Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Динамика технологических процессов

    Выделение входных и выходных параметров весьма важно при исследовании динамики процессов химической технологии. Используя эти понятия, можно сказать, что математическая модель, описывающая динамику технологического объекта, должна предсказывать, как будут меняться во времени выходные параметры при произвольном изменении во времени входных параметров (рис. 2.1). При этом любой технологический объект целесообразно интерпретировать как некоторый функциональный оператор, ставящий в соответствие каждому набору входных функций Ui t), U2 t),. .., Un(t) соответствующий набор выходных функций Vi t), V2(i).....Oft (О- в результате задача исследования динамики технологического процесса сводится к исследованию свойств функционального оператора, который задается математической моделью процесса. Поэтому прежде чем рассматривать методы исследования динамических свойств процессов [c.39]


    Интегральные представления (2.2.46), (2.2.56) и (2.2.67) для правила действия линейного оператора А являются частными случаями (2.2.34). В принципе можно построить множество других представлений, которые будут частными случаями (2.2.34) и получающихся при выборе более сложного вида параметрической системы функций Р(/, т) в (2.2.33). Однако все такие представления будут слишком сложны из-за трудности отыскания функции s(t), необходимой для построения исходного представления (2.2.33). Поэтому при исследовании динамики технологических процессов применяют только интегральные представления с использованием весовой функции G t, т), частотной характеристики F(i, ш) [или параметрической передаточной функции F t,p) и переходной функции Эти функции в дальнейшем будем называть ха- [c.67]

    ДИНАМИКА ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ [c.283]

    Установившийся процесс представляет собой предельный случай непрерывного. Практически это состояние трудно осуществимо по причине изменений, например, состава и состояния сырья, атмосферных условий, свойств катализатора и т. д. Непрерывные процессы в химической промышленности достаточно хорошо приближаются к условиям стабильности, обнаруживая лишь небольшие отклонения, которые объясняются динамикой процесса. Вопросы динамики технологических [c.15]

    СТАТЬИ no УПРАВЛЕНИЮ ПРОЦЕССАМИ Динамика технологических агрегатов и управления ими [c.151]

    Успешное решение задач исследования ХТС на стадии их проектирования и эксплуатации предполагает наличие математической модели ХТС, которая должна отражать не только технологические связи между элементами и сущность химико-технологических процессов, но и экономические критерии функционирования системы, динамику взаимодействия элементов и подсистем сложных ХТС, имеющих разные, а иногда и противоречивые цели функционирования. [c.18]

    Методологической основой Охраны труда является научный анализ условий труда, технологического процесса, аппаратурного оформления, применяемых и получаемых продуктов с точки зрения возможности возникновения в процессе эксплуатации производства опасностей и вредностей. На основе такого анализа определяют опасные участки производства, выявляют возможные опасные ситуации и разрабатывают меры их предупреждения и ликвидации. Эти вопросы рассматриваются в динамике, в развитии, чтобы обеспечить дальнейший прогресс в охране труда. В основе дисциплины но всех ее разделах заложено профилактическое начало. [c.14]


    Содержит сведения о методах поиска и извлечения сырья нз недр, динамике добычи и переработки нефти и газа, свойствах наиболее распространенных нефтей, методах анализа нефти н нефтепродуктов. Подробно охарактеризованы современные технологические процессы переработки нефти, оборудование, общезаводское хозяйство, товарные нефтепродукты. Имеются данные об охране среды, технике безопасности и экономике производства. [c.2]

    Реакторы объемного типа представляют собой такие теплообменные аппараты, в которых технологический процесс, выполняемый по определенной заданной температурно-временной программе, есть не что иное, как переходный процесс. Естественно, что наилучшим образом такой процесс может быть описан уравнениями динамики процесса теплообмена, так как именно уравнения динамики наиболее точно описывают процессы теплообмена в любом случае нагревания или охлаждения вещества в периодическом аппарате. Настоящая глава посвящена выводу уравнений динамики теплообмена и их использованию в аналитических, графоаналитических и машинных расчетах процессов теплообмена в периодических реакторах. [c.38]

    Производственные процессы в химической, нефтехимической промышленности и родственных им отраслях (металлургия, производство строительных материалов, легкая, текстильная и пищевая промышленности и некоторые другие) характеризуются большим разнообразием выпускаемой продукции и, как правило, большой сложностью. Общая, характерная черта всех этих процессов состоит в том, что для превращения исходного сырья или полупродукта в целевой конечный продукт необходимо сравнительно большое число функционально различных ступеней переработки. Для целенаправленного протекания этих процессов в отдельных ступенях необходимы различные виды энергии, вспомогательных веществ и информации. Процессы химической технологии отличаются большим ассортиментом продуктов, которые можно получить из одного и того же сырья, большим разнообразием путей, которыми можно получить один и тот же продукт и динамикой обновления как ассортимента, так и технологических процессов. [c.5]

    Экспериментальное определение динамики объекта (характеристик развития аварийной ситуации потенциально опасных химико-технологических процессов) достаточно затруднительно. Эти характеристики обычно определяются путем физического и математического моделирования аварийной ситуации. Методы моделирования изложены в гл. 4. [c.89]

    Следовательно, при переходе от лабораторных исследований, начало которым было положено Фростом [16— 19], к крупнотоннажному производству необходимо изучение процесса на пилотных установках при искусственном наложении отдельных осложнений или их комплекса. Углубленное изучение характера протекания реакций при наложении на них гидродинамических, массообменных и теплотехнических осложнений в нефтепереработке носит название исследования прикладной макрокинетики [14]. В лабораториях обычно исследуют истинную кинетику или микрокинетику. Существуют другие названия макрокинетики химико-технологическая кинетика [20], промышленная кинетика [21, 22], динамика промышленных процессов [4], кинетика каталитических реакций с массо- и теплопередачей [23, 24], инженерная химия [22] и просто макрокинетика [25]. [c.139]

    Двусторонняя фотография рабочего дня заключается в одновременном наблюдении за трудовой деятельностью рабочего, течением технологического процесса и за работой оборудования (если технологический процесс протекает в аппаратах периодического действия). По материалам двустороннего наблюдения можно путем сопоставления динамики показателей технологического режима и действий рабочего определить качество управления ходом технологического процесса и вскрыть причины, обусловившие отклонения от норм технологического режима, отбора сырья, расхода материалов и энергии, количества и качества выработанной продукции. [c.50]

    Технологические процессы синтеза, переработки и использования полимеров практически никогда не реализуются как равновесные. В связи с этим комплекс потребительских свойств полимерных материалов обусловлен тем уровнем структурообразования, который достигается формируемой системой к моменту принудительного прекращения конкретного процесса. Вот почему достаточна строгое описание таких процессов может быть осуществлено при совместном анализе как роли гибкости макромолекул, так и динамики структурообразования в полимерных системах. Иными словами, анализ кинетики процессов в полимерных системах наряду с термодинамическими характеристиками их весьма важен для обоснованного научного прогноза. Это тем более существенно, что как в живой природе, так и во многих вариантах химических технологий осуществляются взаимные переходы гомофазных и гетерофазных полимерных систем, причем истинное равновесное состояние практически никогда не реализуется. [c.9]


    Тепловой баланс, составляемый на малые промежутки времени (5—10 мин), иногда называют мгновенным. Назначение мгновенного баланса — выяснение динамики расхода энергии на технологический процесс, если процесс происходит в нестационарных тепловых условиях. [c.256]

    Поверхностные термопары, установленные на оболочке реактора, давая информацию непосредственно о характере и динамике изменения температурного поля, позвол.чют иметь представление о движении потоков в реакторе на всех этапах технологического процесса, поскольку статистическое распределение траекторий движения сырья существенно искажает температурное поле. [c.123]

    Особенность данной книги состоит в том, что в ней осуществлена систематизация задач теоретического исследования динамических свойств технологических аппаратов и способов их рещения. Технологический аппарат и процесс, который в нем осуществляется, с самого начала рассматриваются как технологическая система, т. е. ее математическое описание представляется в форме оператора, связывающего входные и выходные параметры процесса. Такой подход весьма удобен при построении моделей сложных систем, состоящих из нескольких связанных между собой технологических аппаратов. В связи с этим изложение динамики химико-технологических процессов дается на основе общих понятий теории операторов. Элементы этой теории, используемые при исследовании динамики, изложены во второй главе. [c.4]

    Получение передаточной функции является, как правило, первым шагом в исследовании динамики технологического объекта. Несмотря на то, что знание передаточной функции W(p) дает полную информацию о динамических свойствах объекта, часто в различных конкретных задачах бывает удобно использовать для характеристики объекта не W (р), а весовую функцию g t) или переходную функцию h(t). Выше уже отмечалось, что h t), например, является самой естественной характеристикой процесса перехода объекта из одного стационарного режима работы в другой, поскольку непосредственно описывает изменение выходного параметра при таком переходе. Поэтому, после того как получено аналитическое выражение для передаточной функции, возникает задача применения к ней обратного преобразования Лапласа с тем, чтобы получить весовую функцию g t) и переходную функцию h t). Такая задача часто оказывается трудноразрешимой, поскольку аналитическое выражение передаточных функций объектов с распределенными параметрами имеет очень сложный вид. В связи с этим применяются различные методы получения приближенного выражения для весовой и переходной функций с помощью точного аналитического выражения для передаточной функции W p). Указанные методы можно разделить на две группы. [c.107]

    Таким образом, с помощью мессбауэровской спектроскопии можно получить информацию, необходимую для определения структуры химических соединений, выявления тонких деталей химической связи и описывать быстрые реакции. Возможно и чисто аналитическое применение, которое в дальнейшем будет расширяться. Чувствительность метода позволяет даже исследовать динамику атома примеси при концентрации 10- % (ат.), изучать радиационные и другие дефекты в материалах (в том числе на поверхности высокодисперсных систем и в пленках), механизм воздействия ультразвука и радиочастотных колебаний на параметры технологических процессов, диффузию атомов в твердых телах и на их поверхности. Установлено, например, что ионы Ре -ь, локализованы на поверхности силикагеля и цеолита даже после адсорбции воды, в то время как в ионообменной смоле КУ-2 после адсорбции воды ионы Ре + диффундируют в поры смолы, образуя диффузный слой, компенсирующий отрицательный заряд сульфогрупп. По-видимому, большое значение будут иметь методы определения состояния элементов с переменной степенью окисления (табл. 31.8), выявления фаз, включенных в сложные композиции в незначительных количествах, и др. [c.748]

    Все эти программы были специально разработаны для математического моделирования химико-технологических процессов, их материальных и тепловых балансов в статике и в динамике. [c.172]

    Таким образом, течение технологических процессов в печах указанного типа однозначно связано с динамикой теплоусвоения. С другой стороны, теплоусвоение в полной мере характеризует протекание теплотехнических процессов и однозначно связано с ними [354]. [c.536]

    При автоматизации технологических процессов в промышленности очень часто требуется осуществлять регулирование давления паров или газов. В настоящей главе будет рассмотрен расчет динамики давления паров или газов в сосудах при условии, что их давление и температура одинаковы по всему объему. Полученные результаты можно использовать также при расчетах некоторых элементов пневматических регуляторов. [c.144]

    Дистилляция и ректификация— это процессы разделения соответственно двух- и многокомпонентных смесей па компоненты. Этот технологический процесс наиболее часто встречается в химической промышленности. Изучение динамики ректификационных установок лежит в основе теории автоматического регулирования и очень важно с экономической точки зрения. За последние годы интерес к этим вопросам сильно возрос. [c.451]

    Ядерный реактор, рассматриваемый с точки зрения динамики регулируемых объектов как единая с соответствующим энергетическим оборудованием установка, является сложной многомерной системой, включающей различные элементы с большим количеством обратных связей, динамические свойства или математическая модель которых определяются сложной системой дифференциальных уравнений. Целый ряд отдельных конструктивных элементов или технологических процессов и физических явлений, известных из других областей техники, встречаются и в объектах, применяемых в ядерной энергетике. [c.547]

    В пособии рассматриваются вопросы исследовагая динамики технологических процессов, формализуемых как детерминированные процессы с распределенными параметрами, описнваемые уравнениями в частных производных параболического типа. [c.3]

    Наш проекти ровщик выбрал для процесса непрерывнодействующий реактор идеального смешения. При помощи схемы материальных потоков (рис. IV-4) и допущений, характеризующих каждый элемент оборудования, можно написать полную систему дифференциальных уравнений, определяющих динамику реакции и технологического процесса [см. уравнения (IV, 1) — (IV, 45)]. [c.53]

    Процессы нефтепереработки и нефтехимии, намечаемые к крупнотоннажному осуществлению, должны изучаться предварительно на пилотных установках при искусственном наложении на основные реакции отдельных осложнений или их комплекса. Углубленное изучение характера протекания химико-технологических процессов нефтепереработки при наложении на них гидродинамических, массообменных и теплотехнических осложнений в нефтепереработке носит название исследований прикладной макрокинетики, в отличие от истинной неосложненной микрокинетики, исследуемой в лабораториях. Существуют и другие названия прикладной. макрокинетики химико-технологическая кинетика [20], кинетика промышленная [21, 22], динамика промышленных процессов [7], кинетика каталитических реакций с массопередачей и теплопередачей [23, 24], просто макрокинетика [25, 26] и, наконец, математическое описание [12, 27]. Основам теоретической [c.33]

    Многие объекты эксплуатируются при повышенных температурах. С одной стороны, этот фактор способствует уменьшению вероятности возникновения хрупкого разрушения, поскольку обычно объекты эксплуатируются при рабочих температурах, значительно превьш1ающих порог хладноломкости. С другой стороны, интенсивное тепловое воздействие может привести к развитию различных деградашюнных процессов в материалах, из которых изготовлена конструкция и, как следствие, к их термическому повреждению. Влияние температурного фактора определяется не только значением рабочей температуры, но и характером и динамикой теплового воздействия. При нестационарном тепловом нагружении возможна термическая усталость материала конструкции. Динамические тепловые нагрузки могут быть обусловлены периодическим характером технологического процесса, изменениями рабочих параметров в период пусконаладочных и ремонтных работ, а так же вследствие неоднородного распределения температур по поверхности конструкции. Тепловые поля в той или иной степени нестащюнарны, их изменение приводит к соответствующему перераспределению упругих и пластических деформаций в объеме напряженного металла [17, 30]. [c.9]

    Девятое Б. Н., Демиденко Н. Д., Охорзик В. А. Динамика распределенных процессов в технологических аппаратах, распределенный контроль и управление. Красноярск Красноярское книжное изд-во, 1976. 310 с. [c.296]

    Структура данной книги не сильно отличается от учебника выпуска 1970 г. Фотохимия — это химия возбужденных частиц, и ее предметом является изучение различных превращений возбужденной частицы ее химические реакции либо излуча-тельный или безызлучательный распад. Эти возможности и рассматриваются в гл. 3—6 в гл. 1 дается общее введение в основные принципы фотохимии, а в гл. 2 кратко объясняются закономерности поглощения и испускания излучения. Совершенно очевидно, что в фотохимии используются определенные экспериментальные методы, и иллюстративный материал лучше усваивается, если читатель понимает суть экспериментальной методики. Описание некоторых наиболее важных экспериментальных методов приводится в гл. 7. Эта глава включает очень общее представление о направлении, называемом Фотохимия с высоким временным разрешением . Оно связано с детализацией динамики фотохимических процессов, включая использование энергии исходных частиц в определенных квантовых состояниях при преобразовании в конечные продукты. Этот материал позволяет понять детали фотохимического взаимодействия, но не очень хорошо согласуется с содержанием гл. 3—8. Так как экспериментальная реализация этого метода технически сложна, то описание его дается в гл. 7 (разд. 7.5 и 7.6). Гл. 8 завершает книгу обсуждением фотохимических процессов, происходящих в природе, и некоторых технологических и лабораторных применений. В ней я не пытался жестко с.педовать систематическим названиям химических соединений, привояя названия, широко используемые в промышленности. [c.9]

    Влияние температурного фактора определяется не только значением эксплуатационной температуры, но и характером и динамикой теплового воздействия. При нестационарном тепловом нагружении возможна термическая усталость материала колонны. Динамические тепловые нагрузки могут быть обусловлены периодическим характером технологического процесса, изменениями рабочих параметров в период пуско-нападочных и ремонтных работ, а также [c.25]

    В иерархической структуре системы планирования и управления технологическими комплексами непрерывного действия (типа нефтеперерабатывающих и нефтехимических) вьщеляются уровни текущего планирования, капендарного планирования, оперативного планирования и управления. Такая схема временной декомпозиции задачи управления порождается объективно существующей организационной иерархией и динамикой производства. Нефтеперерабатывающие комплексы и предприятия подразделяются на ряд технологических процессов, цехов или блоков, состоящих в свою очередь из технологических установок, агрегатов или производств, имеющих локальные органы управления, систему технико-экономических показателей и критериев, по которым оценивается эффe < тивнo ть их функционирования. Указанные составные элементы технологической сети связаны между собой большим числом материальных и энергетических потоков, рассматриваемых при формализации как внутренние связи предприятия. Кроме того, НПП и комплексы функционируют в тесной взаимосвязи с поставщиками сырья и полуфабрикатов, потребителями товарной продукции, вышестоящими организациями, определяющими, в конечном счете, внешние связи. [c.10]

    Выражение (3.154) для ограничений, налагаемых на расходуемые ресурсы, определяет дополнрпельное количество ресурсов, необходимость в которых обусловливается вероятностным характером как фактического уровня ресурсов, так и вероятностным характером условий протекания технологических процессов, т. е. в (3.151) учитывается не только потребность на собственно технологические операции 2 уХу среднем, но и рассчитывается дополнительная величина, запаса ресурса, обеспечивающего удовлетворение г-го ограничения с вероятностью, не меньшей 7,-. Здесь в математических соотношениях находит косвенное подтверждение обоснованность стремления лиц, принимающих плановые решения (ЛПР), получить ресурсы под производственную программу с резервом ( страховым запасом ), необходимым для компенсации случайных отклонений в фактической динамике внешних связей и технологии. [c.91]

    Вероятностные ограничения модели определяются на основе анализа условий работы каждого технологического процесса в отдельности и НПП в целом, обработки статистической информации, отражающей технико-экономические показатели работы установок и НПП, а также на основе анализа динамики связей НПП с поставщиками и другими предприятиями. При этом учитываются плановые и нормативные требования, предъявляемые к переработке и вьшуску нефтепродуктов (технологи- [c.172]

    В предложении (4.8) величина показателя текучести расплава в момент времени кА1 должна определяться в соответствии с динамическими свойствами технологического процесса. При учете динамики процесса предполагается линейный закон смешения потоков полиэтилена, имеющих различные показатели текучести расплава, в реакторе. Процесс смешения рассматривается как од-ноемкостный процесс и с учетом транспортного запаздывания описывается дифференциальным уравнением [c.171]

    Экспериментальное исследование разработанных математи-чеких моделей стационарных режимов и динамики было осуществлено на рассмотренном в разделе 4.1 технологическом процессе получения смеси хладонов 11 и 12 в условиях опытнопромышленной установки, сравнительной оценкой отклика физического объекта ( верх колонны 3) и его модели на фиксированное состояние вектора входных параметров Л ах- В режиме исследования ректификационная колонна была переведена в работу на себя , что соответствует рассмотрению математической модели динамики дефлегматора в виде системы уравнений (2.7.12) при значении степени конденсации равным единице. [c.184]

    Ротан В. Я- Расчет динамики промышленных автоматических систем регулирования. М. Энергия. 1973. 82. Ротач В. Я- Теория автоматического управления теплоэнергетическими процессами. М. Энергоатомиздат, 1985, 83. Ценник на монтаж оборудования. М. Химия, 1978. № 17. 84. Веригин А. Н. и др. Принципы построения и структура диалоговой системы автоматизированного проектирования химических агрегатов Учеб. пособие. Л. ЛТИ им. Ленсовета, 1987. 85. Варгафтик Н. Б. Справочник по теплофизическим свойствам газов и жидкостей. М. Наука, 1972. 86. Лесохин Е. И. и бр.//Мо-лелирование и управление химико-технологическими процессами Труды ГИПХ, Л., 1981. [c.285]

    Таким образом, по содержанию несброженных углеводов в зр лых бражках можио в определенной степени судить об уровне раб ты на спиртовом заводе, так как любые технологические нарушен и отклонения от нормального хода процесса на каждом этапе пр изводства в той илн иной степени отражаются на конечном резул тате сбраживания. Поэтому величина несброженных углеводов бражке в настоящее время стала основным показателем качест проведенного технологического процесса получения спирта, а вид мая плотность (отброд), утратив свое значение, остается лишь и казателем, оперативно характеризующим динамику брожения. Потери углеводов от иарастаиия кислотности в процессе брож иия. При нормальном технологическом процессе производства спир из зерно-картофельного сырья нарастание кислотности в бражк не долл<но превышать 0,2°. Этот показатель определяется по paз сти между величиной кислотности бражки и сусла иосле смешиЕ ния его с дрожжами. [c.162]


Смотреть страницы где упоминается термин Динамика технологических процессов: [c.475]    [c.35]    [c.90]    [c.112]    [c.30]    [c.27]    [c.374]    [c.283]    [c.283]    [c.443]   
Смотреть главы в:

Введение в технологию основного органического синтеза -> Динамика технологических процессов




ПОИСК





Смотрите так же термины и статьи:

Динамика

Динамика функционирования технологических процессов при наличии ограничений

Динамика функционирования технологических процессов с помощью сплайнов



© 2025 chem21.info Реклама на сайте