Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

РНК рибонуклеиновая на ДНК-матрице

    Но то синтетические полимеры. Часть биополимеров синтезируется в клетке отнюдь не по закону случая. Наиболее известный пример — белки. Сборка их поли-пептидных цепей происходит на рибонуклеиновой матрице, вследствие чего положение каждой аминокислоты строго детерминировано. Иначе быть не может — ошибка в положении даже одной аминокислоты — уже ЧП, как правило, с тяжелыми и нередко летальными последствиями для клетки. Поэтому белки могут быть получены в истинно индивидуальном состоянии (в том смысле, в котором это понятие применяют для низкомолекулярных веществ). Биосинтез полисахаридов протекает по совершенно иной схеме здесь нет матрицирования, структура и размер молекул управляются иными механизмами. Хотя в большинстве случаев мы мало знаем об зтих механизмах, нам известен результат их функционирования. А он принципиально отличен от результата биосинтеза белков. [c.39]


    Рибосомная РНК — высокополимерное соединение, молекула ее содержит 4000—6000 нуклеотидов. Она в соединении с белком образует внутри клетки особые субмикроскопические гранулы— рибосомы. Рибосома является фабрикой белкового синтеза , куда в качестве сырья доставляются аминокислоты. Установлено, что роль матрицы принадлежит особому типу рибонуклеиновых кислот — информационной РНК. Размер ее молекул широко варьирует, имея в среднем от 500 до 1500 нуклеотидов. и-РНК синтезируется на молекулах ДНК в ядре клетки. Из ядра они проникают в протоплазму к рибосомам и, взаимодействуя с ними, участвуют в синтезе белка. Если молекулы й-РНК служат матрицей для синтеза белков, то они должны содержать информацию о данном белке, зашифрованную определенным кодом. Но все различие между видами информационной РНК заключается в разной последовательности чередования четырех азотистых оснований (У, Ц, А и Г). Однако и белки, несмотря на их огромное многообразие, отличаются друг от. друга в своей первичной структуре только порядком расположения аминокислот. Это привело к заключению, что последовательность расположения четырех видов азотистых оснований на молекуле РНК определяет последовательность расположения 20 видов аминокислот в полипептидной цепи синтезируемого белка, или, другими словами, что каждая из 20 аминокислот может занять на данной матрице только определенное место кодированное сочетанием нескольких азотистых оснований. [c.123]

    Как уже отмечалось, функцией РНК является реализация матричного синтеза белка. Выше мы рассмотрели принципы кодирования белковой цепи. Разберем теперь механизм реализации этого принципа. Информация о, структуре белка содержится в матричной РНК, к-рая является копией одной из цепей ДНК (с заменой дезоксирибозы на рибозу и тимина на урацил, что не отражается на спаривании оснований). Матричную РНК можно себе представить разбитой на триплеты (кодоны). Нужная последовательность аминокислот на матрице набирается с помощью транспортной рибонуклеиновой к-ты. [c.195]

    В действительности дело так и обстоит. На ДНК и РНК формируются белки и белки-ферменты, а они образуются из относительно простых молекул, часто представляющих остатки других биологических структур, и создают подходящие аминокислоты и нуклеотиды. Эти нуклеотиды идут на синтез рибонуклеиновых и дезоксирибонуклеиновых кислот, т. е. на увеличение числа молекул-матриц. Если бы этот процесс не был замкнутым, если бы он разомкнулся в каком-то звене, например получился бы нуклеотид, не обеспечивающий репликации, или нарушающий систему регулирования белкового [c.208]


    Индивидуальность геномов выражена в постоянном взаимном положении хромосом в метафазе хромосом — в полигенном строении без повторений и в способности к склеиванию фрагментов генов — как узловой ступени, важной для аутокатализа, гетеросинтеза и обратных связей с субстратом, который преобразуется ферментами, создаваемыми данным геном триплетов — как эквивалентов конъюгации с аминокислотами в нуклеопротеиновых генах и дублирования аминокислот с информационной рибонуклеиновой матрицы, а главное как основных дискретных элементов генного строения а нуклеотидов — как единиц изоморфного топологического измерения. [c.83]

    Существуют нуклеиновые кисло1ы двух типов более стабильная дезоксирибонуклеиновая кислота (ДНК), являющаяся хранителем генетической информации менее стабильная рибонуклеиновая кислота (РНК), взаимодействующая с ДНК. Она выполняет роль матрицы, переносящей И11формацию об определенной последовательности аминокислотных звеньев в полипептидной цепи с макромолекул ДНК с помощью так называемого расомного механизма . Описание особенностей протекания процесса синтеза белка в живых организмах выходит за рамки этого пособия. [c.349]

    Тот же самый принцип активации карбоксильной группы используется н в синтезе белков in vivo. Карбоксильная группа аминокислоты активируется, реагируя с АТР с промежуточным образованием ангидрида. Однако следующая стадия не сводится просто к атаке такого ангидрида второй аминокислотой, поскольку синтез белков включает строго определенное последовательное присоединение многих (до нескольких сотен) аминокислот. Матрица, или организующая поверхность , должна участвовать в этом процессе для того, чтобы обеспечить правильную последовательность белковой молекулы. Макромолекулой, выполняющей функцию такой матрицы, является полинуклеотидтранс-портная рибонуклеиновая кислота (тРНК) строение полинуклеотидов описано в следующей главе. [c.56]

    Лишь недавно предложена [50] биоорганическая модель, которая может объяснить код , описывающий специфическое взаимодействие полинуклеотидов и белков. При этом постулировано существование примитивного гибридного полимера, пли сополимера, содержащего рибонуклеиновую цепь (РНК), в 2 -поло-жениях которой ковалентно присоединены аминокислотные остатки. Матрица , организованная таким образом, могла бы отвечать за специфическое полипеитид-нолинуклеотидное узнавание, положившее начало современному генетическому коду. [c.185]

    Различают два типа нуклеиновых кислот, а именно дезоксирибонуклеиновые (ДНК) и рибонуклеиновые (РНК). Первые находятся в ядрах клеток, другие — в хромосомах и цитоплазме клеток. Молекулы ДНК переносят наследственную информацию, которая закодирована в их структуре. Они способны репродуцироваться и служат матрицей при синтезах РНК. Рибонуклеиновые кислоты передают полученную от ДНК информацию, управляя синтезом тысяч различных белков, содержащихся в живых клетках. В настоящее время эти процессы детально исследованы на молекулярном уровне, и мы отсылаем интересующихся подробностями к современной биохимической литературе. [c.216]

    На самом деле структура ДНК является еще более сложной, так как две составляющие ее полимерные спирали закручены в противоположном направлении иными словами, они антипараллельны. Если двигаться вдоль обеих спиралей в одном и том же направлении, то в одной из них связь между сахарными и фосфатными остатками будет -5, 3 - 5, 3 -5, 3 -, а в другой — -3, 5 -3, 5 -3, 5 -. Во время синтеза белка одна из цепей двойной спирали ДНК служит активным источником информации для клетки, являясь матрицей для образования так называемой информационной или матричной рибонуклеиновой кислоты (мРНК). При делении клетки обе нити двойной спирали выступают в роли матриц для синтеза комплементарных молекул ДНК. Таким образом, каждое дочернее ядро после деления содержит по паре нитей ДНК или по нескольку пар этих нитей, которые идентичны родительской ДНК. Этот процесс представлен схематически на рис. 27-6 и более подробно — на рис. 27-7. [c.485]

    Синтез. Биосинтез Б. происходит в результате трансляции в субклеточных частицах-рибосолшх, представляющих собой сложный рибо-нуклеопротеидный комплекс. Информация о первичной структуре Б. хранится в соответствующих генах-участках ДНК-в виде последовательности нуклеотидоа В процессе транскрипции эта информация с помощью фермента-ДНК-зависимой РНК-полимеразы - передается на матричную рибонуклеиновую к-ту, к-рая, соединяясь с рибосомой, служит матрицей для синтеза Б. Выходящие из рибосомы синтезированные полипептидные цепи, самопроизвольно сворачиваясь, принимают присущую данному Б. конформацию, а также подвергаются модификации благодаря р-циям разл. функциональных групп аминокислотных остатков и расщеплению пептидных связей (см. Модификация белков). [c.253]

    Известно неск. типов РНК. Рибосомные рибонуклеиновые кислоты, связываясь с рибосомными белками, образуют рибосомы, в к-рых осуществляется синтез белка. Матричные рибонуклеиновые кислоты служат матрицами для синтеза белков (трансляции). тРНК осуществляют связывание соответствующей аминокислоты и ее перенос к рибосомам. Обнаружены т.наз. малые ядерные РНК, участвующие в превращ. первичных продуктов транскрипции в функционирующие молекулы т.наз. антисмысловые РНК участвуют в регуляции биосинтеза белка и репликации плазмидных ДНК. В виде РНК представлены геиомы мн. вирусов (РНК-содержащие вирусы), в к-рых матрицами для синтеза РНК служат вирусные РНК. Нек-рые РНК обладают ферментативной активностью, катализируя расщепление и образование фосфодиэфирных связей в своих собственных или др. молекулах РНК. [c.298]


    ЭКСПРЕССИЯ ГЕНА, программируемый геномом процесс биосинтеза белков и(или) РНК. При синтезе белков Э. г. включает транскрипцию - синтез РНК с участием фермента РНК-полимеразы трансляцию - синтез белка на матричной рибонуклеиновой кислоте, осуществляемый в рибосомах, и (часто) посттрансляционную модификацию белков. Биосинтез РНК включает транскрипцию РНК на матрице ДНК, созревание и сплайсинг. Э. г. определяется регуляторными последовательностями ДНК регуляция осуществляется на всех стадиях процесса. Уровень Э. г. (кол-во синтезируемого белка или РНК) строго регулируется. Для одних генов допустимы вариации, иногда в значит, пределах, в то время как для других генов даже небольшие изменения кол-ва продукта в клетке запрещены. Нек-рые заболевания сопровождаются повышенным уровнем Э.Г. в клетках пораженных тканей, напр, определенных белков, в т. ч. онкогенов при онкологич. заболеваниях, антител при аутоиммунных заболеваниях. [c.413]

    В настоящее время основную схему организации живой материи можно считать известной. Нуклеиновые кислоты несут всю генетическую информацию, которая заложена в последовательности четырех различ ных нуклеотидных оснований. Существуют нуклеиновые кислоты двух типов. Более стабильная дезоксирибонуклеиновая кислота (ДНК) является хранителем информации. Менее стабильная рибонуклеиновая кислота (РНК), транскрибирующаяся с ДНК, выполняет роль матрицы, которая транслирует нуклеотидный текст в аминокислотные последовательности белков с помощью рибосомного механизма. Белки участвуют фактически во всех типах деятельности организма. [c.9]

    Особым и весьма важным типом мРНК являются нуклеиновые кислоты таких вирусов, которые, будучи построены только из белка и РНК, используют рибонуклеиновую кислоту как свой генетический материал. Одноцепочечные вирусные РНК таких объектов, как бактериофаги М52, Н17, Г2 и вирус саркомы птиц, действительно выполняют одновременно как функции собственно мРНК, так и функции матрицы для репликации в процессе биосинтеза новых вирусов. Поскольку их относительно просто получить в чистом виде, именно они стали одним из первых объектов изучения последовательности оснований в РНК (см. гл. 22.4). [c.54]

    Важным передаточным звеном при переводе генетической информации с языка нуклеотидов на язык аминокислот являются рибонуклеиновые кислоты (РНК), которые синтезируются на определенных участках ДНК как на матрицах в соответствии с их нуклеотидной последовательностью. РНК - это линейная полинуклео-тидная молекула, отличающаяся от ДНК в двух отнощениях. Во-первых, моносахаридом в РНК является рибоза, содержащая не одну, а две гидроксильные группы они связаны с 2 - и 3 -атомами углерода. Во-вторых, одним из четырех оснований в РНК является урацил (11), занимающий место тимина. Большинство молекул РНК одноцепочечные, хотя часто в них имеются вза- [c.34]

    Нуклеиновые кислоты представляют собой линейные полимерные молекулы, состоящие из чередующихся углеводных и фосфоди-эфирных остатков. Фрагменты углеводов существуют в молжулах нуклеиновых кислот в- фураиозиой форме и связаны по атому С-1 с остатками пиримидиновых или пуриновых оснований (общее рассмотрение структуры нуклеиновых кислот см. [45]). Дезоксирибонуклеиновая кислота (ДНК) присутствует во всех живых клетках и служит носителем генетической информации. В качестве углеводного остатка в молекуле ДНК присутствует о-дезоксирибоза, а в качестве оснований — тимин. цитозин (пиримидиновые основания) и аденин, гуанин (пуриновые основания) (рис. 7.14, а). Определенная последовательность расположения пиримидиновых и пуриновых оснований в цепи ДНК связана с конкретной генетической информацией. Рибонуклеиновые кислоты (РНК) также представляют собой неразветвлеиные полимерные молекулы, отличающиеся от молекул ДНК тем, что содержат вместо дезоксирибозы о-рибозу (с группой ОН при атоме С-2) и урацил вместо тимина. РНК выполняют роль матриц для синтеза белка. [c.317]

    Строение нуклеиновых кислот. Участие их в синтезе клеточных белков. Синтез белков лежит в основе построения новых клеточных структур. Организмы синтезируют свои собственные гбелки, отличающиеся от белков других видов характером чередования аминокислот. Первичная структура белков определяет многие их биохимические особенности. Изменение чередования аминокислот в молекулах ферментов в некоторых случаях приводит к потере свойств катализатора. Чем же определяется последовательность расположения аминокислот при синтезе белков Для ответа на этот вопрос была выдвинута теория матриц. Согласно этой теории, в клетках имеется нечто подобное типографским матрицам или штампам, каждый из которых штампует белок определенного вида или точнее белок со строго определенным порядком расположения аминокислот в его полипептидной цепи. Роль матриц выполняют нуклеиновые кислоты. Нуклеиновые кислоты имеются во всех без исключения клетках. Различают две группы нуклеиновых кислот—дезоксирибонуклеиновые кислоты (ДНК) и рибонуклеиновые кислоты (РНК). ДНК содержится главным образом в клеточном ядре, РНК — Э ядре и цитоплазме. [c.122]

    В отличие от протеидов других классов простетические группы нуклеопротеидов— нуклеиновые кислоты, или полинуклеотиды, — являются макромолекулярными соединениями. Они имеют сложное строение и дают в результате гидролиза фосфорную кислоту, пентозу и пиримидиновые и пуриновые основания. Строение нуклеиновых кислот будет описано ниже (см. Нуклеиновые кислоты ). В плазме клетки (цитоплазме) было обнаружено также очень большое число шарообразных частиц, называемых микросомами, с молекулярными весами порядка нескольких миллионов, также состоящих из нуклеиновых кислот (рибонуклеиновой кислоты) и белков, В этих микросомах происходит синтез белков. Нуклеиновые кислоты микросомов действуют как матрицы или клише (гены), служащие для синтеза специфичных белков и для своего собственного воспроизведения (Н. Е, Паладе, 1955 г,), В этом синтезе участвуют также и ферменты, связывающие аминокислоты с аденозиимонофосфорпой кислотой (М, Хогланд, 1956 г.). [c.455]

    Биохимические исследования давно привели к заключению, что синтезы таких специфических белков, как ферменты и т.д., контролируются шаблонами или матрицами, называемыми генами. Гены выполняют двойную функцию — воспроизведение собственной копии и обеспечение специфической структуры молекулы белка. Приведенные выше новые исследования, а также работы, направленные на изз ение размножения вирусов (см. Вирусы ), являются важным началом в познании химической природы генов. Большинство белков синтезируется в клеточной плазме в определенных полимеризационных центрах, называемых микросомами. Последние содержат только рибонуклеиновую кислоту и белки. Были открыты ферменты, связывающие аминокислоты с аденозинмонофосфорной кислотой с образованием смешанных ангидридов. Оказалось также, что эти ангидриды соединяются далее до входа в микросомы с рибонуклеиновой кислотой небольшого молекулярного веса, служащей, вероятно, переносчиком (М. Б. Хогланд 1956 г.). Таким образом, время выяснения механизма синтеза белков теперь кажется не очень далеким. [c.779]

    Биологические функции. Белки могут выполнять в живых организмах самые различные функции катализировать (ферменты) и регулировать (гормоны) биохимич. реакции входить в состав соединительной ткани (напр., коллаген) или мышц (актин, миозин) служить резервными питательными веществами (гранулы белка в цитоплазме) и др. Функции дезоксирибонуклеиновой к-ты — передача генетич. информации из поколения в поколение при клеточном делении. Этот Б. служит исходной матрицей при передаче информации внутри клетки. Рибонуклеиновая к-та также участвует в этом процессе, приводящем к синтезу специфич. белков клетки. Полисахариды могут служить резервными питательными веществами (напр., крахмал, гликоген), выполнять структурные функции (напр., целлюлоза полисахариды соединительной ткани), обеспечивать специфические свойства поверхности клеток (напр.1, антигенные полисахариды микроорганизмов) или защиг ту организма в целом (напрнмер, камеди и слизи растений). [c.128]

    В настоящее время получен ряд данных, говорящих о том, что РНК играет в синтезе полипептидных цепочек белка роль своего рода матрицы или каркаса, на котором первоначально фиксируются в определенном порядке и в определенной последовательности те или иные аминокислоты. Затем происходит замыкание пептидных связей между отдельными молекулами аминокислот, после чего образовавшийся сложньп полипептид отделяется от рибонуклеиновой кислоты. [c.328]

    Физиологич. роль панкреатич. Р. состоит в переваривании в кишечнике рибонуклеиновых к-т, поступающих с пищей. Р., обнаруженные в различных животных и растительных тканях, и, в частности, т. наз. латентные Р., связанные с рибосомами, по-видимому, способствуют расщеплению рибонуклеотид-ных матриц, выполнивших свою роль в белковом синтезе. [c.338]

    ДЛЯ данного полипептида, тем не менее определяется его первичной структурой. Стабилизация каждой данной третичной структуры осуществляется в результате специфических взаимодействий между специфическими для данного белка аминокислотными остатками, образующими специфическую для данного белка последовательность например, определенные карбоксилатные группировки соединены водородной связью с определенными остатками тирозина, другие карбоксилатные группы взаимодействуют электростатически с гуаниди-ниевыми группировками определенных остатков аргинина, а какие-то неполярные группировки аминокислотных остатков находятся в тесном контакте вследствие вытесняющего влияния растворителя. Вообще говоря, при изменении аминокислотного состава или последовательности аминокислот в первичной структуре характер названных взаимодействий должен изменяться, а это должно привести к образованию других конформаций белка. Свертывание в определенную конформацию, присущую данной белковой молекуле, вероятно, происходит постепенно, короткими участками, в процессе синтеза белка, поскольку соединенные аминокислотные остатки каждой вновь образованной молекулы белка отделяются от матрицы (информационной рибонуклеиновой кислоты) в строго определенной последовательности. [c.27]

    Бензоилированный вариант DEAE-сефадекса А-25, называемый BD-сефадекс, применяется в хроматографии рибонуклеиновых кислот. Его емкость для малых ионов равна 2,4 мэкв./г, а для тРНК она равна примерно 20 мг на 1 мл слоя. Степень бензоилирования соответствует примерно 5 мэкв. бензоильных групп на 1 г. И бензоильные, и диэтиламиноэтильные группы непосредственно связаны с глюкозными остатками сшитой полидекстрановой матрицы. [c.261]

    С биологической точки зрения наиболее важными комплексами являются рибонуклеопротеиды. Мало известно о природе химической связи между нуклеиновой кислотой и белком, хотя во многих нуклеопротеидах, таких, как кристаллические вирусы растений, компоненты расположены определенным образом, когда нуклеиновая кислота окружена защитной белковой оболочкой. Рентгенографические исследования рибонуклеонротеидных частиц клеточного происхождения и полученных из них рибонуклеиновых кислот позволяет предположить, что конформация рибонуклеиновой части комплекса определяется белковой матрицей [280]. Обратимая диссоциация высокомолекулярных рибонуклеонротеидных субъединиц происходит легко [281] образование связей обусловлено, по-видимому, действием ряда сил. Последние включают кулонов-ское притяжение противоположно заряженных ионов, притяжение диполей и водородные связи. Убедительное доказательство наличия иных связей, кроме электростатических, было получено путем электрофоретического изучения рибонуклеопротеида, рибонуклеиновой кислоты и белка и изучения влияния обработки мочевиной на электрофоретическое поведение рибонуклеопротеида — прием, обычно используемый для ослабления водородных связей [282]. Соотношение рибонуклеиновой кислоты и белка в выделенных рибонуклеопротеидах значительно варьирует в случае наиболее строго [c.413]

    К рибосомам. По-впдимому, этот тип РНК и есть матрицы, с помощью которых набираются полипептидные цепочки белков. Отличается это вещество быстрым метаболизмом. Оно синтезируется в бактериях за 20—30 сек., распадается в течение 5—10 мин. и все время находится в состоянии быстрого оборота. Отсюда и.его название информационная РНК (ИРНК) или РНК- гонец (Messenger RNA). В силу динамичности и малого времени жизни стационарная концентрация ИРНК в клетке — порядка 1—2% всей клеточной рибонуклеиновой кислоты. Ясно также, что число молекул ИРНК каждого данного типа переменно и зависит ог потребностей клетки, от темпа синтеза каждого данного белка. [c.430]

    Строение синтезируемого белка (т. е. последовательность входящих в его состав аминокислот) предопределяется строением соответствующей (содержащей несколько тысяч оснований) молекулы дезоксирибонуклеиновой кислоты (ДНК), где каждой аминокислоте соответствует определенная последовательность трех соседних нуклеиновых оснований. Иными словами эту основную мысль выражают, говоря, что строение белка закодировано в молекуле ДНК, являющейся основным носителем наследственной информации. При синтезе новой молекулы белка протекает несколько процессов. На молекуле ДНК хромосом, как на матрице, синтезируется особая, более короткая (содержащая несколько сотен оснований) молекула рибонуклеиновой кислоты (РНК), называемая информационной РНК (иногда говорят РНК-посредяик или матричная РНК). JB отличие ог молекулы ДН] нредставляющей со- [c.131]

    В настоящее время есть исчерпывающие доказательства существования в клетке относительно низкомолекулярных информационных рибонуклеиновых кислот, синтезируемых на ДНК как на матрице, т, е. так, что матричным А, О, Т и С отвечают соответственно и (урацил, а не тимин, так как это уже не ДНК, а РНК), С, А и О. Эти и-РНК, берущие, так сказать, отпечаток с ДНК, перемещаются в рибосомы и, закрепляясь на рибосомальной РНК (р-РНК), передают туда информацию о типе белков, которые нужно синтезировать рибосомам. В сущности, сборка молекул белка идет именно на и-РНК, называемых поэтому также м-РНК— матричными РНК (о коде информации речь пойдет позднее). Доказано это было, в частности, так (Фолькин, Астрчан) бактерии заражали фагом, а затем в среду вводили радиоактивный фосфат, меченный Через [c.727]

    В присутствии смеси соответствующих мононуклеотидов свободные концы синтетических ДНК строк б, б, б и б могут дополняться комплементирующими нуклеотидами, которые далее под действием полимеразы свяжутся в цепь. Роль 10 средних нуклеотидов строк б, б и б, б — это роль кнопок, скрепляющих две цепи синтетического полинуклеотида. Таким образом, в итоге, исходя из синтетических олигонуклеотидов по 20 нуклеотидов в каждом, получаются два отрезка ДНК-кодонов транспортной рибонуклеиновой кислоты, включающих первый — 30 нуклеотидов (от 1 до 30), второй также 30 (от 21 по 50)—нуклеотиды от 21 до 30 в строках б и б являются комплементирующими. После их комплементаций до полных двойных нитей и разъединения последних достроенные (что не показано на рисунке) нити в и б могут быть скреплены за счет этих десяти комплементирующих нуклеотидов 21 —30. Затем должно следовать новое комплементирование свободных концов, т. е. 1—20 и 31—50. Таким образом, синтез на матрице полинуклеотида с последовательностью звеньев, комплементарных звеньям т-РНК аланина от 1 до 50, будет завершен. [c.735]

    Первый эксперимент с применением метода центрифугирования в градиенте плотности [461] особенно наглядно продемонстрировал значение этого метода. В этом эксперименте бактерии выращивались на среде, богатой № , и поэтому дезоксирибонуклеиновая кислота (ДНК) организмов, меченных изотопом тяжелого азота, обладала несколько большей плотностью, чем обычная ДНК. Через определенное время бактерии переносили в среду с обычным распределением изотопа азота и методом центрифугирования в градиенте плотности анализировали изменения плотности ДНК, выделенной из ряда последовательных генераций клеток. На основе предположения Уотсона и Крика [30] было принято, что редупликация ДНК во время деления клеток включает разделение двух цепей двойной спирали (см. стр. 130), причем каждая цепь служит матрицей для синтеза дополняющей ее цепи. Если этот механизм достоверен, то вторая генерация клеток, происходящих от клеток, меченных N , должна содержать ДНК, в которой изотопом тяжелого азота мечена одна из цепей каждой двойной спирали. В последующих генерациях должно возрастать количество ДНК с обычным распределением изотопов азота, однако при этом сохраняется также некоторое количество наполовину меченной ДНК. В любой данный момент времени в растворе должны присутствовать молекулы ДНК только с тремя четко определенными плотностями и никаких компонентов с промежуточной плотностью обнаруживаться не должно. Это предположение было полностью подтверждено данными по ультрацентрифугированию в градиенте плотности (рис. 55), и поэтому механизм редупликации ДНК, который раньше был лишь плодом смелых теоретических представлений, можно считать в настоящее время окончательно установленным. В относительно короткое время после этого классического эксперимента метод центрифугирования в градиенте плотности различными путями способствовал развитию биохимических исследований. Можно привести несколько примеров, иллюстрирующих это положение. Методом меченых атомов, подобным описанному выше, было установлено, что некоторая часть рибонуклеиновой кислоты (РНК) переходит в последующие генерации клеток в нативной форме [468]. Было найдено, что плотность ДНК является линейной функцией содержания гуанина и цитозина в различных микроорганизмах, и, таким образом, ДНК, выделенная из какого-либо вещества, образует в градиенте плотности полосу с характерным расположением [469, 470]. На диаграмме градиента плотности ДНК, полученной из тканей высших организмов, периодически обнаруживаются сателлит-ные полосы [471], которые могут быть обусловлены симбиозными организмами или другими, еще неизвестными причинами. Типичный пример этого эффекта изображен на рис. 56, который, между прочим, наглядно свидетельствует также о чувствительности метода обнаружения малых [c.165]


Смотреть страницы где упоминается термин РНК рибонуклеиновая на ДНК-матрице: [c.319]    [c.642]    [c.644]    [c.19]    [c.45]    [c.511]    [c.458]    [c.75]    [c.197]    [c.128]    [c.125]    [c.73]    [c.854]    [c.435]    [c.15]    [c.112]    [c.81]    [c.112]    [c.687]   
Биохимия человека Т.2 (1993) -- [ c.82 , c.85 ]




ПОИСК





Смотрите так же термины и статьи:

Матрица

РНК рибонуклеиновая кислота на ДНК-матрице

Рибонуклеиновые кислоты РНК синтез на ДНК-матрице



© 2024 chem21.info Реклама на сайте