Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диоксид углерода, образование

    Пример 1. Исходя из теплоты образования газообразного диоксида углерода (ДЯ° = —393,5 кДж/моль) и термохимического уравнения [c.76]

    Часть образующегося диоксида углерода может вступать в реакцию с углеродом с образованием оксида [c.20]

    При синтезе метанола из газовой смеси Нг—СО—СОг основное количество метанола (70—80% масс.) получается через диоксид углерода (реакции е, /), остальное — из исходного оксида углерода. Снижение количества образовавшегося метанола и его стабилизация (линия 5—6 на рис. 2.8) обусловлены компенсационным эффектом диоксид углерода ускоряет процесс образования метанола, а вода (продукт гидрирования СОг) — снижает. Так, при отключении подачи диоксида углерода активность катализатора резко понижалась (см. рис. 2.8, точки 12, 13) и только после 6—8 ч устанавливалась на прежнем уровне (линия 13—14). Это объяснялось тем, что при отключении подачи диоксида углерода образование метанола по реакциям е, / прекращалось, а реакционная вода еще не успевала полностью десорбироваться в силу ее высокой адсорбционной способности [90]. После удаления воды с поверхности катализатора и установления равновесия в системе Нг—СО — катализатор производительность катализатора по метанолу возвращалась к первоначальной (см. рис. 2.8, линия 13—14). [c.69]


    Теплота сгорания СНзОН(ж.) с образованием газообразного диоксида углерода и жидкой воды при 298 К равна 715 кДж моль а теплота сгорания муравьиной кислоты, НСООН (ж.), составляет 261 кДж моль Вычислите при 298 К теплоту реакции [c.112]

    Основные стадии процесса следующие получение диоксида серы в результате сжигания в топке сероводородного газа охлаждение полученного диоксида углерода в котле-утилизаторе с получением водяного пара окисление диоксида серы до триоксида в контактном аппарате, загруженном ванадиевым катализатором конденсация триоксида серы и паров воды с образованием серной кислоты улавливание тумана и капель серной кислоты в электрофильтре. Технологическая схема установки представлена на рис. ХП-5. [c.113]

    При контроле расчетов теплового эффекта процесса окисле- ния нефтяных остатков воздухом нужно учитывать, что величина этого эффекта меньше, чем теплота полного сгорания остатка с образованием воды и диоксида углерода. Теплота сгорания может быть определена из теплотворной способности нефтепродукта и количества воздуха, необходимого для сжигания. Так, теплотворная способность мазутов составляет в среднем 42 000 кДж/кг, объем воздуха для их сжигания в стехио-метрических условиях—10,1—10,3 м /кг [52] следовательно,, тепловыделение при сжигании мазутов и близких к ним по элементному составу гудронов составляет 14 ООО кДж на 1 кг Ог. [c.47]

    Для того чтобы нарушить установившееся равновесие и вы-звать образование нового количества оксида кальция, нужно или повысить температуру, или удалить часть образовавшегося диоксида углерода, уменьшив тем самым его парциальное давление. Если при некоторой температуре парциальное давление диоксида углерода поддерживается более низким, чем давление диссоциации, то разложение карбоната кальция идет непрерывно. Поэтому при обжигании извести важную роль играет хорошая вентиляция печи, способствующая удалению СОа и позволяющая вести разложение при более низкой температуре. [c.615]

    Хорошо адсорбирующиеся масла, гликоли, амины, ингибиторы гидратообразования и коррозии в процессе регенерации образуют смолистые соединения, закупоривающие поры сорбента. Амины разлагаются с образованием аммиака, разрушающего структуру силикагеля. Сероводород и диоксид углерода сорбируются силикагелем, по вытесняются в последующем водой, полностью десорбируясь при регенерации. [c.149]


    Какова формула соединения, образованного при взаимодействии углерода и серы Учтите, что углерод и кислород образуют диоксид углерода СО2. [c.127]

    Уравнение (15-7) представляет собой самое важное для химии следствие из первого закона термодинамики. Оно говорит о том, что теплота реакции, проводимой при постоянном давлении, является функцией состояния. Теплота реакции равна разности между энтальпией продуктов и энтальпией реагентов. Она не зависит от того, протекает ли на самом деле реакция в одну стадию Или в несколько последовательных стадий. С этим законом аддитивности теплот реакций мы уже познакомились в гл. 2, где он был сформулирован без доказательства, но теперь оно становится очевидным. В разд. 2-6 приводился пример с гипотетическим синтезом алмаза, где указывалось, что теплота образования алмаза из метана не зависит от того, получают ли алмаз непосредственно из метана или же метан сначала окисляется до СО2, а затем диоксид углерода используется для получения алмаза  [c.22]

    Хотя причины гибели лесов Германии точно не установлены, одна из них определенно связана с кислотными дождями. Природные вещества, например диоксид углерода, тоже делают воду слабокислой - обычно pH дождевой воды равен 5,6. Диоксид углерода реагирует с водой с образованием слабой угольной кислоты  [c.423]

    Образование карбонатов происходит, по-видимому, по двум направлениям за счет взаимодействия металлов с диоксидом углерода, растворенным в водных конденсатах [c.289]

    Общепризнанным способом борьбы с загрязнением атмосферы газами окисления считается их сжигание с образованием безвредных оксидов — диоксида углерода и воды [265-270]. В связи с этим необходим надежный и простой метод расчета состава газов, который позволил бы без проведения экспери- [c.168]

    Кроме утверждения того, какие вещества реагируют и с образованием каких продуктов, химическое уравнение должно ответить на вопрос сколько атомов каждого элемента вступило в реакцию и сколько атомов осталось Для образования одной молекулы диоксида углерода СО2 требуется один атом углерода и два атома кислорода. Эти два атома кислорода содержатся в одной двухатомной молекуле. [c.106]

    Составьте полное уравнение для каждого из следующих процессов а) реакция натрия с водой с образованием водорода и гидроксида натрия б) реакция гидроксида кальция с диоксидом углерода с образованием карбоната кальция и воды в) реакция моноксида углерода с водородом с образованием метана и воды г) реакция нитрата алюминия с гидроксидом аммония с образованием гидроксида алюминия и нитрата аммония. [c.105]

    Это — экзотермическая реакция. Энергия, выделяемая при образовании связей в молекуле продуктов (диоксида углерода и паров воды), больше, чем энергия, необходимая для разрыва связей в молекулах воска и кислорода. [c.203]

    ИК-спектроскопией адсорбированного аммиака и пиридина установлено усиление апротонной кислотности и образование центров протонной кислотности в результате хлорирования т -оксида алюминия четыреххлористым углеродом. Исследования масс-спектров продуктов десорбции с поверхности образцов -у- и tj-оксидов алюминия до и после хлорирования и электронная оптическая спектроскопия адсорбированных состояний некоторых оснований позволили установить, что причиной принципиальной разницы в каталитической активности хлорированных tj- и 7-оксидов алюминия в низкотемпературной изомеризации парафиновых углеводородов являются различия в свойствах поверхности прокаленных при 500 °С оксидов алюминия, в том числе в количестве и расположении гидроксильных групп, обусловленных особенностями кристаллической структуры 7 - и 7-оксидов алюминия [90]. Хлорирование поверхности оксида алюминия, сопровождающееся выделением хлороводорода и диоксида углерода, усиливает кислотность апротонного и протонного типа. Бренстедовская кислотность обусловлена хемосорбированнымНС . [c.72]

    Пользуясь химическими уравнениями, можно определить не только требуемое соотношение чисел молекул, но и соотношение чисел молей или граммов (см. гл. II, разд. В.З). В приведенной выше реакции 1 моль глюкозы нацело реагирует с 6 молями кислорода с образованием 6 молей диоксида углерода и 6 молей воды. Используя молекулярные массы, получаем, что 180 г глюкозы полностью прореагируют с 192 г кислорода. При этом получите J 264 г диоксида углерода и 108 г воды. [c.255]

    Для удаления органических веществ, мешающих проведению анализа, образцы продуктов питания прокаливают при высокой температуре. Органические соединения при этом сгорают с образованием воды и диоксида углерода. Минеральные соли, в частности соли железа, остаются в золе и затем растворяются в соляной кислоте. [c.280]


    Здесь в скобках сокращенно указано физическое состояние каждого сорта частиц (тв.-твердое, водн.-гидратированный ион в водном растворе, г.-газ, ж.-жидкость). Уравнение (2-6) указывает, что твердый карбонат кальция реагирует в водном растворе с двумя гидратированными протонами (ионами водорода) с образованием гидратированных ионов кальция, газообразного диоксида углерода и жидкой воды. Хлорид-ионы остаются в результате реакции гидратированными в растворе, и поэтому их можно не указывать в уравнении. Уравнение (2-5), подобно другим полным уравнениям реакции, позволяет определить количество каждого из участвующих в реакции веществ, но ничего не говорит о молекулярном механизме реакции. Уравнение (2-6) дает лучшее описание происходящего на микроскопическом уровне, но менее удобно для подсчета количества веществ, участвующих в реакции. [c.73]

    По-видимому, в результате адсорбции таких молекул повышается число активных центров с электродонорными свойствами, на которых происходит каталитический гомолиз О—0-связи с образованием радикалов. Адсорбция молекул с электроноакцепторными свойствами, таких, как кислород, диоксид углерода, тетрацианэтилен, снижает иногда до нуля каталитическую активность поверхности оксида металла [330]. Аналогичное действие предварительной адсорбции тех или иных молекул проявляется и при окислении углеводорода с гетерогенным катализатором. Каталитическая активность оксида металла повы- [c.205]

    Этот пример показывает, почему химикам интересно знать, самопроизвольна ли каждая реакция, т.е. иметь представление о ее естественной тенденции к осуществлению. Если изучаемая химическая реакция является самопроизвольной, но медленной, можно попытаться ускорить ее протекание. Чаще всего для этого достаточно повысить температуру или подобрать катализатор. Действие катализаторов будет подробнее обсуждаться в гл. 22. Но вкратце уже сейчас можно определить катализатор как вещество, которое помогает самопроизвольной реакции протекать быстрее, обеспечивая ей более легкий путь. При достаточно высокой температуре бензин быстро горит в воздухе. Роль искры зажигания в автомобильном двигателе заключается в создании исходной высокой температуры. Выделяющееся в результате реакции тепло поддерживает высокую температуру, необходимую для дальнейшего протекания реакции. Но если подобрать подходящий катализатор, бензин будет соединяться с кислородом и при комнатной температуре, потому что в естественных условиях реакция между этими веществами является самопроизвольной, хотя и медленной. Однако никакой катализатор никогда не заставит соединяться диоксид углерода и воду с образованием бензина и кислорода при комнатной температуре и умеренных давлениях, и только невежественный химик потратит время на поиски такого катализатора. Короче говоря, понимание различия между самопроизвольными и несамопроизвольными реакциями помогает химику увидеть границы возможного. Если реакция возможна, но пока еще не найден путь ее осуществления, целесообразно заниматься поисками таких путей. Если же процесс принципиально невозможен, не следует тратить на него время. [c.169]

    Вычислите стандартную теплоту образования диоксида углерода 0=С=0, основываясь на предположении о существовании в этой молекуле двух двойных связей С=0. Сравните вычисленное вами значение с экспериментальным значением. [c.34]

    Прежде всего учитывают, что азот воздуха не участвует в реакциях окисления и его содержание в отходящих газах окис-ленпя легко рассчитывается. Остаточное содержание кислорода предопределяется типом и режимом работы окислительного аппарата при использовании колонн его рекомен/ уется определять по рис. 36, а кубов — по рис. 28 - при использовании трубчатых реа кторов содержание кислорода принимается равным 3—4% (об.) практически для всех наблюдаемых режимов работы. Вступивший в реакции окисления кислород расхо1Дуется в основном на образование воды, а также диоксида углерода образование других оксидов несущественно. Распределение кислорода На образование воды и диоксида углерода можно рассчитать по рис. 23. [c.169]

    Контрольные пробирки С и В нужны для того, чтобы подтвердить, что любые изменения в пробирках А и В происходят только при наличии в них листьев. В пробирке А среда становится более кислой из-за вьщеляющегося во время дьжания диоксида углерода. В отсутствие света фотосинтез не идет. В пробирке В среда становится менее кислой, что указывает на расходование СО2. Диоксид углерода, образованный в процессе дыхания, использовался при фотосинтезе совместно с диоксидом, который уже находился в окружающем лист воздухе и растворился в растворе индикатора. Интенсивность фотосинтеза бьша выше интенсивности дыхания. [c.343]

    Известно несколько примеров внедрения диоксида /глерода ло связи металл — водород или металл — угле-эод для органического синтеза это одна из наиболее зажных реакций. Существуют две возможности для внедрения диоксида углерода образование связи металл — <ислород или ст-связи металл — углерод  [c.189]

    В ряде случаев поглощение одного вещества другим пе огра-ничииается поверхностным слоем, а происходит во всем объеме сорбента. Такое поглощение называют абсорбцией. Примером процесса абсорбции является растворение га ,ов в жидкостях. Поглощение одного вещества другим, сопровождающееся химическими реакциями, называют х е м о с о р б ц и е и. Так, поглощение аммиака или хлористого водорода водой, поглощение влаги и кис-лорода металлами с образованием оксидов и гидроксидов, поглощение диоксида углерода оксидом кальция — примеры хемосорб-циоиных процессов. Капиллярная конденсация состоит в ожижении паров в микропористых сорбентах. Она происходит вследствие того, что давление паров над вогнутым мениском ясид-кости в смачиваемых ею узких капиллярах меньше, чем давление насыщенного пара над [1лоской поверхностью жидкости при той же температуре. [c.320]

    Содержащиеся в оборотной воде соли и другие примеси вызывают коррозию оборудования. Хлориды ускоряют коррозию вследствие увеличения кислотности воды и их разрущающего действия на пассивирующие пленки сульфаты агрессивно действуют на бетон. Диоксид углерода замедляет образование защитных пленок. Для защиты от коррозии в оборотных системах применяют различные ингибиторы. Процесс коррозии приостанавливают хромат и бихромат калия. Они же замедляют биологические обрастания. Для снижения коррозии воду обрабатывают также фосфатами, которые образуют пленку, изолирующую металл от воды. В отличие от хроматов фосфаты благоприятствуют развитию биологических обрастаний, поэтому эти химикаты иногда применяют совместно. Один из способов защиты металла от коррозии — защитные покрытия смолами, красками, лаками и эмалями, однако они недолговечны и восстановить их можно только во время ремонта. [c.86]

    Водородсодержащий газ из абсорбера 14, подогретый до 300 °С в теплообменнике 6, поступает в реактор метанирования 17, где непревращенный оксид и неудаленный диоксид углерода гидрируются с образованием метана. После метанирования водород охлаждается в теплообменных аппаратах 6 м 12 ао 30— 40 °С и далее в сепараторе 18 отделяется от сконденсировавшегося водяного пара. Водород компри-мируют компрессором 19 до давлений, требуемых потребителю (обычно 4—15 МПа). [c.63]

    Электрохимическая коррозия — это взаимодействие металла с коррозионной средой (электролитом), при котором ионизация атомов металла и восстановление окислительного компонента коррозионной среды протекают не в одном акте и их скорости зависят от величины электродного потенциала. Электрохимическая коррозия протекает только при контакте поверхности металла с электролитом, т. е. с токопроводящей средой (водными растворами солей, кислот, щелочей). Практически поверхность любого металла в ат осфе-ре покрывается тонкой водной пленкой различной толщины в зависимости от температуры и влажности воздуха, а также от температуры металлической поверхности. В этой пленке растворяются содержащиеся в воздухе газы (диоксид углерода, оксиды азота и серы, сероводород и др.) и мелкие частицы (пыль) различных солей, что приводит к образованию электролита. [c.279]

    Влияние природы хлорагента и условий хлорирования на изомеризующую активность катализатора. Взаимодействие хлорорганического соединения, например четыреххлористого углерода, с кислородсодержащими группами на поверхности оксида алюминия при 250—300 °С в среде газа-носителя выражается суммой химических реакщ1Й, приводящих к образованию фосгена, диоксида углерода, хлороводорода и воды. За счет замещения ионов кислорода на хлор масса катализатора при хлорировании увеличивается. [c.67]

    Для подавления процесса образования фенолов в реакторе каталитического крекинга было предложено создать вос-с гаионительную среду путем подачи топливного газа в нижнюю часть лифт-реактора. Свободный кислород, оставшийся при этом в регенерированном катализаторе, должен связываться в водяной пар п диоксид углерода до контакта катализатора с сырьем. [c.121]

    ЧТО элементы входят в состав соединений лишь определенными порциями. Подсчитаем, например, массу кислорода, соединяющуюся с одним и тем же количеством углерода при образовании оксида углерода(И) и диоксида углерода. Для этого разделим друг на друга величины, выражающие содержание кислорода и углерода в том и в другом сксида.)с. Мы получим, что на одну едианцу массы углерода в диоксиде углерода приходится ровно в 2 раза больше кислорода, чем в оксиде углерода (И). [c.24]

    Законы постоянства состава и кратных отношений вытекают из атомно-мо-леиулприого учения. Вещества с молекулярной структурой состоят из одинако-вмх молекул. Поэтому естественно, что состав таких веществ постоянен. При образовании из двух элементов нескольких соединений атомы этих элементов соединяются друг с другом в молекулы различного, но определенного состава. Например, молекула оксида углерода(И) построена из одного атома углерода и одного атома кислорода, а в состав молекулы диоксида углерода входит один атсм углерода и два атома кислорода. Ясно, что масса кислорода, приходящаяся па одну и ту же массу углерода, во втором из этих соедипепнй в 2 раза больше, чем в первом. [c.24]

    Если кислота и осиоваине, образующие соль, не только слабые электролиты, ио и малорастворимы, или неустойчивы и разлагаются с образованием летучих продуктов, то гидролиз солн часто протекает необратимо, т. е. сопровождается полным разложением соли. Так, при взаимодействии в растворе соли алюминия, например А1С1з, с карбонатом натрия выпадает осадок гидроксида алюминия и выделяется диоксид углерода [c.263]

    Угольная кислота Н2СО3 может существовать только в водном рас гворе. При нагревании раствора диоксид углерода улетучивается, равновесие образования НгСО-) смещается влево, и в конце кондов остается чистая вода. [c.438]

    Кроме того, газообразный кислород смешивается с водой в результате аэрации, которая происходит, если вода падает с плотин, перетекает через валуны и другие препятствия, образуя в результате водо-воздушную пену . Газообразный кислород попадает в природные водоемы в результате фотосинтеза - процесса, при котором зеленые растения у океанский планктон синтезируют углеводы из диоксида углерода и воды пря н.шичии солнечного света. В дневные часы водные зеленые растения постоянно синтезируют сахара. При этом также получается газообразный кислород, который выделяется из водных растений в окружающую воду. Суммарное химическое уравнение, описывающее образование глюкозы ((Ь5Н1205) и кислорода при фотосинтезе, может быть представлено следующим образом  [c.58]

    Бензин сгорает (реагирует с газообразным кислорол ом воздуха) с выделением энергии, которая используется на передвижение автомобилей. При сгорании атомы углерода и водорода из бензина и атомь кислорода из воздуха реагируют с образованием диоксида углерода (СО2) и волы (Н2О), которые удаляются через выхлопную систему. [c.106]

    Напишите химическое уравнение сгорания одного моля глюкозы (С Н120б> с образованием диоксида углерода (СО2) и воды (Н2О). Это уравнение отражает процесс, который происходит в организме. [c.371]

    Уравнение (2-5) описывает реакцию карбоната кальция, СаСОз (известняка), и хлористоводородной кислоты, НС1, с образованием водного раствора хлорида кальция, a lj, и диоксида углерода, СО2. Это уравнение полное, так как число атомов каждого сорта в его левой и правой частях одинаково. Смысл этого уравнения на макроскопическом (молярном) уровне таков 1 моль, или 100,09 г, карбоната кальция требует для осуществления полной реакции 2 моля, или 72,92 г, хлористоводородной кислоты, в результате чего получается по 1 молю хлорида кальция (110,99 г-моль ), диоксида углерода (44,01 г-моль ) и воды (18,02 г-моль" ). По этим численным данным нетрудно убедиться, что в данной реакции выполняется закон сохранения массы. Интерпретация уравнения (2-5) на микроскопическом (молекулярном) уровне не столь очевидна, поскольку карбонат кальция представляет собой соль, а не молекулярное соединение. Уравнение (2-5) нельзя понимать в том смысле, что 1 молекула карбоната кальция реагирует с 2 молекулами НС1. Хотя НС1 существует в газовой фазе в виде дискретных молекул, в растворе молекулы НС1 диссоциируют на ионы и СР. Более правильное описание того, что происходит в этой реакции на молекулярном уровне, дает уравнение [c.73]

    Теплота сгорания 1 моля жидкого ацетальдегида, СН3СНО, с образованием диоксида углерода и жидкой воды равна - 1164 кДж. а) Составьте полное уравнение этой реакции, б) Какое количество теплоты вьщеляется при сгорании 1 моля ацетальдегида Какое количество теплоты вьщеляется в расчете на моль образующейся воды В расчете на моль использованного кислорода в) Какое количество теплоты вьщеляется при сгорании 1 г ацетальдегида г) Воспользуйтесь полученными данными, а также данными для диоксида углерода и воды из приложения 3, чтобы вычислить стандартную теплоту образования ацетальдегида. Сравните полученный результат с приведенным в приложении 3. [c.39]

    Теплота сгорания газообразного диметилового эфира, СН —О—СН3, с образованием диоксида углерода и жидкой воды равна -1461 кДж на 1 моль эфира, а) Вычислите стандартную теплоту образования диметилового эфира и сравните полученный результат со значением, приведенным в приложении 3. б) При помощи таблицы энергий связей вьиислите стандартную теплоту образовании диметилового эфира. Проиллюстрируйте ващи вычисления при помощи энергетической диаграммы типа изображенной на рис. 15-7 укажите на ней все энергетические уровни и энергетические переходы. Согласуется ли ваш ответ с ответом на вопрос (а)  [c.42]


Смотреть страницы где упоминается термин Диоксид углерода, образование: [c.163]    [c.169]    [c.432]    [c.616]    [c.45]    [c.178]   
Производство водорода кислорода хлора и щелочей (1981) -- [ c.162 ]




ПОИСК





Смотрите так же термины и статьи:

Динитрофенол Диоксид углерода, образование

Диоксид

Диоксид образование

Диоксид углерода

Диоксид углерода образование на железном катализаторе

Диоксид углерода образование при сгорании топлива

Диоксид углерода образование при сжигании горючего

Углерод диоксид тепловой эффект образования

Углерода диоксид теплота образования



© 2025 chem21.info Реклама на сайте