Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Этилбензол реакция с хлористым алюминием

    Некоторые наиболее важные процессы алкилирования ароматики практикуются в промышленности реакция бензола с этиленом с образованием этилбензола, который затем дегидрируется в стирол алкилирование моноядерной ароматики с пропиленом, что дает соответствующие изопропил-производные, которые в свою очередь превращаются в фенол, крезол и т. д. через промежуточные гидроперекиси (т. е. фенол и ацетон от гидроперекиси цимола) алкилирование бензола и нафталина с алкил-хлоридами с длинными цепочками для производства соответствующей алкилароматики, которая сульфируется в ядре серной кислотой (натриевой солью) для применения в очистке и, наконец, алкилирование фенолов с олефинами или алкильными галогенидами с целью получения алкилированных фенолов, использующихся как присадки (или как промежуточные продукты в производстве присадок) к топливам и маслам. Первый и третий процессы проходят в присутствии хлористого алюминия, который наряду с другими галогенидами металлов является наиболее важным [c.133]


    Алкилирование ароматических углеводородов. Промышленное алкилирование ароматических соединений проводится в основном с целью получения этилбензола (полупродукта синтеза стирола), кумола полупродукта синтеза фенола) и алкилбензолов с длинными алкильными цепями (полупродуктов синтеза детергентов). При получении этилбензола в качестве катализатора применяется главным образом хлористый алюминий. Ежедневно таким способом производят несколько тысяч тонн этилбензола. Алкилирование с А1С1з проводят при приблизительно 4 атм, 120° С и соотношении бензола и этилена в сырье, равном 2,5. Этот способ алкилирования используется уже много лет и в настоящее время считается одним из наиболее эффективных методов получения этилбензола. Однако применение катализаторов Фриделя — Крафтса связано с рядом трудностей аппаратура должна изготавливаться из материала, устойчивого к коррозии, а применяемое сырье должно иметь достаточно высокую степень чистоты, иначе расход катализатора будет очень большим. Корродируют аппаратуру не столько сам катализатор А1С1з, сколько комплексы, которые образуются в ходе реакции в результате взаимодействия хлористого алюминия с компонентами сырья. Эти комплексы значительно более агрессивны и иногда единственным способом борьбы с коррозией является непрерывная замена корродированных узлов аппаратуры. Образованию таких комплексов, очевидно, способствуют содержащиеся в сырье примеси. Так, в частности, установлено, что одни и те же установки для производства кумола с фосфорнокислотным катализатором хорошо работают в одних местах и плохо в других. Хлористый алюминий частично растворяется в продуктах в 200 частях этилбензола растворяется одна часть А1С1з. В результате возникает еще одна проблема, связанная с нейтрализацией кислотных растворов, поскольку продукт алкилирования промывают водой, чтобы удалить растворенный в нем катализатор. Именно по этим причинам в настоящее время широко исследуется возможность проведения алкилирования на цеолитных катализаторах. [c.390]

    Со времени первого сообщения Фриделя и Крафтса в 1877 г. [125] о том, что хлористый алюминий катализирует алкилирование ароматических углеводородов, эта реакция стала предметом большого числа исследований и обзоров [75, 123, 235, 256, 294]. Реакция широко применяется при проведении синтетических работ в лабораториях [256]. Она также имеет весьма большое значение для нефтяной пролтышленности. Так, алкилирование по Фриделю—Крафтсу применяется в настоящее время в больших масштабах для синтеза этилбензола, стирола, кумола, для производства фенола и алкилата , а также детергентов (см. гл. LV11). Согласно оценке алкилирование бензола для производства стирола потребляет около 45% общего количества производимого бензола. [c.428]


    Благоприятно, что реакция обратима, например диэтилбензол под влиянием хлористого алюминия будет реагировать с бензолом, давая этилбензол [1]  [c.269]

    В Германии процесс проводили следующим образом. Бензол вместе с обратными полиэтилбензолами и этиленом непрерывно подавали в нижнюю часть реакционной колонны, в верхнюю часть которой поступал свежий хлористый алюминий. Смесь продуктов реакции перетекала в разделитель, где отслаивался комплекс ароматических углеводородов с хлористым алюминием в виде густого масла, которое возвращали в реактор. Верхний, углеводородный, слой, состоявший из бензола (50%), этилбензола (33%) и полиэтилбензолов (17%), разгоняли на нескольких последовательно расположенных ректификационных колоннах. В первых двух колоннах отгоняли бензол и соответственно чистый этилбензол. Из кубовой жидкости второй колонны выделяли полиэтилбензол, причем оставалось небольшое количество смолы, являвшейся отходом. Процесс проводили при 90°. Реакция алкилирования протекает с выделением тепла на 1 моль образовавшегося этилбензола выделяется 27 ккал. После начала реакции колонну алкилирования начинают охлаждать. В смеси, поступившей на алкилирование, молярное отношение бензола к этилену равнялось приблизительно 1,7 1 при допущении, что все полиэтилбензолы состоят исключительно из диэтилбензола. Выход этилбензола, считая как на бензол, так и на этилен, равен приблизительно 95%. Расход хлористого алюминия составлял 0,025 кг на 1 кг этилбензола. На рис. 28 приведена схема этого процесса. [c.258]

    Помимо галоида и галоидоводорода, олефины могут присоединять и другие вещества. Особенно большое значение имеют реакции взаимодействия этилена, пропилена и высших олефинов с бензолом Б присутствии хлористого алюминия или фтористого водорода, так называемые реакции алкилирования. При взаимодействии бензола с этиленом получают этилбензол, применяемый для производства стирола, а взаимодействием пропилена с бензолом—кумол. Способ переработки кумола в ацетон и фенол СХЕМА II ) описан в литературе [11]. [c.359]

    На рис. 5 представлен график зависимости количества тетра-этилбензолов в алкилате от температуры при неодинаковом расходе хлористого алюминия. Из графика видно, что при заданном количестве тетраэтилбензолов расход хлористого алюминия можно понизить, увеличивая температуру реакции (для простоты другие переменные поддерживали постоянными). На рис. 6 представлены аналогичный график зависимости концентрации тетраэтилбензолов от времени контакта и влияние времени контакта на расход хлористого алюминия. [c.277]

    Различные варианты производства этилбензола имеют отличительные особенности, но в основе этих процессов лежат общие принципы, В системе неизменно присутствуют три фазы — газообразный этилен, жидкие ароматические углеводороды и жидкий катализаторный комплекс. Реакция протекает в катализаторном комплексе, и между ним и органической фазой устанавливается равновесие. Затем жидкий продукт охлаждают и разделяют на два слоя. Нижний слой— катализаторный комплекс — возвращают в систему. Хлористый алюминий теряется из системы двумя путями—за счет растворения в органическом слое и при выгрузке части отработанного комплекса для его замены свежим. Ката51и-заторный комплекс отдельно подвергают гидролизу, чтобы получить водный раствор хлористого алюминия, отводимый с установ- [c.270]

    Промыгалоппое получение этилбензола основывается на совместном испарении бензола и этилена в присутствии безводного хлористого алюминия. Скорость, с какой зтнлеп вступает в реакцию, исключительно велика и аа- [c.227]

    В присутствии хлористого алюминия диэтилсульфат легко вступает в реакцию с бензолом, образуя этилбензол с выходом 71 % [4281. [c.79]

    В продуктах реакции содержалось 51% бензола, 41% этилбензола и 8% полиэтилбензолов. Низшие полиэтилбензолы возвращали в процесс, а высшие подвергали деалкилированию при 200° в присутствии хлористого алюминия. Суммарные выходы были такими же, что и в процессе, применявшемся в Германии [38]. [c.260]

    Разработана методика и изучена кинетика реакции-этилбензола с 1,2-дихлорэтаном в присутствии хлористого алюминия. [c.122]

    В табл. УП.4 приведён состав продуктов реакции изомеризации этилбензола в присутствии хлористого алюминия. [c.135]

    Реакция алкилирования обратима, поэтому полиалкилбензолы под влиянием хлористого алюминия реагируют с бензолом, образуя этилбензол  [c.358]

    Схема алкилирования бензола приведена на рис. 91. Основной аппаратурой является алкилатор 1 колонного типа, оборудованный рубашкой, при помощи которой алкилатор можно нагревать горячей водой, водяным паром или охлаждать водой. При пуске алкилатор заполняют смесью бензола /, катализатора II (хлористый алюминий) и небольшого количества этилбензола. Затем в рубашку пропускают горячую воду для достижения температуры, необходимой для начала реакции. [c.240]


    Способ совместного получения фталевых кислот и хлороформа, разработанный ранее в Научно-исследовательском институте синтетических спиртов и органических продуктов, также основан па окислении диэтил-бензола [1, 2], но обладает рядом преимуществ по сравнению с известными методами. Исходное сырье — диэтилбензол — образуется попутно с этил-бензолом при алкилировании бензола этиленом в присутствии хлористого алюминия в количестве 25—35% от веса этилбензола. Алкилирование в присутствии хлористого алюминия является равновесным, обратимым процессом, поэтому возврат диэтилбензола в зону реакции исключает образование новых его количеств. При использовании диэтилбензола в качестве сырья для получения фталевых кислот он может быть выведен из цикла с большим экономическим эффектом без снижения производительности по этилбензолу. [c.184]

    Реакции перераспределения присоединенных двойных связей во всех случаях проходят очень легко образуются более высокие или более низкие алкилзамещенные продукты. Например, ксилолы подвергаются перераспределению в присутствии фтористого водорода, трифтористого бора или хлористого алюминия [501], образуя бензол, толуол и более высоко алкилированные продукты. Правильным подбором условий перераспределение можно провести количественно. Так, в присутствии 90 мольных процентов трифтористого бора этилбензол образует смесь бензола и [c.126]

    При получении этилбензола наиболее распространенным катализатором является безводная система хлористый алюминий - хлористый водород. Ввиду экзотермического характера взаимодействия между бензолом и этиленом для ограничения верхнего температурного предела (95°С) используют охлаждение. Подавление реакции образования диэтилбензола достигается повышением соотношения бензол этилен. Его всегда похшерживают выше 1, чаще всего оно равно 5 или выше. Большую часть образующегося диэтилбензола возвращают в реактор /12/. Потребление катализатора составляет 10 кг на 1 т этилбензола. [c.147]

    Впервые алкилирование беизола этиленом описано Балсоном [1] в 1879 г. В качестве катализатора применялся хлористый алюминий. При условиях, избранных автором, вредш реакции было продолжительным, и в реакцию с образованием этилбензола вступало только 29 % этилена и 31 , о бензола. [c.490]

    Этилбензол производят в промышленности почти целиком как сырье для получения стирола. Ббльшую часть этилбензола получают алкилированием бензола этиленом и лишь незначительное его количество выделяют сверхчеткой ректификацией из ароматических углеводородов Са нефтяного происхождения. Реакция алкилирования может протекать как в газовой, так и в жидкой фазах. В промышленности эксплуатируется несколько опробованных вариантов. В настоящее время наиболее широко распространен процесс в жидкой фазе с хлористым алюминием в качестве катализатора. Цель настоящей статьи состоит в описании нового и улучшенного варианта этого процесса, тоже нашедшего промышленное применение. [c.268]

    Во время реакции может происходить разрыв атакованных алкильных групп. Толуол, например, при разгонке с хлористым алюминием дает дитолил, бензол, этилбензол, ксилолы и метилциклогексан [649—652]. Ксилол дает 25%-ный выход толуола [653, 654]. [c.143]

    Каждая из реакций при умеренной температуре является прак-тичесчи необратимой. Так, константы равновесия при синтезе этилбензола из этилена и бензола при О, 200 и 500 °С равны со-ответ твенно 6-10 , 2,2-10 и 1,9. Однако при катализе хлористым алюминием и достаточно жестких условиях катализа алюмосиликатами и цеолитами происходит обратимая реакция п е р е-алкилирования (диспропорционирование) с межмолекулярной миграцией алкильных групп  [c.245]

    Промышленное производство этилбензола основано па воздействии газообразным этиленом иа бензол в присутствии безводного хлористого алюминия. Ниже несколько подробнее описан метод, разработанный в Гер-маини фирмой И. Г. Фарбеииндустри А. Г. в настоящее время этот нроцесс осуществлен так ке в промышленном масштабе в США фирмой Доу ке-микал Ко [1.5]. Реакция алкилирования протекает бурно п количественно по следующему уравнению  [c.623]

    Алкиловые эфиры п-толуодсуяьфокислоты в реакциях типа Фриделя — Крафтса. Этиловый эфир тг-толуолсульфокислоты при нагревании с бензолом и хлористым алюминием дает 64%-ный выход этилбензола [219]. Аналогичные результаты получены с 3-цианэтиловым и р-этилкарбоксиэтиловым эфирами выход продукта реакции в этих случаях превышает 70%  [c.371]

    Алкилирование очищенного бензола этиленом большо1[ частью проводится нри атмосферном давлении, без механического перемешивания, при 90° в присутствии хлористого алюминия как катализатора. Аппаратура (рис. 135) состоит из алкилатора колонного типа высотой 12 м и диаметром 1,4л, составленного из четырех эмалированных изнутри звеньев, фланцы которых снабжены асбестовым уплотнением. Алкилатор оборудован рубашкой, через которую осуществляют нагрев горячей водой или иаром или охлаждение водой. При нуске в эксплуатацию алкилатор заполняют бензолом, а еще лучше смесью бепзола и этилбензола и цнркулируюп1 ей по рубашке горячей водой нагревают до температуры, при которой при подаче этилена начинается реакция тепло, необходимое для поддержания процесса, выделяется затем в самом процессе. Когда теила для реакции достаточно, рубашку реактора заполняют холодной водой. Температура в нижней части колонны равна 100 в верхней части 90 °. Реактор оборудован двумя змеевиковыми холодильниками, установленными в газовом про- [c.626]

    Как известно, AI I3 является самым распространенным катализатором и применяется в ряде промышленных процессов алкилирования, в частности в синтезе кумола [28]. Хлористый алюминий оказался наиболее подходящим и для алкилирования бензола этилен-пропиленовой смесью газов после скрубберов [130]. С этим катализатором получаются хорошие выходы моноалкилбензолов с высокой конверсией олефипов при этом требуются очень малые количества AI I3 (0,05 моля на 1 моль олефина). Оптимальными условиями реакции являются молярные отношения реагентов и катализатора, равные 2,5 1 0,05, температура 78— 80° и скорость пропускания газа 4,5—5 л/час. При этих условиях этилбензол получается с выходом 70%, а изопропилбензол — с выходом 90% от теорет., рассчитанным на поглощенные олефины. Относительное содержание этил- и изопропилбензолов в алкилате составляет соответственно [c.423]

    В реакции Фриделя—Крафтса вместо галоидалкилов можно использовать и олефины, например этилен или пропилен, которые при взаимодействии с бензолом в присутствии хлористого алюминия образуют этилбензол и, соответственно, высшие гомологи бензола . Далее, в некоторых случаях, галоидалкилы можно, по-видимому, заменить эфирами борной кислоты (С,1Н2,,+гО)зВ. [c.486]

    На рис. Х.12 показаны условия равновесия реакции этилирования бензола при 95° с применением хлористого алюминия в качестве катализатора при различных отношениях этилена к бензолу [97]. Из кривых следует, что по мере роста относительного содержания этильных групп процент полпэтилироваппых продуктов (полиэтилбензола) постепенно растет, в то время как концентрация этилбензола стабилизируется. Хотя в заводских условиях алкилаторы не работают точно при условиях равновесия, производственный опыт подтверждает оптимальные рабочие условия, предсказанные теорией. [c.623]

    В больших масштабах стирол выгоднее всего получать, исходя из этилбензола. Этилбензол получают из бензола и этилена, из которых первый является продуктом перегонки каменного угля, а второй получают гидрированием ацетилена. Ацетилен в свою очередь получают из хлористого кальция и угля. Таким образом, первоначальным исходным веществом в этом пропессе является каменный уголь. Подробно описано полу юние больших количеств этилбензола и стирола [18]. В первой части процесса этилен и предварительно промытый и перегнанный бензол поступают в нижнюю часть эмалированного реактора, содержащего хлористый алюминий. Реакцию проводят при 90° и регулируют с помощью обратного холодильника. Реакционная смесь перетекает в желез- [c.154]

    Со времени открытия реакции алкилирования бензола прошло более 85 лет. В 1877 г. Фридель и Крафте [1] осуществили алкилирование бензола алкилхлоридами в присутствии безводного хлористого алюминия. Почти одновременно Бальсон [2] провел алкилирование бензола этиленом и получил этилбензол в присутствии хлористого алюминия как катализатора. Б 90-х годах принципиально тем же методом Радзивановский [3] получил изопропилбензол. [c.262]

    Значительно легче происходит межмолекулярное перераспределение более длинных алкильных остатков. Реакция переалкилирования использовалась, например, для получения этилбензола кипячением с хлористым алюминием в избытке бензола смеси ди- и триэтилбензолов являющихся побочными продуктами при этилировании бензола на мо-ноэтилбензол [71] (ср. [69, 72]). Осуществлено также этилирование нафталина нагреванием его при 80° с полиэтилбензолами в присутствии хлористого алюминия [73]. Перемещение метильной группы от полиметилбензолов к нафталину в этих условиях почти не происходит [74] (ср. [75]). [c.15]

    Последующие гомологи бензола, в частности этилбензол, изопропилбензол (кумол), бутилбензол могут быть получены по реакции Фриделя-.Крафтса в присутствии хлористого алюминия алкилированием бензола соответственными гало-идалкиламй. Однако для промышленного получения этих [c.84]


Смотреть страницы где упоминается термин Этилбензол реакция с хлористым алюминием: [c.270]    [c.124]    [c.156]    [c.493]    [c.506]    [c.345]    [c.12]    [c.351]    [c.120]    [c.456]    [c.628]    [c.629]    [c.631]    [c.409]    [c.222]    [c.608]    [c.845]    [c.85]   
Безводный хлористый алюминий в органической химии (1949) -- [ c.718 , c.832 ]




ПОИСК





Смотрите так же термины и статьи:

Алюминий реакции

Этилбензол

Этилбензол реакции



© 2024 chem21.info Реклама на сайте