Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диоксид образование

    Пример 1. Исходя из теплоты образования газообразного диоксида углерода (ДЯ° = —393,5 кДж/моль) и термохимического уравнения [c.76]

    Продукты сгорания топлива. Процессы горения играют главную роль в образовании загрязнений атмосферы. В качестве топлива наиболее широко применяют нефть, уголь, природный и попутный газы, в некоторых странах — древесину. Основные продукты сгорания топлива — диоксид и оксид углерода. В результате окисления примесей, содержащихся в топливе, образуются также оксиды серы и азота. [c.14]


    Диоксид серы образуется при сжигании угля или нефти с высоким содержанием серы, в производстве серной кислоты. Выбросы его составляют примерно 200 млн. т в год и к 2000 г. достигнут, по расчетам, 333 млн. т в год. Источники образования диоксида серы в нефтехимической промышленности представлены ниже  [c.19]

    Метод фотохимического разложения сероводорода. Разработан швейцарскими и итальянскими химиками. При фотохимическом разложении сероводорода в присутствии катализатора — суспензии сульфида кадмия и диоксида рутения — образуются водород и сера. Механизм этой реакции заключается в следующем. В сульфиде кадмия (соединение С полупроводниковыми свойствами) электроны под действием света начинают перемещаться, оставляя положительно заряженные дырки, и восстанавливают водород из водного раствора. Ион гидроксида разлагает молекулу водорода с образованием сульфид-иона, который окисляется до элементарной серы. Этот процесс можно использовать для очистки газов от сероводорода. [c.54]

    Часть образующегося диоксида углерода может вступать в реакцию с углеродом с образованием оксида [c.20]

    Основные стадии процесса следующие получение диоксида серы в результате сжигания в топке сероводородного газа охлаждение полученного диоксида углерода в котле-утилизаторе с получением водяного пара окисление диоксида серы до триоксида в контактном аппарате, загруженном ванадиевым катализатором конденсация триоксида серы и паров воды с образованием серной кислоты улавливание тумана и капель серной кислоты в электрофильтре. Технологическая схема установки представлена на рис. ХП-5. [c.113]

    Электрохимические процессы очень часто приводят к образованию новых фаз. Так, при электролизе растворов щелочей у границы электрод — электролит образуется новая газообразная фаза (водород и кислород), возникшая в результате разложения жидкой фазы — воды, а электролиз растворов хлоридов приводит к выделению газообразных водорода и хлора. При электролизе растворов солей металлов на катоде идут процессы образования новых жидких (ртуть, галлий) или твердь[х (медь, цинк, свинец, никель и т. д.) металлических фаз. Во время заряда кислотного аккуму- [ятора твердый сульфат свинца па (одном из электродов превращается в металлический свинец, а па другом — в диоксид свинца. Число этих примеров можно было бы начительно увеличить, но и этого достаточно, чтобы понять, насколько часто следует считаться с воз-никиовением новых фаз в ходе электрохимических процессов. [c.332]


    В загрязненной атмосфере диоксид серы, оксиды азота и углеводороды присутствуют одновременно. Облучение олефинов с прямой цепью и ароматических соединений в присутствии диоксида серы и оксидов азота приводит к образованию значительного количества аэрозолей. Скорость реакции для диоксида азота зависит от соотношения реагентов. [c.32]

    В целом методы нейтрализации диоксида серы обеспечивают высокую степень очистки газа. Недостатки этих методов — значительные затраты на оборудование и обслуживание (точную регулировку подачи компонентов, поддержание оптимальной pH поглотительного раствора, выделение конечного продукта), снижение температуры газа, что ведет к ухудшению рассеивания, п образование во многих случаях твердых отходов, идущих в отвал. [c.60]

    Электрохимическая коррозия — это взаимодействие металла с коррозионной средой (электролитом), при котором ионизация атомов металла и восстановление окислительного компонента коррозионной среды протекают не в одном акте и их скорости зависят от величины электродного потенциала. Электрохимическая коррозия протекает только при контакте поверхности металла с электролитом, т. е. с токопроводящей средой (водными растворами солей, кислот, щелочей). Практически поверхность любого металла в ат осфе-ре покрывается тонкой водной пленкой различной толщины в зависимости от температуры и влажности воздуха, а также от температуры металлической поверхности. В этой пленке растворяются содержащиеся в воздухе газы (диоксид углерода, оксиды азота и серы, сероводород и др.) и мелкие частицы (пыль) различных солей, что приводит к образованию электролита. [c.279]

    Диоксид серы. Фотохимические превращения диоксида серы приводят к образованию аэрозолей, а рассеяние и поглощение радиации аэрозолями в атмосфере обусловливают снижение видимости. Туман серной кислоты и другие сульфатные части- [c.31]

    Для того чтобы нарушить установившееся равновесие и вы-звать образование нового количества оксида кальция, нужно или повысить температуру, или удалить часть образовавшегося диоксида углерода, уменьшив тем самым его парциальное давление. Если при некоторой температуре парциальное давление диоксида углерода поддерживается более низким, чем давление диссоциации, то разложение карбоната кальция идет непрерывно. Поэтому при обжигании извести важную роль играет хорошая вентиляция печи, способствующая удалению СОа и позволяющая вести разложение при более низкой температуре. [c.615]

    Содержащиеся в оборотной воде соли и другие примеси вызывают коррозию оборудования. Хлориды ускоряют коррозию вследствие увеличения кислотности воды и их разрущающего действия на пассивирующие пленки сульфаты агрессивно действуют на бетон. Диоксид углерода замедляет образование защитных пленок. Для защиты от коррозии в оборотных системах применяют различные ингибиторы. Процесс коррозии приостанавливают хромат и бихромат калия. Они же замедляют биологические обрастания. Для снижения коррозии воду обрабатывают также фосфатами, которые образуют пленку, изолирующую металл от воды. В отличие от хроматов фосфаты благоприятствуют развитию биологических обрастаний, поэтому эти химикаты иногда применяют совместно. Один из способов защиты металла от коррозии — защитные покрытия смолами, красками, лаками и эмалями, однако они недолговечны и восстановить их можно только во время ремонта. [c.86]

    Содовый метод. По химизму близок к известковому основан на поглощении диоксида серы раствором соды, с образованием бикарбоната и сульфита натрия. Схема очистки газа от дноксида серы содовым методом представлена на рис. 18. [c.56]

    В процессе в качестве катализатора применяют 96—98 %-ную, считая на моногидрат, серную кислоту. Расход катализатора на 1 т алкилата зависит от содержания олефинов в сырье для пропиленового сырья — 190 кг, для бутиленового сырья — от 80 до 100 кг, для амиленового сырья — 120 кг. Объемное соотношение кислота углеводороды поддерживается в реакционной зоне от 1 1 до 2 1. Поскольку кислотные свойства серной кислоты в растворе углеводородов значительно выше, чем в воде, снижение активности катализатора при алкилировании будет зависеть от разбавления ее водой. Поэтому нужна тщательная осушка сырья перед подачей в зону реакции. Концентрация кислоты понижается также за счет накопления в ней высокомолекулярных соединений. Применение более концентрированной кислоты приводит к окислению углеводородов, осмолению продуктов, выделению диоксида серы и снижению выхода алкилата. При меньшей концентрации идет реакция полимеризации олефинов с образованием разбавленной серной кислоты, корродирующей аппаратуру. В серной кислоте должны отсутствовать примеси, такие, как соединения железа, например сульфат трехвалентного железа, снижающие эффективность процесса. [c.60]


    Хорошо адсорбирующиеся масла, гликоли, амины, ингибиторы гидратообразования и коррозии в процессе регенерации образуют смолистые соединения, закупоривающие поры сорбента. Амины разлагаются с образованием аммиака, разрушающего структуру силикагеля. Сероводород и диоксид углерода сорбируются силикагелем, по вытесняются в последующем водой, полностью десорбируясь при регенерации. [c.149]

    В ряде случаев поглощение одного вещества другим пе огра-ничииается поверхностным слоем, а происходит во всем объеме сорбента. Такое поглощение называют абсорбцией. Примером процесса абсорбции является растворение га ,ов в жидкостях. Поглощение одного вещества другим, сопровождающееся химическими реакциями, называют х е м о с о р б ц и е и. Так, поглощение аммиака или хлористого водорода водой, поглощение влаги и кис-лорода металлами с образованием оксидов и гидроксидов, поглощение диоксида углерода оксидом кальция — примеры хемосорб-циоиных процессов. Капиллярная конденсация состоит в ожижении паров в микропористых сорбентах. Она происходит вследствие того, что давление паров над вогнутым мениском ясид-кости в смачиваемых ею узких капиллярах меньше, чем давление насыщенного пара над [1лоской поверхностью жидкости при той же температуре. [c.320]

    ИК-спектроскопией адсорбированного аммиака и пиридина установлено усиление апротонной кислотности и образование центров протонной кислотности в результате хлорирования т -оксида алюминия четыреххлористым углеродом. Исследования масс-спектров продуктов десорбции с поверхности образцов -у- и tj-оксидов алюминия до и после хлорирования и электронная оптическая спектроскопия адсорбированных состояний некоторых оснований позволили установить, что причиной принципиальной разницы в каталитической активности хлорированных tj- и 7-оксидов алюминия в низкотемпературной изомеризации парафиновых углеводородов являются различия в свойствах поверхности прокаленных при 500 °С оксидов алюминия, в том числе в количестве и расположении гидроксильных групп, обусловленных особенностями кристаллической структуры 7 - и 7-оксидов алюминия [90]. Хлорирование поверхности оксида алюминия, сопровождающееся выделением хлороводорода и диоксида углерода, усиливает кислотность апротонного и протонного типа. Бренстедовская кислотность обусловлена хемосорбированнымНС . [c.72]

    Скорость исчезновения диоксида серы и образования аэрозолей увеличивается, когда диоксид серы фотоокисляется в присутствии оксидов азота и олефиновых углеводородов. [c.32]

    Влияние природы хлорагента и условий хлорирования на изомеризующую активность катализатора. Взаимодействие хлорорганического соединения, например четыреххлористого углерода, с кислородсодержащими группами на поверхности оксида алюминия при 250—300 °С в среде газа-носителя выражается суммой химических реакщ1Й, приводящих к образованию фосгена, диоксида углерода, хлороводорода и воды. За счет замещения ионов кислорода на хлор масса катализатора при хлорировании увеличивается. [c.67]

    Сероводород — сильный восстановитель. Прн действии сильных окислителей он окисляется до диоксида серы или до серной кислоты глубина окисления зависит от условий температуры, pH раствора, концентрации окислителя. Например, реакция с хлором обычно протекает до образования серной кислоты  [c.383]

    Атомный кислород и озон (последний со значительно меньшей скоростью) реагируют с различными углеводородами. Окисленные соединения и свободные радикалы реагируют затем с оксидом азота с образованием дополнительного количества диоксида азота. В результате этого уменьшается доля оксида азота, вступающая в реакцию с озоном, вследствие чего содержание озона возрастает. [c.33]

    Примеси, содержащиеся в топливе, также способствуют образованию побочных продуктов и сгорают с образованием диоксидов серы и азота [c.20]

    Возможно также образование азотной кислоты по реакции диоксида азота с озоном  [c.23]

    Диоксид серы ухудшает видимость в связи с образованием различных аэрозолей при фотохимических реакциях между диоксидом серы, взвешенными частицами, оксидами азота и углеводородами он ускоряет коррозию металлов, образуя серную кислоту в атмосфере или на иоверхностн металла. Кроме того, этот загрязнитель вызывает значительное снижение урожая. [c.22]

    Силан SiH — бесцветный газ, самовоспламеняющийся на воздухе и сгорающий с образованием диоксида кремния и воды  [c.509]

    Если кислота и осиоваине, образующие соль, не только слабые электролиты, ио и малорастворимы, или неустойчивы и разлагаются с образованием летучих продуктов, то гидролиз солн часто протекает необратимо, т. е. сопровождается полным разложением соли. Так, при взаимодействии в растворе соли алюминия, например А1С1з, с карбонатом натрия выпадает осадок гидроксида алюминия и выделяется диоксид углерода [c.263]

    Образование карбонатов происходит, по-видимому, по двум направлениям за счет взаимодействия металлов с диоксидом углерода, растворенным в водных конденсатах [c.289]

    При получении ЗеОг сжиганием селена (сгорающего синим пламенем) воздух или кислород полезно предварительно насытить окислами азота (пропуская его сквозь дымящую НКОз), так как сгорание идет в этом случае гораздо быстрее. Теплота образования двуокиси селена из элементов равна 54 ккал/моль, а- средняя энергия связи е = О оценивается в 102 ккал моль. Кристаллический селен диоксид образован неплоскими цепями —О—Зе (О) О—8е(0)— с параметрами (ОЗе) = 1,78, (ЗеО) = = 1,73 А, 05е0 — 98°,. ЗеОЗе = 125° и при нагревании возгоняется (т. возг. 337 С, теплота возгонки 22 ккал моль). Желтовато-зеленый пар Зера имеет характерный запах ( гнилой редьки ) и слагается из отдельных молекул (ЗеО) = 1,61 А, к(8еО) = 6,9, ц = 2,7]. Сухая двуокись селена легко образует продукты присоединения. Примером может, служить жидкий при обычных условиях. (и устойчивый до 170°С, когда он перегоняется с частичным разложением) желтый 5е02-2НС1. [c.360]

    Метод фирмы Монсанто- . Отходящие разы после высоко-темнературиого электростатического осадителя для- удаления сажи проходят через конвертор, где диоксид серы в присутствии катализатора пентаоксида ванадия окисляется до тpiюк-снда серы. Далее газы проходят поглотительную колонну, где промываются возвращаемой-в производство кислотой с образованием 80%-ной серной кислоты (рис. 23). [c.62]

    Законы постоянства состава и кратных отношений вытекают из атомно-мо-леиулприого учения. Вещества с молекулярной структурой состоят из одинако-вмх молекул. Поэтому естественно, что состав таких веществ постоянен. При образовании из двух элементов нескольких соединений атомы этих элементов соединяются друг с другом в молекулы различного, но определенного состава. Например, молекула оксида углерода(И) построена из одного атома углерода и одного атома кислорода, а в состав молекулы диоксида углерода входит один атсм углерода и два атома кислорода. Ясно, что масса кислорода, приходящаяся па одну и ту же массу углерода, во втором из этих соедипепнй в 2 раза больше, чем в первом. [c.24]

    КИСЛОТ приводит к разрыву связей в слоистом полимере и образованию HgPOi- Разрыв же связей между оксосиликатными тетраэдрами трехмерного полимера (8102)300 в воде практически не происходит, поэтому в обычных условиях диоксид кремния в воде не растворяется. [c.114]

    При очистке больших потоков газа используются процессы 1звлечения Нг5 с образованием так называемого кислого газа, в состав которого наряду с сероводородом входят диоксид угле-рс.да, пары воды, углеводородтле комиоиеиты и небольшое количество других соединений серы. Кислый газ служит сырьем д 1я производства серы. К промышленным процессам производс -ва серы из кислого газа относятся процессы прямого окисления и процессы Клауса. При производстве серы по обоим типам процессов образуется поток остаточных (хвостовых) газов. Он чрезвычайно сложен и разнообразен основой его является азот вс.здуха, пары воды и различные вредные соединения серы с в( Дородом, кислородом и углеродом. Особенность его — сравнительно низкая для извлечения концентрация вредных компонентов в общем потоке. Общее содержание вредных компонентов в остаточных газах всегда превышает допустимые нормы, безопасные для окружающей среды, что и обусловливает необходимость производства очищенного воздуха , т. е. очистку остаточных (хвостовых) газов. [c.170]

    Образующийся высокоактивный атомный кислород, как показано вьине, соединяется с молекулой кислорода (в присутствии третьего тела) с образованием озона. Затем озон окисляет моиооксид азота в диоксид  [c.30]

    Рассмотрим еще один пример применения закона Гесса. Вычислим тепловой эффект реакции сгорания метана СН , зная теплоты образования метана (74,9 кДж/моль) и продуктов его сгорания — диоксида у1лерода (393,5 кДж/моль) и воды (285,8 кДж/моль). Для вычисления запишем реакцию горения метана сначала непосредственно, а затем разбив на стадии. Соответствующие термохимические уравнения будут иметь вид  [c.170]

    Водородсодержащий газ из абсорбера 14, подогретый до 300 °С в теплообменнике 6, поступает в реактор метанирования 17, где непревращенный оксид и неудаленный диоксид углерода гидрируются с образованием метана. После метанирования водород охлаждается в теплообменных аппаратах 6 м 12 ао 30— 40 °С и далее в сепараторе 18 отделяется от сконденсировавшегося водяного пара. Водород компри-мируют компрессором 19 до давлений, требуемых потребителю (обычно 4—15 МПа). [c.63]

    Для подавления процесса образования фенолов в реакторе каталитического крекинга было предложено создать вос-с гаионительную среду путем подачи топливного газа в нижнюю часть лифт-реактора. Свободный кислород, оставшийся при этом в регенерированном катализаторе, должен связываться в водяной пар п диоксид углерода до контакта катализатора с сырьем. [c.121]

    ЧТО элементы входят в состав соединений лишь определенными порциями. Подсчитаем, например, массу кислорода, соединяющуюся с одним и тем же количеством углерода при образовании оксида углерода(И) и диоксида углерода. Для этого разделим друг на друга величины, выражающие содержание кислорода и углерода в том и в другом сксида.)с. Мы получим, что на одну едианцу массы углерода в диоксиде углерода приходится ровно в 2 раза больше кислорода, чем в оксиде углерода (И). [c.24]

    Угольная кислота Н2СО3 может существовать только в водном рас гворе. При нагревании раствора диоксид углерода улетучивается, равновесие образования НгСО-) смещается влево, и в конце кондов остается чистая вода. [c.438]

    Соединения марганца( 1) и (VII). При сплавлении диоксида марганца с карбонатом и нитратом калия получается зеленый сплав, растворяющийся в воде с образованием красивого зеленого раствора. Из этого раствора можно выделить темно-зеленые кристаллы манганата калия К2МПО4 — соли марганцовистой кислоты Н2МПО4, очень нестойкой даже в растворе. [c.664]


Смотреть страницы где упоминается термин Диоксид образование: [c.268]    [c.268]    [c.426]    [c.427]    [c.428]    [c.163]    [c.164]    [c.169]    [c.410]    [c.432]    [c.616]   
Технология неорганических веществ и минеральных удобрений (1983) -- [ c.4 ]




ПОИСК





Смотрите так же термины и статьи:

ДИОКСИД СЕРЫ В ДЫМОВЫХ ГАЗАХ ОБРАЗОВАНИЕ, ПОВЕДЕНИЕ ЕДИНИЦЫ ИЗМЕРЕНИЯ КОЛИЧЕСТВ

Динитрофенол Диоксид углерода, образование

Диоксид

Диоксид образование при тканевом дыхании

Диоксид углерода образование на железном катализаторе

Диоксид углерода образование при сгорании топлива

Диоксид углерода образование при сжигании горючего

Диоксид углерода, образование

Образование диоксида серы

Углерод диоксид тепловой эффект образования

Углерода диоксид теплота образования



© 2025 chem21.info Реклама на сайте