Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиолефины структура

    Наиболее простым приемом создания структуры является варьирование температуры нагрева, а также температуры и скорости охлаждения. Но при высокой температуре полиэтилен, как и все полиолефины, подвергается окислительно-деструктивным процессам. Это сопровождается снижением механической прочности изделий и уменьшением эластичности, что приводит к появлению хрупкости, вызывающей растрескивание. [c.121]


    В зависимости от условий полимеризации и термической обработки большая или меньшая часть полимерного вещества переходит в кристаллическое состояние, поэтому обычно наряду с аморфной в полимере представлена в той или иной степени кристаллическая структура. К распространенным кристаллизующимся полимерам относятся полиолефины (полиэтилен, полипропилен), полиамиды (капрон) и полиэфиры (лавсан). При нагревании кристаллическая структура полимера нарушается, и он переходит в аморфное состояние. Механическая прочность кристаллических полимеров значительно больше, чем аморфных. Например, прочность на разрыв аморфного полиэтилена 20—30, а кристаллического до 700 —1000 MH/м Волоконце полиэтилена длиной 7—10 см и толщиной 0,03—0,04 мм обладает прочностью до 4 ГН/м , в то время как прочность лучших сортов легированной стали около 2 ГН/м . Полиэтилен легче стали в 7—8 раз, поэтому при равной массе полимерное волокно окажется в 15—20 раз прочнее стали. [c.337]

    Полиолефины со стереорегулярной структурой можно синтезировать двумя методами  [c.29]

    Практика использования антиоксидантов для стабилизации полипропилена показывает, что наличие у них структуры, обеспечивающей максимальный эффект ингибирования реакции окисления, само по себе еще не свидетельствует о пригодности данного стабилизатора. Не менее важную роль играют и такие свойства стабилизаторов, которые исключают возможность их миграции к поверхности изделия. Поскольку почти все эффективные стабилизаторы имеют характер полярных веществ, предотвращение миграции при стабилизации полиолефинов приобретает большое значение, особенно в случае кристаллического полипропилена, так как силы кристаллизации увеличивают миграцию стабилизирующих добавок. [c.174]

    Анализ структуры потребления полиолефинов показывает довольно четкое разделение между отдельными видами этих материалов. Так, в США [6] основной удельный вес в потреблении ПЭВД падает на пленку, для ПЭНД — на изделия, получаемые выдувным формованием и литьем под давлением, для ПП — на изделия, получаемые литьем под давлением, и волокно, т. е. все основные три типа полиолефинов, удачно дополняя друг друга, обеспечивают запросы потребителей, что является одной из главных причин высоких темпов развития каждого из этих материалов. [c.9]

    Г. а.-эффективные порообразователи (газовые числа приведены в табл.) в произ-ве губчатых резни, пенопластов на основе ПВХ, полиэфиров, полиамидов, полистирола, полиолефинов, сополимеров стирола с акрилонитрилом и др. Г. а. обеспечивают тонкую однородную структуру пор, прн этом в большинстве случаев полимеры не обесцвечиваются и не меняют окраски. В нек-рых случаях Г. а. придают изделиям слабый запах. Г.а. применяют также в орг. синтезе при получении диазоалканой, альдегидов, сульфиновых к-т и аром, углеводородов. Св-ва наиб, важных представителей Г.а. приведены в таблице. [c.547]


    Св-ва П.х. зависят от структуры, состава, мол. массы и ММР исходного полиолефина, от способа и степени его хлорирования, а следовательно, от характера распределения хлора в макромолекуле П.х. Характерные св-ва П.х. более высокие, чем у полиолефинов, масло-, бензо-, огнестойкость, высокие адгезия к разл. материалам и оптич. прозрачность, эластичность и морозостойкость, р-римость в орг. р-рителях, хим. стойкость, способность вследствие наличия хлора к хнм. превращениям, устойчивость в морской воде, к действию у-излучения и биокоррозии. П. х. не содержат токсичных остаточных мономеров, вследствие чего они допущены для применения в контакте с пищ. продуктами. [c.18]

Рис. 26.29. Типичная структура типа шиш-кебаб (а), обнаруженная в закристаллизованных особым образом полиолефинах, и увеличенная деталь (б) этой структуры [П 5414]. Рис. 26.29. <a href="/info/190185">Типичная структура</a> типа шиш-кебаб (а), обнаруженная в закристаллизованных особым образом полиолефинах, и увеличенная деталь (б) этой структуры [П 5414].
    Роджерс исследуя зависимость О и а от плотности образцов линейных и разветвленных полиолефинов, пришел к выводу, что перенос газов в них в значительной мере зависит от негомогенной структуры образцов кристаллических полиолефинов, связанной с микропустотами, трещинами и капиллярами, появление которых определяется условиями кристаллизации и последующей термообработкой полимеров. Диффузионные характеристики в полиолефинах зависят от вида распределения и размеров микропустот. В полимерах, характеризующихся высокой степенью кристалличности, [c.143]

    Так, хорошая горючесть при постепенном плавлении и характерный парафиновый запах характериз)аот полиолефины при горении полиэтилена и полипропилена образуется воскоподобная масса. Сильно коптящее пламя характеризует ароматические структуры, а запах горящего рога - азотсодержащее соединение. Относительно легко установить наличие поливинилхлорида (ПВХ), в этом случае наблюдается устойчивый запах соляной кислоты, проба горит очень плохо, поверхность закопчена, при выносе из пламени затухает. На присутствие поликарбоната во многих случаях указывает типичный фенольный запах. Политетрафторэтилен разлагается с образованием обугленного остатка, целлюлоза горит аналогично бумаге или дереву. [c.35]

    Производство полиолефинов в большинстве развитых стран начало развиваться с середины 50-х годов и к настоящему времени достигло больших масштабов. Ниже приведена структура потребления полиэтилена и полипропилена в промышленности США (%)  [c.410]

    Покрытия на основе ХСПЭ стали широко применять значительно раньше, чем покрытия из хлорированных полиолефинов других типов. Это вызвано, во-первых, лучшей совместимостью с другими пленкообразующими, возможностью получения более сшитой структуры и меньшей длительностью отверждения по сравнению, [c.160]

    В заключение следз ет отметить, что сополимеризация как метод синтеза высокомолекулярных соединений предоставляет практически неограниченные возможности для направленного изменения структуры и свойств полимеров. В частности, сополимеризация олефинов с небольшим количеством полярных сомономеров, содержащих гетероатомы, позволяет улучшить окрашиваемость и адгезию полиолефинов. [c.143]

    Изменяя режимные параметры процесса, групповой и компонентно-фракционный состав системы, изменяем структуру квазичастиц и их реакционную способность. Используя представления о непрерывном изменении свойств многокомпонентных кинетических сред, исследованы процессы химической конденсации высокомолекулярных нефтяных фракций, а также полимеризация полиолефинов в нефтяных дисперсных системах. Найдены эффетстивные кинетические параметры процесса На основе этого были разработаны приемы синтеза ряда асфальто-смолистых олигомеров из отходов нефтехимии и нефтяных остатков и многокомпонентных растворителей [43] Предложены направления развития методов направленного синтеза многокомпонентных систем. На рис 5.7,5 8 приведены варианты направленного синтеза ряда сложных систем-растворителей для АСВ призабойной зоны пласта и многокомпонентных олигомеров. [c.114]

    Разработаны межфазные добавки для повышения эксплуатационных свойств смесей полиолефинов с полиамидами, представляющие собой интерполимерные полиамидно-каучуковые соединения. Установлен характер влияния рецептурного состава (типа и содержания полиамида, каучука и аминосодержащих низкомолекулярных реакционно-способных соединений) и технологических параметров процесса получения межфазных добавок на структуру и свойства полимерно-кау чу коввых интерполимеров. Установлено, что применение разработанных добавок позволяет повысить ударостойкость полиамидно-полиолефиновых смесей с содержанием полиамида 70-80% на 30-40%, стабилизировать их вязкостные характеристики и повысить стойкость к активным средам при введении от 1 до 3% масс, межфазных добавок. [c.161]

    ПЛЕНКИ ПОЛИМЕРНЫЕ, имеют толщину от неск. мкм до 0,25 мм. В зависимости от метода и условий получения м. б. неориентированными (изотропными) и ориентированными. Получ. след, способами 1) экструзией расплавов полимеров (полистирола, полиэтилена, полипропилена, хлориров. полиолефинов и других полимеров, не подвергаюптхся деструкции при переходе в вязкотекучее состояние) через фильеры со щелевыми или кольцевыми отверстиями при этом в первом случае из фильеры выходит изотропная лента бесконечной длины, к-рую вытягивают в продольном и (или) поперечном направлениях, во втором — рукав, к-рый раздувают сжатым воздухом (плоскостная ориентация) 2) из р-ров полимеров (напр., эфиров целлюлозы, гл. обр. ацетатов), к-рые через фильеру наносят на движущуюся ленту или барабан (сухое формование) либо направляют в осадит, ванну (мокрое формование) структуру и св-ва пленок регулируют скоростью испарения р-рителя, составом и т-рой ванны сформованную пленку часто пластифицируют, а затем высушивают 3) каландрованием пластифицированных полимеров (главным образом поливинилхлорида). [c.448]


    С открытием стереоспецифической полимеризации иропилена стало ясно, что высокопрочные волокна можно вырабатывать и из изотактических полиолефинов, в которых не образуется водородных мостиков и не имеется полярных групп. Однако обязательным условием, предопределяющим возможность формования волокна из таких полимеров, является наличие у них совершенной линейной и регулярной молекулярной структуры, а также сравнительно высокого молекулярного веса. Вследствие высокой регулярности пространственной структуры изотактические полимеры имеют более плотную упаковку макромолекул, чем атактические, благодаря чему создаются предпосылки для возникновения трехмерной периодической повторяемости мономерных единиц (кристалличности), [c.229]

    ВЛАГОПРОНИЦАЕМОСТЬ полимеров, способность полимерных материалов пропускать водяные пары при наличии перепада давления последних. Зависит от хим. состава и структуры полимера, концентрации воды в нем и т-ры. Коэф. В. (Й ) определяется массой паров воды, прошедшей в единицу времени через единицу площади прн единичных толщине и перепаде давления водяных паров связан с коэф. р-римооти (5) и коэф. диффузии (О) ур-нием W= = 03, Диффузия паров воды в гидрофобных полимерах (полиолефинах, фторопластах, фенопластах и др.) происходит так же, как диффузия инертных газов (см. Газопроницаемость). Гидрофильные полимеры (напр., целлюлоза, поливиниловый спирт, полиамиды) содержат полярные группы, способные образовывать с водой водородные связи. Коэф. диффузии таких полимеров зависят от содержания в них воды. Изменение О с содержанием воды в полимере м.б. оценено с хорошим приближением по формуле  [c.391]

    Прививку полимера к пов-сти наполнителя можно осуществить разл. способами. Эффективность прививки определяют после длит, обработки продукта р-рителем по доле нерастворимого полимера, связанного с наполнителем. Наиб, изучена радикальная прививка. Так, привитые полимеры образуются при измельчении минер, наполнителей в присут. жидких или газообразных мономеров, напр, стирола, метилметакрилата (кол-во привитого полимера обычно 1-2% по массе), а также при радиац. обработке смеси наполнителя (напр., целлюлозы) с мономером (образуется также нек-рое кол-во гомополимера). Прививкой к пов-сти наполнителя в-в (в т. ч. инициаторов), содержащих функц. группы, осуществляют фиксацию на частицах наполнителя активных центров, используемых в дальнейшем для получения наполненных полимеров заданного состава. Подобным способом получены наполненные материалы на основе, напр., полистирола, поливинилхлорида, политетрафторэтилена. В случае прививки к минер, наполнителям полиолефинов используют способность катализатора Циглера-Натты, а также катализатора на основе Сг или Zr взаимодействовать с группами ОН, имеющимися на пов-сти таких наполнителей. Сначала наполнитель подвергают термообработке с целью удаления нежелат. примесей, затем обрабатывают катализатором, после чего проводят жидко-или газофазную полимеризацию олефинов. Полученные в этом процессе наполненные материалы обладают необычным комплексом св-в. Напр., высокомол. полиэтилен, содержащий 50-60% по массе минер, наполнителя, обладает высокими износостойкостью и ударной вязкостью, к-рые невозможно достигнуть при мех. смешении полимера с наполнителем фафито- и саженаполненный полипропилен имеет необычно высокую электропроводность. Методом П. на н. можно получить структуры, в к-рых частицы наполнителя окружены равномерными слоями полимеров и сополимеров разл. типа. Особенно перспективен этот метод для получения сверхвысоконаполненных материалов с равномерным распределением наполнителя в матрице полимера. [c.638]

    Методы установления стереорсгуляриоств полимера. Регулярность в структуре звеньев не м. б. изменена шшакими физ. воздействиями. В то же время конформац. регулярность полимера определяет его физ. состояние Непосредств. информацию о характеристиках структурной и конформац. регулярности кристаллич) полиолефинов (изо- или синдио-тактичность, параметры спирали) получают методом рент-геноструктурного анализа. [c.430]

    Способность ПЭВД, как и других полиолефинов в определенной мере взаимодействовать с различными соединениями используется на практике для направленного изменения свойств — химического модифицирования. Широко изучены процессы хлорирования, сульфохлорирования, фосфонирования, окисления с последующей прививкой различных функциональных групп и созданием привитых сополимеров. Большую роль играют процессы физико-химического модифицирования, сочетающие воздействие химических реагентов с воздействием УФ-излучения, ионизирующего излучения. Вопросы направленного изменения структуры и свойств ПЭВД и других полиолефинов подробно рассмотрены в монографии [154]. [c.163]

    Механическая нагрузка на полимерное изделие не только меняет его форму и размеры, но и существенно сказывается на его надмолекулярной структуре. Механическая нагрузка на аморфно-кристаллический полимер (полиолефины) существенно влияет прежде всего на аморфную фазу полимера. Растягивающее напряжение приводит к конформационным переходам уменьшается число гош-конформаций и увеличивается число /и/>а с-конформаций (полиэтилен, полиэтилентерефталат). Под влиянием напряжения происходят доориентация цепей макромолекул и замедление вращения радикала-зонда в таких образцах, замедление диффузии и усиление клеточного эффекта. [c.243]

    Период индукции может быть выражен в терминах изменения химической структуры или ухудшения физических свойств. Его можно определить, временем, в течение которого в полимере возникает некоторая произвольно выбранная концентрация химических групп, например карбонильных групп в полиолефинах или виниленовых групп в галогенсодержащих полимерах. Период индукции может быть определен также как время, требуемое для произвольно выбранного фиксированного изменения некоторого физического свойства, например вязкости расплава пропускания или отражения света в янтарножелтом диапазоне длин волн (575-625 нм) - для полимера на основе винилхлорида. В первом случае можно получить вполне адекватные результаты путем простых измерений показателя текучести расплава, во втором - достаточно сравнения невооруженным глазом с образцами стандартного цвета. [c.415]

    Исключительно большое значение в последние годы приобрела радиационно-химическая технология, изучающая и разрабатывающая методы и устройства для наиболее экономичного осуществления с помощью ионизирующих излучений физико-химических процессов с целью получения новых материалов, а также придания материалам и готовым изделиям улучшенных (или новых) эксплуатационных свойств. Наибольшего успеха радиационно-химическая технология (РХТ) достигла в связи с разработкой процессов радиационной модификации полимеров (особенно полиэтилена и поливинилхлорида). Радиационная модификация (т. е. изменение свойств под действием излучения) позволяет создать, например, в полиолефинах более жесткую структуру, повысить термостойкость, что дает возможность изготовленные из них конструкционные материалы эксплуатировать при высоких температурах вплоть до температуры термолиза. Наряду с этим улучшаются и электрофизические свойства. Облученный полиэтилен используют для изоляции высокочастотных кабелей вместо дорогого тефлона. Такая замена позволяет сэкономить до 200 руб. на 1 км кабеля. В нашей стране осуществлен процесс радиационной вулканизации изделий на основе силоксановых каучуков с помощью у-излучения. Облучая пропитанную мономером древесину низкого качества (оси.пу, березу), получают древесио-пластические компо- [c.93]

    Существенное влияние на физические свойства полимеров оказывают четыре фактора, характеризующие структуру макромолекул (полимерных цепей). Один из факторов - средняя длина цепи, к другим трем факторам относятся сила взаилюдействия между полимерными цепями, регулярность упаковки цепей и жесткость отдельных цепей, a юe сильное меж-молекулярное взаимодействие возникает, когда цепи имеют поперечные. мостики, т.е, образуют друг с другом хи.мические связи. Этот процесс называют сшиванием, он часто происходит при нагревании, Образование поперечных связей замыкает полимерные цепи в трехмерную сетку, поэтому таким поли.мерам при нагреве уже нельзя придать новую форму. Жесткие полимеры такого типа называют термоактивными К ним относятся полиэфирные, эпоксидные, алкидные и другие с.мольг Трехмерная (сшитая) структура позволяет эластомерам (напри.мер, каучук) долго вьщерживать достаточно высокие те.мпературы и циклические нагрузки без остаточной деформации. Многие перспективные полимеры, напротив, термопластичны и размягчаются при нагреве (например, полиолефины, полистирол и др ). [c.48]

    В настоящее вре.мя большое внимание исследователей привлекает оптоэлектронная технология, основанная на свойствах пористого кремния, Например, для улучшения коэффициента э.миссии светодиодов на основе пористого кремния методом электрохимического осаждения вводят в матрицу такие металлы, как Аи, Си, № или проводящие по,ти-меры. Широкое применение в будущем может найти нанокомпозит пористый кремний - жидкие нематические кристаллы, В этих материалах наблюдаются новые электрооптические эффекты, связанные с модуляцией коэффициента поглощения жидких нанокрисгаллов, что позволяет осуществлять прецизионный контроль оптических свойств всей системы в целом. Возможность синтезирования модулированных структур открывает путь в совершенно новый мир структур, которым можно придавать желаемые свойства. Например, разработан новый технологический процесс полимеризационного наполнения полиолефинов. Метод заключа- [c.171]


Библиография для Полиолефины структура: [c.174]    [c.271]    [c.198]    [c.263]   
Смотреть страницы где упоминается термин Полиолефины структура: [c.57]    [c.190]    [c.335]    [c.83]    [c.462]    [c.556]    [c.337]    [c.433]    [c.511]    [c.361]    [c.127]    [c.169]    [c.61]    [c.93]    [c.441]    [c.25]   
Полиолефиновые волокна (1966) -- [ c.39 , c.252 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние структуры на эффективность фотохимического сшивания полиолефинов

ПОЛУЧЕНИЕ, СТРУКТУРА И СВОЙСТВА ПОЛИОЛЕФИНОВ

Полиолефины и полистирол структура и свойства

Полиолефины с пространственной структурой

Структура и свойства полиолефинов

Структура полиолефинов в твердом состоянии



© 2025 chem21.info Реклама на сайте