c.310]

    Все жидкости и твердые тела ограничены внешней поверхностью, на которой они соприкасаются с фазами другого состава и структуры, например, с паром, другой жидкостью или твердым телом. Свойства вещества в этой межфазной поверхности, толщиной в несколько поперечников с1,томов или молекул, отличаются от свойств внутри объема фазы. Внутри объема чистого вещества в твердом, жидком или газообразном состоянии любая молекула окружена себе подобными молекулами. В пограничном слое молекулы находятся во взаимодействии или с разным числом молекул (например, на г])анице жидкости или твердого тела с их паром), или с молекулами различной химической природы (например, на границе двух взаимно малорастворимых жидкостей). Чем больше различие в напряженности межмолекулярных сил, действующих в каждой из фаз, тем больше потенциальная энергия межфазовой поверхности, кратко называемая поверхностной энергией. [c.292]

    В теории Дебая диэлектрическая проницаемость входит в выражение для потенциальной энергии раствора как величина, не зависящая от характера распределения частиц в растворе. Однако она зависит от температуры и давления и, следовательно, связана с распределением молекул растворителя и растворенного вещества. В действительности диэлектрическая проницаемость является одним из термодинамических свойств растворов Ее величина пропорциональна второй производной свободной энергии системы но напряженности электрического поля  [c.70]

    При нагреве разреженных газообразных систем до очень высоких температур, как правило, превышающих десятки тысяч градусов, происходит ионизация молекул и газ переходит в специфическое состояние с электронно-ионной проводимостью, называемое плазменным состоянием. Ионы, появившиеся в низкотемпературной плазме в результате отщепления электронов, способны к дальнейшим химическим реакциям, поэтому в плазмах можно обнаружить такие экзотические с точки зрения химии частицы, как ионы СН5, Нз, Не2, Ыег и т. п. Кинетическая и потенциальная энергия частиц в плазменном состоянии превышает аналогичные параметры газообразных молекул, но наиболее существенные различия между плазмой и газами возникают при наложении электрического и магнитного полей большой напряженности. При этом движение частиц в плазме становится направленным, и придавая ему винтообразную форму, можно до известной степени управлять плазмой. [c.72]

    Энергетически уравнения неразрывности деформаций выражают существование в теле минимума потенциальной энергии деформации. Математически уравнения неразрывности означают, что деформации должны быть дважды дифференцируемыми функциями времени и координат. Если ввести тензор напряжений П  [c.143]

    Величина С, в последней формуле обозначает термодинамическую концентрацию электронов в рассматриваемом стержне и ввиду его однородности имеет практически постоянное значение по всей длине стержня. Знак минус перед показателем степени соответствует движению электронов в направлении уменьшения их потенциальной энергии. Так как высота потенциального барьера в данном случае зависит только от величины внешнего напряжения, то такое движение электронов происходит при любой полярности приложенной разности потенциалов (см. рис. 44). [c.166]


    Каждому виду находящихся в растворе ионов соответствует определенный уровень полной потенциальной энергии электронов. Положение этого уровня определяется местом данного элемента в ряду напряжений. Чем правее находится элемент в ряду напряжений металлов (или полупроводников), тем ниже расположен соответствующий энергетический уровень электронов. Для металлоидов это правило меняется на обратное. [c.203]

    Поверхностный слой кристалла под влиянием внутренних сил притяжения находится в упруго-напряженном состоянии, а расположенные на поверхности элементы структуры (молекулы, атомы, ионы) обладают большим запасом потенциальной энергии, чем находяш,иеся внутри кристалла, — кристалл обладает избыточной поверхностной энергией. Она измеряется работой, необходимой для образования единицы поверхности в изотермических условиях (удельная поверхностная энергия а, Н/м). [c.341]

    При этом понятно появление в выражении для О различных высоких степеней от расстояния г. Оно связано с пропорциональностью средней потенциальной энергии U квадрату напряженности поля (зависящей от г как или г )  [c.241]

    В связи с повышением уровня напряжений и увеличением потенциальной энергии стенки и жидкости в резервуарах больших объемов из низколегированных и высокопрочных сталей последствия возможных аварий будут значительно тяжелее. [c.92]

    Однако оказалось, что дело обстоит сложнее. Выяснилось, что состояние, отвечающее форме XII, соответствует барьеру перехода между двумя другими (еще не рассмотренными) более выгодными конформациями. Представим себе мысленно, что мы взяли каждой )укой за один из тех двух атомов С, с которыми связаны атомы -Н, и потянули один к себе, а другой от себя. Тогда создающие наибольшее напряжение /-Н атомы отодвинутся друг от друга и потенциальная энергия молекулы уменьшится. Относительное расположение остальных атомов Н тоже несколько изменится, отдаляясь от заслоненной конформации этана и приближаясь к заторможенной, т. е. еще несколько уменьшая напряженность. Эта конформация получила название гаисг-формы, или скошенной (искаженной) ванны. Переменив направление движения рук на диаметрально противоположное, получим зеркально-симметричную тв сг-форму. Их часто изображают так  [c.39]

    Эластомеры можно разделить на две группы — пластицирую-щиеся и непластицирующиеся. В процессе переработки возможна как сдвиговая, так и термоокислительная пластикация полимеров. Большинство эластомеров при температуре переработки в течение коротких промежутков времени, соответствующих длительности технологических циклов , практически не изменяют своих основных показателей таким образом, пластикация обусловлена в основном возникновением высоких сдвиговых напряжений, приводящих к деформации валентных углов и гомолитическому распаду связей [8]. Этот механизм подтверждается тем, что в большинстве случаев интенсивность механодеструкции увеличивается при понижении температуры. Считается также, что следствием деформации может быть накопление потенциальной энергии и перевод цепи в активированное состояние, в котором повышается реакционная способность различных групп, в частности, скорость термоокислительной деструкции [9]. [c.76]

    Бросая взгляд на изменение представлений о конформации с 1950 г. по настоящее время, отметим, что Основное различие во взглядах касалось двух вопросов а) отвечает ли конформации только оптимальное расположение атомов в пространстве (минимум потенциальной энергии) или любое мгновенное расположение б) каким образом отграничить конформационную изомерию От других ее видов (в частности, от конфигурационной), В 1950 г, Бартон писал о ненапряженных расположениях в пространстве, т. е,, казалось бы, склонялся к варианту оптимального рас- положения. Однако, по существу, ненапряженная си- стема — конструкция условная, и поэтому его определение было двусмысленным и неработоспособным. В последующей публикации 1953 г, Бартон уточнил ...расположения в пространстве атомов молекулы, которые свободны от углового напряжения (это уточнение ничего не изменило)—и тут же указал в качестве примера на конформации этана, возможное число которых бесконечно. Значит, конформации в его понимании отвечало произвольное мгновенное расположение атомов, что подтверждается и указанием на тождественность терминов конформация и констелляция (в определении Прелога). Первые определения Бартона представляли странный гибрид альтернативных взглядов на понятие конформации. В то же время Прелог определенно называл констелляцией п]роизвольное расположение атомов, однако включал в сферу действия понятия лишь ротационную изомерию. Близким по смыслу и непротиворечивым было" И несколько более позднее определение У. Клайна 19М г.) Термин конформация обозначает различные расположения в пространстве атомов в ёдин  [c.131]

    Прочность металлов в среднем на два порядка меньше теоретической прочности бездефектного кристалла сТтеор (сгтеор 0,1 Е). Такое различие обусловлено тем, что термодинамически вероятно наличие в металле достаточно высокой плотности дефектов кристаллического строения еще до деформации. Пластичность - как свойство подвергаться остаточному формоизменению - реализуется при деформации путем скольжения (трансляционного и зернограничного) и двойникования структурных элементов. Причем процесс скольжения не является результатом одновременного смещения атомов соседей. Процесс скольжения осуществляется путем последовательного смещения отдельных групп атомов в областях с искаженной решеткой. Нарушение кристаллической ре-ше йси означает, что их атомы выведены из положения минимума потенциальной энергии. Поэтому для их смещения требуется меньше энергии и напряжения. Наиболее распространенными дефектами кристаллической решетки являются линейные дефекты - дислокации (винтовые и краевые). Под действием приложенных напряжений про- [c.77]

    Такое большое расхождение по Гриффитсу объяснялось наличием мелких трещин в однородном материале, приводящих к большой концентрации напряжений в упругом состоянии. При этом составлялся баланс энергий энергии необходимой для разрушения и имеющейся потенциальной энергии деформации, которая может быть израсходована на разрушение. [c.174]

    В мадоконцентрированных системах, где расстояние между частицами значительно превышает значимое для силовых поляризационных эффектов, возможно использование совокупности линейных и квадратических эффектов по полю. Это означает, что принципиально возможно разделение системы с наличием одной—двух частиц в безграничном объеме, что чрезвычайно важно для соответствующих технологических процессов. Как в неполярных, так и полярных дисперсионных средах поляризационные силы взаимодействия между частицами описьшаются сходными формулами в том смысле, что они содержат величину /г , что является прямым подтверждением дипольного характера сил. Это же означает, что электрические параметры режима злектрообработки, а не электрохимические, наиболее важны для реализации процессов. Используя значения напряженности поля, обеспечивающие минимум потенциальной энергии на кривой взаимодействия частиц, возможно [c.16]

    Особенно интересно отметить, что данное соотношение для напряжения—деформации можно также получить путем рассмотрения потенциальной энергии статистических звеньев в однонаправленном силовом поле. Логически рассуждая, Джеймс и Гут [3] и Флори [1] показали, что для поворота звена из положения 0 = 0 в положение 0 = 0, следует совершить работу //(1 — OS0,). Если ориентационная часть энергии —f/ os0i соответствует статистическому распределению Больцмана, то [c.120]

    Единицей дипольного момента является дебай (Д) 1 Д = 3,33564X Кл-м (1-10 эл.-ст. ед.-см). Дипольный момент многоатомной молекулы приближенно равен векторной сумме дипольных моментов связей или атомных групп в молекуле с учетом валентных углов. Полярные и неполярные молекулы, попадая во внешнее статическое электрическое поле, создаваемое между заряженными обкладками конденсатора, ведут себя неодпнаково. Полярная молекула стремится ориентироваться в поле по направлению его линий так, чтобы центр тяжести положительных зарядов был направлен к отрицательному, а отрицательных — к положительному полюсу поля. Такое положение молекулы отвечает минимуму потенциальной энергии и наибольшей устойчивости. Неполярная молекула в электрическом поле не ориентируется. Под воздействием электрического поля центры тяжести зарядов молекул любого вещества смещаются друг относительно друга на некоторое расстояние. Смещение зарядов полярной молекулы несколько увеличивает постоянный дипольный момент и способствует превращению неполярной молекулы в электрический диполь с наведе[)ным (индуцированным) дипольным моментом Ципд- Принимают, что под действием не слишком больших полей индуцированный дипольный момент прямо пропорционален напряженности Е эффективного электрического поля внутри диэлектрика. Величина Е равна разности напряженности поля зарядов на обкладках конденсатора Eq и напряженности поля поверхностных зарядов индуцированных диполей , так как эти поля имеют противоположные направления. Величина р,ннд определяется уравнением [c.5]

    Очевидно, что чем левее расположен данный элемент в ряду напряжения металлов, тем выше находится соответствующий ему уровень полной потенциальной энергии электронов в растворе (рис. 53). Для металлоидов это правило меняется на обратное, что непосредственно следует из формулы (158а) и рис. 53. [c.192]

    Особенно примечательна высокая энергия активации (около 10 кДж/моль) для разрыва двух первых связей С-С. Она означает, что нестабильный термодинамически 2 действительно помещается в глубокой потенциальной яме. Следует, однако, помнить, что подобные кривые представляют собой лишь одно сечение многомерной поверхности потенциальной энергии, описывающей все преврашения, возможные для данной молекулы. Фигурально выражаясь, для такого тигра в клетке , как большая избыточная энергия, запасенная в напряженной структуре 2, существует несколько выходов, и только один из них описывается кривой, представленной на рис. 4.1, тогда как альтернативные пути превращений этого соединения могут оказаться перекрытыми гораздо более низкими потенциальными барьерами. Действительно, известен целый ряд реакций кубана и его производных, про- [c.372]


Смотреть страницы где упоминается термин напряжение потенциальная энергия: [c.437]    [c.125]    [c.175]    [c.133]    [c.60]    [c.125]    [c.175]    [c.95]    [c.133]    [c.164]    [c.124]    [c.195]    [c.372]   
Стереохимия соединений углерода (1965) -- [ c.202 ]




ПОИСК





Смотрите так же термины и статьи:

Потенциальная яма

Энергия напряжения

Энергия потенциальная



© 2025 chem21.info Реклама на сайте