Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидроксилирование биологическое

    Основные направления метаболизма РСР в организме человека 3. 5,6, 8, 15] окислительное гидроксилирование циклогексанового и пиперидинового колец с образованием биологически активных соединений  [c.155]

    Биологическая роль. Витамин С, вероятнее всего, участвует в окисли-тельно-восстановительных процессах, хотя до сих пор не выделены ферментные системы, в состав простетических групп которых он входит. Предполагают, что витамин С участвует в реакциях гидроксилирования пролина и лизина при синтезе коллагена, синтезе гормонов коры надпочечников (кортикостероидов), аминокислоты триптофана и, возможно, в других реакциях гидроксилирования. Имеются доказательства необходимости участия витамина С в окислительном распаде тирозина и гемоглобина в тканях. [c.239]


    Путем гидратации и дегидрирования протекает, вероятно, и биологическое гидроксилирование азотсодержащих гетероциклов. [c.606]

    Витамин Вз повреждение почек препятствует полному гидроксилированию витамина Вз и образованию его биологически активной формы. [c.358]

    В соответствии с изложенным выше, вводя фтор в положения, претерпевающие гидроксилирование в процессе метаболизма витамина В , получают определенную информацию относительно физиологического значения метаболизма. Можно ожидать, что в будущем такого рода примеры использования фтора для выяснения поведения функций тех или иных веществ в процессах метаболизма будут все более многочисленными, что приведет к появлению новых биологически активных соединений. [c.519]

    Годдарт [297] предложил другой механизм гидроксилирования фенольных соединений при этом он попытался показать, каким образом флавиновые коферменты осуществляют такое окисление. Построение выполнено теоретически и основано па применении волновых функций, квантовой механики и обобщенной теории валентных связей к биологическим проблемам. [c.425]

    Теоретико-информационные инварианты могут быть использованы для количественного описания молекул при ККСА-исследованиях их физико-химических и биологических свойств. Описанные в этой статье индексы основаны на симметрии окрестностей вершин в химическом графе. Подход, используемый при получении этих топологических индексов, состоит в разбиении вершин полного молекулярного графа на непересекающиеся подмножества на основе соотношения эквивалентности, определенного относительно различных степеней симметрии окрестностей, построении вероятностной схемы и окончательном расчете количества информации по формуле Шеннона. Полезность таких индексов была показана на примере ККСА-исследований растворимости спиртов, ингибирования спиртами микросомального лара-гидроксилирования анилина цитохромом P4JQ и токсичности барбитуратов. Показано, что топологические индексы, основанные на симметрии окрестностей, оказываются предпочтительнее других индексов, таких, как индекс Винера, индекс молекулярной связности и log Р. [c.206]

    A от этой функциональной группы [4]. Однако замещение в системе, состоящей из фермента свиной печени и каприновой кислоты, приводит к образованию 10-оксидекановой кислоты [5]. Область специфического окисления боковых цепей углеводородов весьма плодотворна и в будущем должна продолжать развиваться гидроксилирование амидов азациклоалканов рассмотрено в работе [6]. Пример б демонстрирует биологическое -окисление. [c.245]


    Гидроксикоричные кислоты, выполняя какую-то собственную биологическую роль в природных источниках (в растениях) служат исходными веществами для биосинтеза ароматических кислородных гетероциклических соединений — кумаринов, флавоноидов, антоцианов. Схема образования кумаринов—наиболее простая в этом ряду биосинтетических превращений, начинается с реакции гидроксилирования, скорее всего, радикального по типу входящей частицы — п-кумаровой кислоты. На втором этапе происходит внутримолекулярная этерификация (лактонизация), результатом которой является кумари-новый цикл. В дальнейшем может происходить повторное гидроксилирование бензольного кольца с образованием конечного продукта — эскулетина. [c.218]

    Адсорбенты. Осн адсорбент-кремнезем (силикагель), гидроксилированный или химически модифицированный, используют также А12О3, углеродные адсорбенты, полимеры, содержащие ионогенные, комплексообразующие группы или гр>ппы, способные к специфич взаимод с биологически активными в-вами Размер частиц силикагеля в аналит колонках 3-10 мкм, в препаративных-20-70 мкм Малый размер частиц увеличивает скорость массообмена и повышает эффективность колонки Совр аналит колонки длиной 10-25 см, заполненные силикагелем с размером частиц 5 мкм, позволяют разделить сложные смеси из 20-30 компонентов При уменьшении размера частиц до 3-5 мкм возрастает эффективность колонки, но и растет ее сопротивление и для достижения скорости потока элюента 0,5-2,0 мл/мин требуется давление (1-3) 10 Па Силикагель выдерживает такой перепад давления, гранулы же полимерных сорбентов более эластичны и деформируются В последнее время разработаны механически прочные густосетчатые полимерные сорбенты макропористой структуры, приближающиеся по своей эффективности к силикагелям Форма частиц сорбента размером 10 мкм и выше не оказывает большого влияния на эффективность колонки, однако предпочитают сферич сорбенты, к-рые дают более проницаемую упаковку Внутр структура частицы силикагеля представляет собой систему сообщающихся каналов Для Ж х используют сорбенты с диаметром пор 6-25 нм и уд пов-стью 600-100 м г [c.153]

    Осн. путь биосинтеза С. г. исходит из холестерина (ф-ла I). В организме позвоночных холестерин серией последоват. ферментативных р-ций окисления превращ. в прегненолон (II) или прогестерон (III) последний-типичный представитель гестагенов. Дальнейшее гидроксилирование направляется либо на С-17, начиная ветвь глюкокортикоидов, либо на С-21, приводя далее к минералокортикоидам. Послед, биотрансформации гестагенов и кортикоидов, связанные с деградацией 17Р-ацетильной боковой цепи, приводят к С д-стероидам. Наконец, ароматизация одного кольца и отщепление ангулярной метильной группы ведут к Си-стероидам. Эта осн. линия биотрансформации С. г. сопровождается многочисл. дополнит, ферментативными превращениями, включаюищми окислит.-восстановит. р-ции и изомеризацию. В результате этих р-ций в организме позвоночных образуется более 100 С. г. Ранее эти побочные продукты биосинтеза С. г. рассматривались как биологически неактившле предшественники и метаболиты основных С. г., однако недавно на примере андрогенов было показано, [c.435]

    Окисление химически устойчивой двухуглеродной ацетильной группы представляет собой весьма трудную химическую задачу. Как мы уже знаем, разрыв связи С—С чаще всего происходит между атомами, занимающими а- и р-иоложения относительно карбонильной группы. Такое р-расщепление (гл. 7, разд. И) в случае ацетильной группы, естественно, невозможно. Единственный способ, который обычно реализуется,— это тиаминзависимое расщепление связи С—С по соседству с карбонильной группой (а-расщепление, гл. 8, разд. Г). Однако а-расщепление требует предварительного окисления (гидроксилирования) метильной группы ацетата. Хотя известно много примеров биологических реакций гидроксилирования (гл. 10, разд. Ж), эти реакции весьма редко используются в основных катаболических процессах  [c.317]

    В процессе свободного окисления вследствие особенностей используемых цепей передачи электронов не происходит образования АТФ биологическая роль этих процессов заключается в метаболизме ряда природных и ксенобиотических субстратов. В последнем случае свободное окисление выполняет важную функцию модификации чужеродных соединений. К последним относятся лекарственные средства, гербициды, продукты загрязнения окружающей среды, в возрастающем количестве попадающие в организм с водой, пищей и атмосферным воздухом. Как правило, они имеют гидрофобные свойства. Многие из них являются канцерогенными. Их гидроксилирование в ходе свободного окисления облегчает последующую деструкцию и выведение из организма (см. главу 12 и 13). [c.314]

    Следует подчеркнуть, однако, что значительно больший удельный вес имеет посттрансляционная химическая модификация белков, затрагивающая радикалы отдельных аминокислот. Одной из таких существенных модификаций является ковалентное присоединение простетической группы к молекуле белка. Например, только после присоединения пиридоксальфосфата к -аминогруппе остатка лизина белковой части—апо-ферменту—образуется биологически активная трехмерная конфигурация аминотрансфераз, катализирующих реакции трансаминирования аминокислот. Некоторые белки подвергаются гликозилированию, присоединяя олигосахаридные остатки (образование гликопротеинов), и обеспечивают тем самым доставку белков к клеткам-мишеням. Широко представлены химические модификации белков в результате реакции гидроксилирования остатков пролина, лизина (при формировании молекул коллагена), реакции метилирования (остатки лизина, глутамата), ацети-лирования ряда N-концевых аминокислот, реакции карбоксилирования остатков глутамата и аспартата ряда белков (добавление экстра-карбоксильной группы). В частности, протромбин (белок свертывающей [c.532]


    Позже было высказано предположение о том, что у мыщей длительная противосудорожная активность диазепама обеспечивается не только его дезметильным аналогом, но и оксазепамом [42]. Это было доказано следующим образом. Мышам внутривенно вводился дезметилдиазепам или его дейтерированный в положении 3 аналог. Эффективная доза первого составила 198, а второго — 288 мг/кг. Оба соединения вводились в дозе 5 мг/кг за 5 мин до инъекции коразола. Снижение активности дейтерированного дезметилдиазепама авгоры связывают с задержкой его С -гидроксилирования, что показано в специальных опытах [43-], и освобождением оксазепама в биологических жидкостях. [c.167]

    При исследовании биологического окисления таких соединений N-окиси как промежуточные продукты не обнаружены, что указывает на прямое С -гидроксилирование бенздиазепинового кольца. [c.218]

    Радикальное гидроксилирование в синтезе практически не применяется, но имеет большое биологическое значение. Чужеродные ароматические соединения при введении в организм животного обезвреживаются пугем гидроксилирования. Например, бензойная кислота превращается в смесь орто-, мета- и пара-пщроксибензойных кислот. Образование всех трех изомеров свидетельствует о радикальном характере реакции. [c.552]

    Во всех приведенных случаях деметил1фования метоксилов кол-зсицина в биологических системах гидроксилированные продукты реакции возникали не в результате гидролитического расщепления, а вследствие окисления средой или кислородом воздуха ,195 о-видимоцу, то же относится и к деметилированию в цикле А при вышеупомянутом воздействии микроорганизма [c.49]

    Исходный витамин D3 является регулятором образования гидроксилиро-ванной формы 25-(ОН) D3, ингибируя активность фермента 1-а-гидроксила-зы. Как уже было отмечено, биологические функции витамина D в основном связаны с действием его метаболитов. Физиологические концентрации кальция в крови поддерживаются системой, составной частью которой являются гидроксилированные формы D3. Идентифицирован механизм активации щелочной фосфатазы и кальций-зависимой АТФ-азы посредством метаболита витамина D3, а именно 1,25-(ОН)2 D3. Этот метаболит, локализованный в ядрах, принимает участие в регуляции генной активности. Гидроксилированные формы витамина D3 способствуют минерализации тканей, а также нормальному функционированию паращитовидных желез. [c.99]

    Предельные и непредельные жирные кислоты играют важную роль в живой природе. Они входят в состав глицеридов, образующих основу клеточных мембран, и их следует классифицировать как биологически важные соединения. Непредельные алифатические кислоты — линолевая, линоленовая и арахидоновая, кроме этой функции, выполняют и другую, не менее важную. Освобождаясь из состава глицеридов и подвергаясь действию окислительных ферментов, они дают начало последовательностям реакций, приводящих в конечном счете к гидроксилированным непредельным соединениям с высокой биологической активностью. Из линолевой и линоленовой кислот образуются метаболиты с восемнадцатью углеродными атомами в цепи, из арахидоновой — двадцатизвенные. Много биологически активных веществ встречается также среди окисленных производных специфических разветвленных длинноцепных кислот, продуцируемых отдельными организмами. [c.28]

    Биологическое окисление линолевой кислоты, перемещение и изомеризация двойных связей приводят к серии гидроксилированных jg диеновых и моноеновых кислот. [c.29]

    Оксираны находят широкое применение в синтетической органической химии, так как их циклическая система может легко создаваться и разрушаться с высокой степенью селективности. Многие биологически активные соединения содержат циклическую систему оксирана. Лейкотриен А (2) представляет собой биосинтетический предшественник медленно действующего вещества и лейкотрие-нов, которые применяются при бронхиальной астме. (ч-)-Диспарпур (3) - феромон насекомого, половой аттрактант непарного шелкопряда, также содержит оксирановый фрагмент. Оксираны, получаемые из ароматических углеводородов ( арилоксиды ), выступают в качес гве промежуточных соединений в реакциях ароматического гидроксилирования в живых организмах. Этиленоксид и другие оксираны, получаемые из низших алкенов каталитической реакцией с кислородом, производятся в огромных количествах и используются в производстве полимеров. [c.408]

    Оксепнны в виде валентных таутомеров легко перегруппировываются в фенолы в кислых средах. Перегруппировка может включать 1,2 Гидрндный сдвиг (рнс. 10.4), что было доказано с помощью экспериментов с дейтериевой меткой. Аналогично происходит биологическое гидроксилирование ароматических соединений, при котором бензолокснды выступают в качестве промежуточных соединений, а их перегруппировка включает 1,2-гидридную миграцию. Эту миграцию иногда называют НИЗ-сдвиг (ЫШ-вЫЛ) в честь Национального Института Здоровья США, где она была обнаружена (обзор см. [18]). Оксирановый цикл бициклических таутомеров 2 может быть раскрыт при взаимодействии с азид-ионами и другими мягкими нуклеофилами, которые атакуют по положению 2 [19]. [c.435]

    Способность микроорганизмов выступать в роли химических катализаторов впервые удалось использовать в полной мере для синтеза промышленно важных стероидов. В последние тридцать лет субстратная и стереоспецифичность ферментов нашла широкое применение в производстве стероидов при осуществлении разнообразных реакций гидроксилирования, дегидроксилирова-ния, эпоксидирования, окисления, восстановления, гидрогенизации, дегидрогенизации, этерификации, гидролиза эфиров и изомеризации. Целью всеобъемлющих исследований в этой области было осуществление специфических структурных перестроек стероидов при мягких условиях. Специфичность таких реакций определяется либо выбором оп-ределеннога вида микроорганизмов, либо химической модификацией субстрата, стереохимически исключающей другие реакции. Понимание зависимости между строением молекул субстрата и характером его перестройки, осуществляемой микроорганизмами, позволило сформулировать требования для каждой конкретной реакции, например для гидроксилирования, В определении скорости и направления реакции главную роль, как выяснилось, играют положение и ориентация замещающих групп в молекулах-стероидов. История развития методов микробиологического преобразования стероидов представляет собой прекрасный пример сочетания химического подхода со специфичностью и разнообразием биологических систем. Кроме того, на этой основе может быть осуществлен синтез новых стероидов, обладающих лучшими фармакологическими свойствами. [c.161]

    В противоположность растениям в животных организмах фенольные соединения встречаются в очень незначительных количествах, и известно лишь небольшое число структурных типов таких фенолов. Наиболее важным фенолом является незаменимая аминокислота тирозин — универсальный компонент животных, растительных и бактериальных белков. У животных тирозин является предшественником меланина фармакологическое значение его состоит в том, что он вместе с фенилаланином является предшественником нейрогуморальных веществ — норадреналина и адреналина. Структура тирозина лежит в основе тиреоидиых гормонов, представляющих собой иодсодержащие фенолы и являющиеся продуктами деятельности щитовидной железы. Кроме того, тирозин встречается в ряде пептидных гормонов, например в инсулине, глюкагоне и в некоторых известных нейрогипофизарных гормонах, таких, как окситоцин и вазопрессин. Третий основной класс биологически активных фенолов — это гидроксилированные индоламины, например 5-ОТ, образующийся из триптофана. [c.358]

    Ксантиноксидаза — фермент, катализирующий это окисление. Уровень мочевой кислоты в крови имеет тенденцию повышаться, при некоторых нарушениях в клетках и освобождении из них нуклео-протеидов, например, при лейкемии и в ряде случаев при воспалении легких. Ксантиноксидаза катализирует также окисление альдегидов в карбоновые кислоты. Как и при окислении пуринов, этот процесс можно формально представить как гидроксилирование, в котором гидроксил отщепляется от молекулы растворителя. Хотя ксантиноксидаза широко распространена в организме млекопитающих (наилучшими источниками для ее получения служат молоко и печень крупного рогатого скота), биологическое значение этого фермента остается неясным. Поскольку адьдегиды в организме млекопитающих не встречаются в сколько-нибудь заметных количествах и поскольку окисление пурина молекулярным кислородом относится к числу самых быстрых реакций, катализируемых ксантиноксидазой, предполагается, что основная биологическая функция ( )ермента состоит в окислении пуринов и альдегидов. Однако отсутствие ксантиноксидазной активности, по-видимому, не приводит к серьезным патологическим нарушениям, по крайней мере у человека. Описан случай полного отсутствия ксантиноксидазной активности у больного, который страдал только камнями, образованными ксантином, в мочевом пузыре [29]. [c.273]

    Во дши ИА случаях была установлена идеитнчность продуктов эпоксидирования, полученных биологическим путем, с соединениями, полученными химическим путем - . После того как было показано, что культуры, способные ввести аксиальную гидроксильную группу, могут окислять соответствующие ненасыщенные стероиды до эпоксисоединений, были проведены опыты с культурами, вызывающими экваториальное гидроксилирование, однако при этом эпоксидирования не наблюдалось .  [c.161]

    В биологических системах свободнорадикальное замещение в ароматических соединениях в разбавленных водных растворах — явление обычное. Подробнее всего изучено гидроксилирование, которое представляет собой химически индуцированное радикальное замещение в воде [214]. Наиболее известен в качестве гидрок-силирующего агента реактив Фентона — водный раствор сульфата железа (II) и перекиси водорода. Предполагаемые в этой системе реакции изображаются уравнениями (22) и (95—98) [215,216]  [c.167]

    В химически чистом кристаллическом виде получены в 1957 г. два простагланди-на простагландин Е (ПГ — Ei) и простагландин (ПГ — Е] )- Сейчас известно 14 природных простагландннов, 13 из них обнаружены в семенной жидкости человека. Это производные полиненасыщенных гидроксилированных жирных кислот, состоящих из 20 углеродных атомов. Для всех их характерно наличие циклопентанового, кольца, двух боковых цепей, двойной (транс) связи у fs и гидроксила в 15-м положении, имеющего существенное значение для биологической активности простагланди-нов. В зависимости от строения кольца выделяют четыре основные их группы Е, F, А и В, различающиеся числом двойных связей в боковых цепях, которые обозначены цифровым индексом внизу буквы. Обнаруженные в тканях ПГ-Е и ПГ-F находятся в низких концентрациях — 0,01—0,05 мкг/г. Простагландины не обнаружены только в эритроцитах человека и тканях индейки. [c.286]

    Гидроксилирование представляет собой основной куть превращения бензола в организме. Однако, химизм этого процесса почти еще не изучен. Неясным является даже, осуществляется ли окисление бензола ферментативным путем. Полагают, что определенное значение в биологическом окислении бензола могут иметь процессы, идущие с образованием и участием свободных радикалов (Д. М. Михлин, 1960). В основе биохимической активности токоферолов лежит их антиоксидативный эффект. Последний осуществяется путем угнетения цепных окислительновосстановительных реакций, в частности, в результате нейтрализации образующихся свободных радикалов (Н. В. Лазарев, 1960). В связи с этим казалось интересным изучить влияние антиоксидантов на течение бензольной лейкопении. [c.379]

    За последние 15—20 лет в химико-фармацевтической промышленности с успехом начали применять микробиологические процессы для химических превращений. Стало возможным заменять некоторые сложные стадии химического синтеза более простым биологическим синтезом, используя для этой цели различные микроорганизмы. В настоящее время биосинтез в химико-фармацевтической промышленности используется для построения молекул антибиотиков, витаминов, стероидных гормонов, алкалоидов и кровезаменителей. Изоляция 6-аминопенициллановой кислоты в процессе микробиологического образования пенициллина разрешит задачу получения химическим путем производных пенициллина с новыми свойствами. Исключительное значение в практическом отношении имеют реакции гидроксилирования и дегидрирования стероидов. Глубокое проникновение Микро- [c.200]


Смотреть страницы где упоминается термин Гидроксилирование биологическое: [c.180]    [c.217]    [c.98]    [c.1171]    [c.70]    [c.396]    [c.114]    [c.591]    [c.125]    [c.172]    [c.234]    [c.151]    [c.97]    [c.191]    [c.295]    [c.373]    [c.328]    [c.191]    [c.102]   
Перспективы развития органической химии (1959) -- [ c.292 ]




ПОИСК





Смотрите так же термины и статьи:

Гидроксилирование



© 2025 chem21.info Реклама на сайте