Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сероводород, разложение

    Разложение некоторых сернистых соединений сопровождается выделением сероводорода. Разложение сульфида, например, идет по реакции  [c.31]

    Синтез тиолов в лабораторных условиях осуществляют различными способами - взаимодействием галогеналканов с гидросульфидами щелочных металлов, тиомочевиной, тиокислотами, диалкилсульфатами, тиосульфатом натрия, на основе металлорганических соединений, из спиртов, серы и фосфора и др. С использованием этих способов, применяемых без катализаторов, тиолы могут быть получены в значительных количествах. Но указанные методы в основном мало пригодны для синтеза тиолов в больших масштабах, так как основаны на дорогих и часто недоступных реагентах, в процессе синтеза образуется значительное количество отходов. Возможно осуществление синтеза тиолов также некаталитическим превращением некоторых органических соединений серы, например, восстановлением сульфохлоридов, сульфиновых кислот, дисульфидов в растворах с помощью гомогенных кислотных реакций сероводорода со спиртами или ал-кенами при высоких температурах из углеводородов и элементарной серой. Но более целесообразно осуществление синтеза тиолов в присутствии твердых катализаторов, так как в этом случае используется доступное сырье, процесс может быть одностадийным и продукты реакции легко выделяются из реакционной среды. Ниже рассмотрены закономерности протекания гетерогенно-каталитических реакций синтеза тиолов из алканолов и сероводорода, разложением диалкилсульфидов, из сероводорода и олефи-нов, восстановлением ди- и полисульфидов. [c.8]


    Измельченный карбид подается в цилиндрические барабаны с несколько большим, чем требуется но расчету, количеством воды, нри этом образуется свободный ацетилен. Ацетилен выделяется в виде примерно 97%-ного продукта. При разложении карбида образуется еще некоторое количество сероводорода и фосфористый водород (фосфин), от которых ацетилен перед использованием должен быть освобожден. Это можно сделать промывкой газа разбавленной хлорной водой, которая разрушает оба эти загрязнения. В заключение ацетилен промывают концентрированной натронной щелочью и просушивают. [c.93]

    Состав и выход газов разложения зависит от температуры нагрева мазута, времени пребывания мазута в печи, в трансферном трубопроводе и в низу колонны и от природы мазута (содержания в нем термически нестойких смолисто-асфальтеновых веществ и сернистых соединений). Для сернистых нефтей газы разложения состоят в основном из газообразных, низкокипящих углеводородов и сероводорода. В табл. III.7 приведены выборочные данные по составу и выходу газов разложения, полученных на одной из промышленных установок АВТ при нагреве сернистых нефтей в пределах температур 400—425 °С и высокосернистых в пределах 290—410 °С [83]. [c.201]

    При подаче 0,18% (масс.) на мазут водяного пара в. змеевик печи сокращается в два раза время пребывания мазута в печи и в два раза уменьшается выход газов разложения. В случае применения в вакуумсоздающих системах конденсаторов смешения примерно 30—40%) сероводорода и низкокипящих углеводородов растворяются в охлажденной воде и не доходят до последнего эжектора. В то же время при использовании конденсаторов поверхностного типа в выбросных газах эжекторов остаются бензиновые фракции, выход которых на мазут примерно равен выходу газов разложения и образовавшегося при разложения мазута сероводорода. [c.202]

    С целью удаления из прямогонных бензинов не только углеводородных газов, но и сероводорода, образующегося при разложении сернистых соединений нефти в печи атмосферной колонны, бензины отбензинивающей и атмосферной колонн подвергают совместной стабилизации. [c.270]

    В целях предотвращения разложения раствора МЭА температура греющего пара не должна превышать 180 °С. Для нормальной экс- плуатации блока очистки предельное насыщение раствора МЭА сероводородом не должно превышать 0,4 моль на 1 моль или 22 м сероводорода (при нормальных условиях) на 1 м раствора МЭА. Нарушение данного требования приведет к усилению сероводородной коррозии аппаратуры и трубопроводов узла очистки газов, а в ряде случаев будет способствовать растрескиванию металла десорбера, теплообменника и рибойлера. [c.126]


    При переработке сернистых и высокосернистых нефтей, в результате разложения сернистых соединений, образуется сероводород, который в сочетании с хлористым водородом является причиной наиболее сильной коррозии нефтеаппаратуры  [c.143]

    Высокосернистая арланская нефть, так же как и туймазинская и ромашкинская, в пласте (и до перегонки) растворенного сероводорода не содержит. Однако из-за высокого содержания в ней серы в процессе перегонки при повышенных температурах создаются условия для образования больших количеств сероводорода. Этим и обусловливаются особенности переработки высокосернистых нефтей типа арланской. Высокосернистые нефти должны перегоняться на установках атмосферной и вакуумной перегонки при возможно более низких температурах, чтобы избежать разложения сернистых соединений в то же время необходимо ожесточать условия перегонки для получения максимально возможного количества светлых нефтепродуктов. При этом должны быть приняты меры для резкого снижения давления в выходных трубах атмосферной и вакуумной печей. [c.119]

    Биоразложение пролитого масла. В зависимости от химической структуры (ароматические углеводороды, нафтены, парафины), содержания гетероорганических соединений и присадок, молекулярной массы и т д., на минеральные масла по-разному воздействуют кислород и микроорганизмы (бактерии, грибки). В аэробных условиях скорость разложения зависит от содержания минеральных солей и микроэлементов, температуры и величины pH. В случае углеводородов, растворенных в воде, скорость их разложения определяется химической структурой и содержанием кислорода в воде. Олефины и ароматические соединения окисляются до кислородосодержащих соединений (спиртов, кетонов, фенолов, карбоновых кислот) в сравнительно короткий срок. На биологическое разложение углеводородов расходуется кислород с образованием аммиака, сероводорода и соли двухвалентного железа и марганца в сложившихся восстановительных условиях. [c.229]

    В нефтепереработке основные проблемы коррозионного износа связаны с наличием сероводорода, образующегося при разложении сероорганических соединений нефти и присутствующего практически во всех процессах вместе с хлористым водородом, выделяющимся при пиролизе содержащихся в нефти хлористых солей (в виде эмульсии высокоминерализованной пластовой воды). Сероводород образуется также при разложении хлорорганических соединений. Кроме того, коррозия вызывается охлаждающей оборотной водой, содержащей кислород, растворенные газы, соли, примеси продуктов нефтехимпереработки и др. Различные коррозионные разрушения вызывают также реагенты, используемые при переработке сырья растворы щелочей, серная кислота, фенол, фурфурол, кетоны и т. д. [c.72]

    Эксплуатация систем очистки газов от сероводорода аминами связана с рядом трудностей, вызываемых пенообразованием, термическим и химическим разложением реагентов и коррозией. В целом очистка больших количеств высокосернистого газа с применением жидких поглотителей — экономически наиболее целесообразна. [c.52]

    Метод фотохимического разложения сероводорода. Разработан швейцарскими и итальянскими химиками. При фотохимическом разложении сероводорода в присутствии катализатора — суспензии сульфида кадмия и диоксида рутения — образуются водород и сера. Механизм этой реакции заключается в следующем. В сульфиде кадмия (соединение С полупроводниковыми свойствами) электроны под действием света начинают перемещаться, оставляя положительно заряженные дырки, и восстанавливают водород из водного раствора. Ион гидроксида разлагает молекулу водорода с образованием сульфид-иона, который окисляется до элементарной серы. Этот процесс можно использовать для очистки газов от сероводорода. [c.54]

    В начальной стадии реакции, до разложения с выделением сероводорода, отношение водород углерод остается постоянным это справедливо и для вулканизации каучука, включая образование эбонита с высоким соде])жанием серы. При более высоких температурах бутилены и бутадиены с серой подвергаются вторичным реакциям с образованием тиофена [36]. [c.344]

    Сернистые соединения, содержащиеся в легких нефтяных дистиллятах, в какой-то степени, но-видимому, являются продуктами разложения более тяжелых и более сложных серусодержащих комплексов, которое произошло нрп перегонке или крекинге. В нефтяных дистиллятах были обнаружены следы элементарной серы, сероводород, меркаптаны, сульфиды, дисульфиды и тиофены, а также продукты, по своей природе относящиеся к сульфатам, сульфокислотам, серной кислоте и сероуглероду [161]. Удаление из нефтепродукта сернистых соединений ст( ь различных классов связано с целым рядом проблем. [c.248]


    Поступающее на установку сырье смешивается с циркулирующим водородсодержащим газом гидроочистки и избыточным газом риформинга. Полученная смесь подогревается в теплообменнике Т-1 и в печи П-1 и направляется в реактор гидроочистки Р-1. Смесь очищенного сырья, циркулирующего газа и продуктов разложения, выходящая из Р-1, охладившись в теплообменниках Т-1 и Т-3 и в конденсаторе-холодильнике Х-10, поступает в сепаратор С-1, где из гидрогенизата выделяется газ, направляемый далее в колонну К-3 на очистку от сероводорода. Водородсодержащий газ в К-3 отмывается от сероводорода 5%-ным раствором моноэтаноламина (МЭА). Очищенный газ делится на два потока, один из которых подается на смешение с сырьем, второй выводится с установки. [c.21]

    Жидкая фаза, выходящая из С-1, представляет собой гидроочищенный бензин, содержащий растворенные сероводород, углеводородные газы и воду. Бензин из сепаратора поступает в стабилизационную колонну К-1, где освобождается от сероводорода и продуктов разложения. С верха колонны К-1 углеводородный газ через конден- [c.21]

    Основные этапы этого процесса — подогрев (до 400 °С) и смешение метана и водяного пара обессеривание метана гидрированием на железных катализаторах и поглощение образовавшихся сероводорода и меркаптанов окисью цинка каталитическое разложение смеси водяным паром при 650—700 °С выжигание избытка водорода и смешение с азотом и, наконец, конверсия СО и СО и удаление остатков СО и СОа. Восстановление соединений серы проводят при 400 °С [c.213]

    Сероводород встречается в природе в вулканических газах и в водах минеральных источников. Кроме того, он образуется при разложении белков погибших л ивотных и растений, а также при гниении пищевых отбросов. [c.383]

    Можно предполагать, что предварительно образуются нестойкие полисульфиды, которые При разложении и образуют эту серию соединений. Этй последние, будучи растворимы в водных растворах, переходят снова в нефть, но так как докторский раствор на них действия не оказывает, то нефть очищается, т. е., иначе говоря, do-держит уже меньше серы в виде сероводорода и меркаптанов. [c.205]

    При перегонке нефти в результате разложения сернистых соединений образуется сероводород, который (особенно в сочетании с хлористым водородом) является причиной наиболее сильной коррозии аппаратуры. Сероводород в присутствии воды или при повышенных температурах реагирует с металлом аппаратов, образуя сернистое железо  [c.177]

    Внедрение в нефтеперерабатывающей промышленности процесса термического крекинга потребовало применения вторичной перегонки крекинг-бензинов, подвергшихся сернокислотной очистке, с целью удаления из них полимеров. Для этого Строились атмосферные и атмосферно-вакуумные установки. Применение вакуума для снижения температуры перегонки до 130—140° С диктовалось стремлением предупредить распад сернистых соединений, приводящий к образованию коррозионно-агрессивного сероводорода. Однако эксплуатация подобных установок показала, что разложение и коррозия аппаратуры не устраняются. Поэтому вместо сернокислотной очистки стали применять более совершенные способы сероочистки, лучшим из которых ныне является гидроочистка. [c.322]

    В процессе гидроочистки сернистые соединения бензина превращаются в сероводород. Одновременно происходит частичное разложение сырья, и смесь очищенного сырья, циркуляционного газа, сероводорода и продуктов разложения, охладившись в системе регенерации тепла и конденсаторе-холодильнике 5, поступает в газосепаратор 8. Здесь из бензина отделяется газ, который далее в колонне 1 освобождается от сероводорода и возвращается на циркуляцию, к приему компрессора 9. Очищенный нестабильный бензин отделяется от сероводорода и углеводородного газа в стабилизационной колонне 5 и после этого насосом направляется в блок риформинга. [c.41]

    Непредельные углеводороды — этилен, пропилен, бутилен или изоамилен — реагируют с сероводородом в присутствии силикагеля при температуре от 650 до 725° В результате этой реакции получаются самые разнообразные соединения, как например водород, метан, этиленовые, насыщенные и ароматические углеводороды, меркаптаны, тиоэфиры, тиофен и его гомологи, а также сероуглерод. Меркаптаны образуются при взаимодействии непредельных углеводородов с сероводородом. Разложение мерка птанов ведет к образованию тиоэфиров, которые затем переходят в тиофен и его гомологи. Бутилсульфид, или бутилмеркаптан, был превращен в тиофен в присутствии силикагеля при 700 При более высоких температурах повышалось содержание сероуглерода. [c.462]

    Круговорот азота. Атмосферный азот связывают только клубеньковые бактерии и свободноживущие микроорганизмы почвы. Органические соединения растительных, животных и микробных остатков подвергаются в почве минерализации микроорганизмами, превращаясь в соединения аммония. Процесс образования аммиака при разрушении белка микроорганизмами получил название аммонификации, или минерализации азота. Активно разрушают белок такие бактерии, как псевдомонады, протей, бациллы, клостридии. При аэробном распаде белков образуются диоксид углерода, аммиак, сульфаты и вода при анаэробном — аммиак, амины, диоксид углерода, органические кислоты, индол, скатол, сероводород. Разложение мочевины, выделяющейся с мочой, осуществляют уробактерии, расщепляющие ее до [c.66]

    Смесь хлористых амилов, водного (не слишком концентрированного) раствора сульфгидрата натрия и этанола перемешивают в автоклавах 1 при 140—150° в течение 5 час. После завершения реакции содержимое автоклавов переводят в куб 2, где под небольшим избыточным давлением (не более 0,5 ат) отгоняют сероводород. Сероводород улавливается в абсорбере 3, состоящем из трех колонн. Первая колонна орошается циркулирующим амилсульфидом для улавливания амиленов. Вторая колонна орошается 15%-ным, а третья 3%-ным раствором едкого натра. Когда содержание щелочи в растворе, орошающем третью колонну, снизится до 1,75%, а содержание сульфида натрия возрастет до 21%, поглотительный раствор насосом перекачивается в расходный бак 4 для раствора сульфигидрата натрия. Содержимое второй колонны переводится в третью, а из бака 5 подается свежий 15%-ный раствор едкого натра для орошения второй колонны. После третьей колонны включен адсорбер, заполненный активированным углем, для улавливания последних следов органических сернистых соединений. Реакционная смесь перегоняется с водяным паром в кубе 2. Водный остаток после обработки хлором для разложения всех дурно пахнущих [c.228]

    Мазут с низа сборника насосами прокачивается через печь 17 в вакуумную колонну 11. Температура верха колонны 70 °С, температура низа 365 °С. Остаточное давление наверху поддерживается трехступенчатьлми пароэжекторнымн насосами. Смесь газов разложения, водяного пара и сероводорода поступает в поверхностный конденсатор 10, откуда парожидкостная смесь направляется в вакуум-приемник, расположенный в верхней части отпарной колонны 8, и возвращается в производство. Это позволяет несколько уменьшить потери нефтепродуктов и загрязнения заводских стоков. [c.113]

    Большая часть вакуумных установок оборудована барометрическим конденсатором смешения. Размеры и конструктивные элементы конденсатора зависят от производительности установки и объема парогазовых смесей, всасываемых с верха вакуумной колонны. Барометрический конденсатор (рис. 71) представляет собой сосуд цилиндрической формы с дырчатыми внутренними перегородками, не перекрывающими полное сечение конденсатора. На перегородках стекающая с верха холодная вода контактируется с поднимающимися парами и газами. Нижняя (суженная) часть конденсатора соединяется барометрической трубой (высотой 10 м) с колодцем. Загрязненная нефтепродуктами вода направляется через колодец в канализацию и далее на очистные сооружения завода. Несконденсировавшиеся газы разложения с верха конденсатора отсасываются пароэжекторными насосами (абсолютное давление пара 10—12 кгс/см ) в атмосферу. При такой работе объем стоков, загрязненных нефтепродуктами и сероводородом, составляет значительную величину. Одновременно при этом увеличивается потеря нефтепродуктов. На заводах для очистки стоков из барометрической системы сооружают специальные канализаци- [c.189]

    Сырье (рис. 70), подлежащее гидроочистке, смешивается с водородсодержащим газом, нагревается в теплообменниках Т-1, Т-2 и печи П-1 и поступает в каталитические реакторы Р-1 и Р-2. В реакторах происходит разложение гетероциклических соединений и гидрирование непредельных углеводородов. Продукты реакции вместе с водородсодержащим газом охлаждаются в рекуперативных теплообмергниках Т-1, Т-2 и холодильнике Х- . В сепараторе высокого давления С-1 отделяется газовая фаза и направляется в установку очистки от сероводорода. Жидкая фаза из С-1 направляется в сепаратор низкого давле- [c.222]

    Для извлечеиия сероводорода из газа в отечественной практике был хорошо освоен МЭА-процесс. Но было известно, что для газов, содержапщх OS и S2, этот процесс непригоден н. -за разложения МЭА вследствие необратимых реакций с OS и S2. Проектировщики останавливаются на аналогичном и )о-цессе, но с иснользованием ДЭА (диэтаноламин) в качестве растворителя, не образую1цего иерегенерируемых соединений с OS и S2. [c.227]

    Внутри поры ядро ССЕ, имеющее наибольшую молекулярную массу, осаждается на активной поверхности, на которой протекают реакции каталитического разложения надмолекулярных структур отдельных частиц асфальтенов. Каталитическое разложение асфальтенов ведет к зарождению отдельных составляющих частиц или осколков, имеющих меньшую молекулярную массу. Осколки, десорбируясь с поверхности, диффундируют в дисперсионной среде и адсорбируются на других активных центрах катализатора, на которых претерпевают химические превращения. В частности, на центрах де металлизации из металлсодержащих комплексов удаляются металлы вслед за гидрированием слабых химических связей. Деметаллизованные осколки в дальнейшем не участвуют в формировании новых надмолекулярных структур, хотя вероятность этого не исключена. Некоторые осколки асфальтенов адсорбируются на центрах гидрообессеривания, где происходят реакции гидрогенолиза серы до сероводорода и гидрирование слабых химических связей. Обессеренные осколки асфальтенов могут ассоциировать друг с другом, зарождая новые ассоциаты с низкой молекулярной массой (обессеренные асфальтены). Параллельно могут протекать реакции деазотирования с вьщелением аммиака, реакции термодеструкции и гидрокрекинга алканов и деалкилирования аренов, реакции гидрирования ненасьпценных осколков молекул и аренов. [c.69]

    Алюмосиликаты являются не только катализаторами крекинга, но также неплохими обессеривающими контактами. При каталитическом крекинге разложение серипстых оединений протекает с образованием в большей мере сероводорода, чем меркаптанов, что 15блегчает очистку бензинов и во многих случаях позволяв ограничиться только щелочной их промывкой. [c.13]

    Сухой гаа — смесь образующихся при крекинге углеводородов от метана до пропана включительно и водорода. В некоторых случаях в состав сухого газа тгклгочают сероводород, полл чающийся в результате разложения серпвстых соединений сырья. [c.16]

    О распределении серы в продуктах крекинга. В условиях процесса каталитического крекипга многие сернистые соединения сырья весьма неустойчивы. Разложение сернистых соединений сопровождается выделением больших количеств сероводорода, который выводится с установки вместе с 1азами крекинга. Из общего количества серы сырья в среднем около одной трети по весу переходит в сероводород (табл. 38). [c.219]

    Сырые нефти представляют собой жидкости, цвет которых варьирует от янтарно-желтого до коричневато-зеленого и иногда даже черного удельный вес их приблизительно от 0,800 до 0,985 кипят они в пределах от комнатной температуры до температуры выше 350°. Нефти из глубоких горизонтов с большим количеством углеводородных газов, так называемые дистиллятные или конденсатные нефти, могут иметь значительно меньший удельный вес, порядка 0,760, и быть практически бесцветными. Они могут не содержать фракций, кипящих выше 250 или 300°. Если перегонять нефть, то при температуре около 350° начинается частичное термическое разложение. Молекулярный вес обычных сырых нефтей может быть более 1000, что соответствует температуре кипения выше 500°. В среднем нефти могут содержать от 9 до 30 или 40 % бензиновых фракций, выкипающих до 200°. Остальные фракции распределяются по довольно плавной кривой выкипания, показывающей соотношения, в которых присутствуют керосиновые и газойлевые фракции, легкие и тяжелые масляные фракции и так называемые остаточные продукты. Термин масляные фракции указывает лишь молекулярный вес фракции, так как применимость ее для смазочных целей зависит от небольших различий в составе. После извлечения из пласта нефти обычно насыщены (при давлении и температуре, соответствующим условиям хранения) легкими углеводородами (метаном, этаном и др.) и часто содержат сероводород и эмульгированную пластовую воду. Ввиду того, что нефти добываются из нормально восстанови гельной среды, на воздухе они обычно окисляются. С этой точки зрения фракции, выделяемые обычной перегонкой, являются менее стабильными, чем сами сырые нефти. [c.50]

    Этилен не реагирует с серой при 140°, но при 325° образуются значительные количества сероводорода и 3% этилмеркаптана, очевидно, являющегося продуктом вто )ичной реакции между этиленом и сероводородом. Нагреванием других олефинов с этилтетрасульфидом при 180°, т. е. при температуре разложения тетрасульфида с образованием (как предполагают) атомарной серы, образуется до 20% меркаптанов и алкилсульфи-дов [21]. [c.343]

    В секции изомеризации принята двухреакторная схема со ступенчатым снижением температуры от первого реактора ко второму. Повышенная температура в первом по ходу сырья реакторе 2 обеспечивает более полное разложение чегы-реххлористого углерода и протекание изомеризации с образованием изопентана и монозамещенных гексанов, во втором реакторе 3 происходит изомеризация до вы-сокоразветвленных гексанов, обладающих высокими октановыми характеристиками. Принятый способ низкотемпературной изомеризации определяет включение в схему установки системы глубокой осушки и очистки от сероводорода водородсодержащего газа, поступающего в систему изомеризации, а также узлов хлорирования катализатора и улавливания продуктов хлорирования. [c.143]

    Некоторые из сернистых соединений нефти подвергаются термическому разложению при сравнительно низких температурах. Ньютон (Newton) и Лич (Lea h) [87] подвергли перегонке в промышленном масштабе нефть Крайн Коунти (Западный Техас) с содержанием 2,03% серы. После перегонки более половины общей серы было обнаружено в различных фракциях в виде сероводорода.  [c.32]

    Сущность метода заключается в восстаповлеппи органически связанной и элементарной серы на активном никеле Ренея до сульфида никеля, разложении сульфида никеля кислотой и титрометрическом определении выделившегося сероводорода. [c.438]

    Растворенный сероводород в сырой нефти встречается относительно редко и является либо продуктом разложения сернистых соединенкй либо продуктом действия свободной серы на углеводороды., Укажем однако на нефть из Бомонта, в которой содержание сероводорода доходит до 0,44%.  [c.164]

    После осаждения сернистых соединений в виде комплекса последний был разложен сероводородом. В дальнейшем сернистые соединения были ректифицп-рованы в вакууме. В результате была получена серия продуктов, начиная с СвНиЗ (с темп. кип. 55—57° при 50 мм) и кончая С1вНзо8 (с темп. кип. 198—200° при 50 л л). [c.164]

    Органические остатки подвергаются разлагающему действию анаэробных бактерий. В первую очередь разрушаются белковые вещества с образованием сероводорода и аммиака и других продуктов глубокого распада белковой частицы и распада каких-то устойчивых азотистых соединений. Получается, по словам акад. В. Л. Омеляпского, как бы выгнпвший , или, как его неудачно называет Г. Потонье, минерализованный сапропель, который не изменяется очень долго даже при свободном доступе воздуха. Во вторую очередь подвергается распадению клетчатка, или целлюлоза, и лигнин и другие органические соединения с высоким содержанием кислорода. Роль анаэробных бактерий состоит в извлечении кислорода и в образовании устойчивых соединений. Первая стадия бактериального разложения заканчивается образованием жиров и других устойчивых соединений. Этим вообще заканчивается стадия биохимических процессов, и органическое вещество обращается в тот кероген, о котором мы уже говорили. По мнению других исследователей, роль анаэробных бактерий на этом не заканчивается. Мэррэй Ст-юарт и другие английские геологи считают, что бактериальное разложение совершается до конца, до превращения органического вещества в нефть. Жиры, разложенные в жирные кислоты, а эти [c.338]


Смотреть страницы где упоминается термин Сероводород, разложение: [c.26]    [c.198]    [c.75]    [c.90]    [c.232]    [c.185]    [c.339]    [c.74]   
Водород свойства, получение, хранение, транспортирование, применение (1989) -- [ c.334 ]




ПОИСК







© 2025 chem21.info Реклама на сайте