Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вторичная структура конформация спектрам

    Интенсивное изучение пространственного строения синтетических полипептидов продолжалось в течение 1950-х и первой половины 1960-х годов. Были привлечены практически все известные физические и физикохимические методы, позволяющие получать информацию о строении молекул в твердом состоянии и в растворах. Наибольшее количество данных было получено с помощью рентгеноструктурного анализа, методов рассеяния рентгеновских лучей под малыми углами, дисперсии оптического вращения, кругового дихроизма и дейтерообмена, с помощью обычных и поляризованных инфракрасных спектров. Из полученного при исследовании синтетических полипептидов огромного экспериментального материала, однако, не удалось сделать обобщающих заключений о причинах стабильности регулярных структур и сказать что-либо определенное на этой основе о принципах структурной организации белков. И тем не менее, результаты исследования повсеместно были восприняты как подтверждающие ставшее общепринятым представление о том, что пространственное строение белковой глобулы представляет собой ансамбль унифицированных регулярных блоков вторичных структур, прямую информацию о геометрии которых дают высокомолекулярные синтетические пептиды. а-Спиральная концепция Полинга не только не была поставлена под сомнение, но еще более утвердилась. В 1967 г. Г. Фасман писал "Общепризнано, что лишь несколько конформаций, благодаря своей внутренней термодинамической стабильности, будут встречаться наиболее часто и, по-видимому, именно они составляют общую основу белковой структуры" [5. С. 255]. Между тем, в то время уже были известны факты, настораживающие от безусловного принятия а-спиральной концепции Полинга. Но они выпадали из множества других фактов, согласующихся с традиционным представлением, казавшимся логичным и правдоподобным, к тому же не имевшим альтернативы. Поэтому на данные, противоречащие концепции Полинга, долгое время не обращали внимания. [c.72]


    Дальнейшее исследование инфракрасных спектров поглощения и их дихроизма показало, что синтетические полипептиды, состоящие из остатков Ь-аминокислот, у которых водород р-уг-лерода замещен на какие-либо другие группы, имеют большей частью неспиральную конформацию. В табл. 1 аминокислоты были расположены в порядке, соответствующем их тенденции образовывать в полипептидах а-спиральные или неспиральные структуры. Так, поли-Ь-лейцин образует а-спираль, а поли-Ь-ва-лин — складчатую р-структуру. Тот факт, что полипептиды, образованные из этих весьма похожих друг на друга аминокислот, имеют столь различные структуры, указывает на существенную зависимость вторичной структуры от свойств аминокислотных остатков, входящих в полипептидную цепь. Вполне возможно, что степень спирализации некоторого участка белка зависит от числа и порядка расположения аминокислот, способствующих образованию спиральной конформации. [c.256]

    Наличие спиральных структур оказывается чрезвычайно полезным при спектроскопических исследованиях белков. Как правило, спектры чувствительны к локальной структуре отдельных остатков или образуемых ими пар. В сложной третичной структуре существует так много локальных конформаций, что спектр может стать неинформативным. Однако подобие локальной структуры остатков в спиралях или /3-слоях гарантирует, что их вклад будет заметен. Именно благодаря этому многие конформационные изменения белка, сопровождающиеся изменениями вторичной структуры, можно охарактеризовать спектроскопически. Это не единственный известный нам уровень структурной организации, но часто именно он оказывается наиболее подходящим для количественного исследования. [c.89]

    Наиболее интересным в случае биополимеров является вопрос о влиянии конформации на нормальные колебания. Как и при анализе электронных спектров, имеет смысл уделить основное внимание изменению спектра хромофора при образовании той или иной вторичной структуры. В случае белков и полипептидов наибольший интерес вызывают три инфракрасные полосы. Все они связаны с колебательными переходами в пептидном остове и могут быть отнесены на счет нормальных колебаний простых групп атомов. Это полосы, отвечающие растяжению связей N—И и С=0 с 3300 и -1630 — 1660 см (полоса амид I) соответственно и деформации связи N—И с тах (полоса амид II). Эти полосы довольно легко зарегистрировать, [c.115]

    Табл. 8.7 иллюстрирует зависимость параметров полос амид I и амид П в спектрах комбинационного рассеяния некоторых полипептидов от вторичной структуры. Налицо четкие различия между а-спиралями, 8-слоями и беспорядочными конформациями. [c.121]


    Рассмотрены три спектроскопических метода, с помощью которых можно получить разного рода информацию о структуре макромолекул. Оптически активные образцы обладают рядом свойств, среди которых наиболее удобным для исследования является круговой дихроизм (КД), т.е. способность по-разному поглощать лево- и правополяризованный свет. Существенное влияние на КД оказывает взаимодействие между соседними хромофорами, которое убывает с ростом расстояния между хромофорами приблизительно как и зависит от относительной ориентации хромофоров. Следовательно, КД особенно чувствителен к типу вторичной структуры белков и нуклеиновых кислот и протяженности структурных областей. Например, спектры КД а-спирали, /3-слоя и беспорядочной конформации четко различаются. Путем подгонки спектров белков к затабулирован-ным спектрам полипептидов с известной конформацией удается довольно надежно установить долю каждого из типов вторичной структуры в данном белке. [c.123]

    Изменение условий в растворе также должно вызывать переход из одной спиральной формы в другую. Действительно, увеличение концентрации этанола до 80 % приводит к спектральным изменениям, сходным с изменениями спектра КД при переходе В — А в пленках. Это довольно естественно, поскольку добавление такого большого количества этанола эквивалентно понижению влажности. Следует отметить, что эксперименты, связанные с изменением условий в растворе, довольно сложны, поскольку при изменении конформации спирали может Произойти денатурация и агрегация ДНК. Еще более сложные эффекты наблюдаются в случае таких растворителей и условий, при которых изменяется не только вторичная, но и третичная структура ДНК. [c.302]

    Корреляцию знака эффекта Коттона с хиральностью хромофора обычно получают эмпирически в ввде соответствующих правил. Напр., установлено такое правило для . r-Hena-сыщенных кетонов положит, длинноволновому максимуму в куплете КД соответствует конформация, скрученная по правой спирали, а отрицательному - по левой. ЗКго правило носит назв. правила экситонной хиральности. Его широко применяют для определения абс. конфигурации (напр., бензоатное правило для диолов), конфигурации и конформации природных соединений. Особенно часто эффект экситоннолз расщепления встречается в спектрах белков и нуклеиновых к-т. Методы ДОВ и КД позволяют определять содержание вторичных структур в белках и поли-пептвдах. [c.277]

    Б. Рост и К. Сандер решение видят в отказе от предсказания конформационных состояний отдельных остатков последовательности в пользу вторичных структур у целых сегментов, используя данные о гомологичном белке, трехмерная структура которого известна [222]. Сравнение 130 пар структурно гомологичных белков с отличающимися аминокислот-яыми порядками показало, что значительное отклонение в положениях и цлинах сегментов вторичных структур во многих случаях может происходить в пределах приблизительно одинаковых пространственных форм свернутых цепей. Иными словами, отличия в двух близких аминокислотных последовательностях в большей мере отражаются на вторичных структурах, чем на третичных. Поэтому, полагают авторы, важна не локализация а-спиралей, -складчатых листов, -изгибов и Р-петель с точностью до одного аминокислотного остатка, а их ориентировочное отнесение, совместимое с нативной конформацией гомологичного белка, установленной экспериментально. Включение информации о белковых семействах ведет к увеличению показателя качества Q3 до 70,8%, что соответствует точности экспериментального определения вторичных структур с помощью спектров КД. Однако в развитом Ростом и Сандером методе упрощение проблемы предсказания вторичных (ГГруктур и на их основе третичной столь велико и бесконтрольно, что грани между благими желаниями авторов, субъективным восприятием полученных результатов и декларируемыми количественными показателями точности становятся неразличимы. [c.519]

    При исследовании расплавов или растворов полимеров обычно имеют дело с макромолекулами разнообразных форм атомы, составляющие основную цепь полимера, могут принимать любую конформацию из большого числа конформаций, которые допускаются ковалентными связями и валентными углами их первичной структуры. Поэтому вторичная структура таких полимеров характеризуется динамической последовательностью быстрых изменений внутренних степеней свободы полимера при действии на полимер сдвиговых напряжений и теплового движения. Такая вторичная структура называется конформацией статистического клубка. Для молекул почти всех синтетических полимеров характерна конформация статистического клубка в растворе и расплаве. Известны, однако, определенные биологические макромолекулы, которые следует отнести к противоположному краю конформационного спектра. В белках и ферментах сочетание ковалентных и нековалентных сил приводит к вторичной и третичной структурам (трехмерная пространственная упорядоченность вторичной структуры), которые являются энергетически выгодными даже в растворе. Эти сложные, строго заданные трехмерные конформации обусловливают высоко-специфичесние биологические функции белков и ферментов. [c.182]


    Оптическая активность белков, полисахаридов и нуклеиновых кислот обусловлена их оптически активными компонентами — аминокислотами и сахарами, а также асимметрией их вторичной структуры, имеющей форму право- или левовинтовых спиралей. Денатурированный белок имеет конформацию беспорядочного клубка и поэтому дает оптическое вращение, отличное от того, которое дает соответствующий нативный белок, содержащий спиральные участки. Оптическое вращение растворов амилопектина, имеющего в основном неспиральное строение, отличается от оптического вращения свежеприготовленной спиральной амилозы, если проводить сравнение в пересчете на один и тот же вес глюкозы. Изменения во вторичной структуре макромолекул удается регистрировать путем измерения удельного вращения не только по всему спектру, но и при одной длине волны. Уже с давних пор известно, что белок по мере денатурации приобретает все более и более отрицательное удельное вращение. Величины [а]п для полностью денатурированных белков и беспорядочно свернутых полипептидов лелсат в интервале от —90 до —125°, тогда как удельное вращение белков в нативном состоянии составляет - -100° и больше. Изменения конформации белков, обусловленные изменением pH, также отражаются на величине удельного вращения. Все эти свойства белковых растворов известны по наблюдениям их удельного вращения при одной длине волны — как правило, при длине волны D-линии натрия. [c.435]

    Исследование химических сдвигов в спектре ЯМР показало, что каждой катионной комплексной частице присуща своя уникальная конформация валиномицина, причем наибольшие изменения в спектре ЯМР наблюдаются в области поглощения кольцевого остова [42, 46—50]. На основании соотношения между константа-ми спин-спинового взаимодействия протонов амидных групп с а-протонами валина и двугранным углом при амидной связи получено представление о трехмерной конформации связанного в комплекс валиномицина. Методом ИК-спектроскопии показано, что карбонильные атомы кислорода сложноэфярных групп связываются водородными связями с амидными протонами, представляя свободным карбонильным кислородам амидных групп возможность образовывать координационные связи с катионо(М. Водородные связи создают упорядоченную вторичную структуру, в которой валиномициновый остов делает петлю и образует браслет высотой 4 А и диаметром 8 А [48]. Алкильные боковые цепи направлены от граней браслета , которые становятся асиммет- [c.254]

    С. Шаффер [87], исследуя процесс ренатурации рибонуклеазы с помощью 8-8-глутатиона, обнаружил, что образование моно- и ди-8-З продуктов практически не сказывается на кривых кругового дихроизма, при последующем появлении и накоплении продуктов с большим числом дисульфидных связей они приближаются к спектру нативного белка. В связи с тем, что в данном случае изменения в спектрах кругового дихроизма, как и в случае изменений поглощения и флуоресценции, отмеченных Р. Хантгеном и соавт. [81], происходили раньше восстановления ферментативной активности рибонуклеазы, то, как полагает Крейтон, они связаны главным образом с формированием у три- и тетра-8-8-производных вторичных структур и гидрофобного окружения у ароматических остатков, а не с завершением образования нативной конформации. С. Шаффер и соавт. [88] исследовали влияние среды на скорость свертывания белковой цепи рибонуклеазы с использованием окисленного и восстановленного глутатиона. Обнаружено, что действие нейтральных солей на скорость ренатурации [c.377]

    Спектры кругового дихроизма используют для тех же целей, что и спектры дисперсии оптического вращения, чтобы выяснить, какой тип вторичной структуры преобладает в мембранных белках. При интерпретации спектров кругового дихроизма возникают некоторые трудности, которые связаны в основном с негомоген-ностью мембранных суспензий, обусловливающей сглаживание спектральных кривых. Несмотря на то что доля спиральных участков в молекуле белка представляется на первый взгляд не самым информативным параметром, с помощью этих методов можно выяснить, осуществляется ли прямое влияние на мембранные структуры внешних факторов, если это влияние изменяет спи-рализацию белковых молекул. Эти изменения часто имеют место в тех случаях, когда наблюдается собственный конформационный сдвиг в молекуле белка или взаимодействие молекул белка друг с другом, изменяющее их конформацию. [c.73]

    В случае белков главной целью измерений спектров КД и ДОВ является определение содержания вторичных структур разных типов. Если доля ароматических аминокислот в белке не очень велика, его оптическая активность в области от 190 до 230 нм определяется главным образом полипептидным остовом. Многочисленные эксперименты показали, что по крайней мере качественно природа алифатических боковых групп не влияет заметно на спектр КД в этой области. Следовательно, в первом приближении белковую молекулу можно рассматривать просто как линейную комбинацию участков остова, находящихся в конформациях а-спирали, /3-слоя и беспорядочной структуры. КД этих структур можно оценить по результатам измерения КД гомополипептидов известной конформации. Такой набор базисных спектров приведен на рис. 8.9. Если содержание структур разных типов (х , Х з. Хг) для данного белка известно, то можно вычислить КД при каждой длине волны, просуммировав соответствующие вклады  [c.78]

    Согласно имеюшимся данным, для этого класса производных сушествует истинное таутомерное равновесие между три- и тетра-координационными формами, причем оно сильно смешено в сторону последней, так что содержание фосфитной формы не превышает Спектроскопические данные полностью соответствуют структуре с фосфорильной группой. В ИК-спектрах вторичных фосфитов имеются полосы поглошения в области 2380— —2450 см (vp н) и 1260—1300 см (vp=o) полосы поглошения, которые можно было бы отнести к связи Р—ОН, отсутствуют. В спектрах ЯМР константы спин-спинового взаимодействия фосфор— протон составляют 490—760 Гц, а химические сдвиги сигналов фосфора имеют значения от —13 до +4 млн-, что близко к таковым для фосфорной кислоты во всех случаях точное значение указанных параметров зависит от природы связанных с фосфором групп и от конформации связей фосфора, когда он является частью циклической системы. [c.709]


Смотреть страницы где упоминается термин Вторичная структура конформация спектрам: [c.576]    [c.369]    [c.265]    [c.265]    [c.174]   
Биофизическая химия Т.2 (1984) -- [ c.78 , c.79 ]




ПОИСК





Смотрите так же термины и статьи:

Структура и конформация



© 2025 chem21.info Реклама на сайте