Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изменение типа вторичной структуры

    ИЗМЕНЕНИЕ ТИПА ВТОРИЧНОЙ СТРУКТУРЫ [c.301]

    В соответствии с изменением типа химической связи и структуры в свойствах бинарных соединений проявляется более или менее отчетливо выраженная периодичность. Об этом, например, свидетельствует характер изменения по периодам и группам стандартной энтропии, температуры плавления, энтальпии и энергии Гиббса образования в зависимости от порядкового номера элемента с положительной степенью окисления (рис. 130), В изменении параметров отчетливо проявляется также вторичная периодичность (рис. 131). [c.247]


    При анализе реограммы изменения вязкостных свойств, оцениваемых по нестандартным методикам на вискозиметре типа Муни, были отмечены развитые вторичные структуры у [c.39]

    Кроме того, энтропия как мера неупорядоченности определяет объем кристаллической фазы, в котором атомы (ионы) расположены беспорядочно, т. е. в котором они совершают тепловые движения. Поэтому атомы (ионы) в й-фазах в нормальном состоянии распределены более свободно, чем в р-фазах. Следовательно, переход от более плотной структуры р к более свободной структуре tO должен происходить с преодолением некоторого энергетического барьера (приближающегося по порядку величины к энергии испарения), обусловленного структурными связями в кристаллической решетке. Легкость преодоления барьера может изменяться. Во время реконструктивных превращений структуры Р решетка распадается на более мелкие единицы, из которых складывается структура новой а-фазы. Получить превращения такого рода сложно они требуют большого количества энергии, идущей на изменение вторичных координаций в пространственной вязи. Только с помощью введения вспомогательных растворителей (флюсов, катализаторов и пр.) можно получить некоторую часть продуктов превращения за сравнительно короткие периоды времени. Классическим примером превращений о изменением типа пространственной вязи служат превращения кварца в тридимит и кристобалит, протекающие весьма медленно. [c.390]

    Однако зависимость экстракции элементов от типа амина в ряду первичный, вторичный, третичный — в некоторых случаях имеет и обратный ход. В качестве иллюстрации влияния типа и структуры амина в табл. 2.42 приведены данные по экстракции металлов из сульфатных растворов первичными, вторичными и третичными аминами 278]. Структура аминов изображена условно таким образом, что в алифатической цепочке радикала каждая точка соответствует атому углерода. Как видно, есть плохо экстрагируемые элементы (А1, Сг(1П), V(1V)), а в целом экстрагируемые металлы можно разбить на две группы. Металлы первой группы Fe(IH), V(III), РЗЭ, Ti(IV), Zr, Th, и(IV)—хорошо экстрагируются первичными аминами, но хуже вторичными и третичными. Металлы второй группы V(V), U(VI), Mo(VI)—экстрагируются примерно одинаково и первичными, и вторичными, и третичными аминами. При экстракции урана (VI) из фто-ридных и фосфатных растворов также наблюдается изменение экстракционной способности аминов в ряду первичный>вторичный>тре-тичный. [c.141]


    Эти изменения в указанном диапазоне доз не сопровождаются заметным изменением гипохромного эффекта. Интересно также и то, что хотя для нативной ДНК все три типа кривых по своему температурному положению идентичны, наибольшие изменения претерпевают кривые зависимости вязкости от температуры. Весьма вероятно, что такое ослабление вторичной структуры связано с тепловым воздействием на облученную ДНК. Однако такое предположение ставит вопрос о тех скрытых повреждениях, которые проявляются в виде существенного ослабления вторичной структуры ДНК при нагревании. Этот вопрос в настоящее время остается открытым и требует своего экспериментального разрешения. [c.91]

    В принципе чрезвычайно интересно разобраться в механизме влияния изменений окружающих условий на вторичную, третичную и четвертичную структуру. Преимущественная чувствительность к определенной переменной часто дает ключ к пониманию того, какой тип нековалентных взаимодействий отвечает за преимущественное поддержание одной определенной структуры. Более специальный случай внешних возмущений — это связь между конформационными изменениями на разных структурных уровнях. Например, вызывают ли изменения в четвертичной структуре, такие, как удаление одной субъединицы, изменения в третичной структуре какой-либо другой субъединицы И наоборот, как влияет изменение третичной структуры субъединицы на характер и стабильность той четвертичной структуры, в которую она входит  [c.28]

    Изменение вторичных и третичных структур полипептидных цепей. Применительно к вторичным и третичным структурам белков введены два типа понятий, которые четко отражают тот факт, что, исходя из одной и той же полипептидной цепи, можно получить множественные формы речь идет о конфигурационных и конформационных изменениях. [c.44]

    Значительный рост потребления легких фракций нефти, особенно бензина, все более жесткие требования к их качеству, потребности органического синтеза вызвали необходимость вторичной переработки нефти Она связана, во-первых, с получением более легких углеводородов из тяжелых, во-вторых, с изменением структуры углеродного скелета К вторичным процессам переработки нефти относятся различные типы крекинга, алкилирование, изомеризация, пиролиз, коксование итд [c.242]

    И (4), ХОТЯ и редко, но применяются для идентификации. Поскольку на колебание данной связи оказывают некоторое воздействие другие близлежащие связи, положение и интенсивность указанных характеристических частот могут изменяться в зависимости от структуры молекул и условий измерения. Так, проявление всех четырех типов поглощения гидроксильной группы, показанных на рис. 1.2, будет зависеть от того, к какому углеродному атому присоединена гидроксильная группа—первичному, вторичному или третичному, является ли эта группа свободной или она связана внутримолекулярными или межмолекулярными водородными связями, какова сила этих водородных связей и т. д. Таким образом, сравнение полос по лощения с полосами подобных и уже известных соединений дает возможность определить тип данного гидроксила и состояние, в котором он находится. Это может быть еще более убедительно доказано, если изменения условий спектральных измерений (растворители и т. д.) или химической структуры (окисление до кетона, ацетилирование и прочее) сопровождаются соответствующими изменениями полос поглощения. [c.14]

    У цветкового растения основных типов клеток сравнительно немного, и их легко различить по форме и структуре клеточной стенкн (рнс. 19-11). Все они образуются из клеток с первичной клеточной стенкой в результате роста, за которым обычно следует период когда клеточная стенка претерпевает специализированные изменения. После окончания роста снимаются ограничения, накладываемые на состав первичной стенки необходимостью ее растяжения. В частности, клеточная стенка может теперь значительно утолщаться. Иногда это утолщение обусловлено просто отложением дополнительных слоев материала первичной стенки. В других случаях откладываются новые слон совсем иного состава, образующие вторичную клеточную стенку. В целом же структура клеточной стенки тесно связана с теми функциями, которые должны выполнять клетки того или иного специализированного типа именно поэтому клетки каждого типа легко отличить по морфологии. [c.167]

    Для определения вторичной структуры белков используются в основном оптические методы. Конечно, более надежным является рентгеноструктурный метод, однако его применение сопряжено с определенными трудностями и требует значительного времени. Такие оптические методы, как дисперсия оптического вращения и круговой дихроизм, являются более простыми и, что весьма важно, позволяют определять изменений вторичной структуры белка в растворах. При помощи дисперсии оптического вращения можно получить информацию о степени спирализации белковой макромолекулы. Несмотря на то что метод является приближенным, достаточно отчетливо просматриваются переходы типа спираль—клубок. Что касается метода кругового дихроизма, то его спектр определяется набором углов ф и у, свойственных тому или иному типу вторичной структуры. Оба метода можно расценивать как скриннинго-вые, и для полной идентификации вторичной структуры их надо комбинировать с рентгеноструктурным анализом белков. [c.43]


    Высшие иолиалкилакрилаты и полиметакрилаты тоже могут рассматриваться как гребневидные полимеры. Известно, что такие М. кристаллизуются боковыми группами, а не основной цепью. Обнаружить эту тенденцию в разб. р-ре трудно. Однако если гребневидный гомополимер содержит в качестве боковых групп радикалы, способные в свободном виде образовывать жидкие кристаллы, то уже на молекулярном уровне удается наблюдать особый тип вторичной структуры, характеризующийся внутримолекулярным жидкокристаллич. порядком. Природа этого эффекта близка к микросегрегации в привитых сополимерах, о чем можно судить по изменению внутренней анизотропии таких М. и персистентной длины по сравнению с поли-метилметакрилатом (см. табл. 2). [c.60]

    Спектры кругового дихроизма используют для тех же целей, что и спектры дисперсии оптического вращения, чтобы выяснить, какой тип вторичной структуры преобладает в мембранных белках. При интерпретации спектров кругового дихроизма возникают некоторые трудности, которые связаны в основном с негомоген-ностью мембранных суспензий, обусловливающей сглаживание спектральных кривых. Несмотря на то что доля спиральных участков в молекуле белка представляется на первый взгляд не самым информативным параметром, с помощью этих методов можно выяснить, осуществляется ли прямое влияние на мембранные структуры внешних факторов, если это влияние изменяет спи-рализацию белковых молекул. Эти изменения часто имеют место в тех случаях, когда наблюдается собственный конформационный сдвиг в молекуле белка или взаимодействие молекул белка друг с другом, изменяющее их конформацию. [c.73]

    Последний из распространенных типов вторичной структуры — полипролиновая спираль. Пролин не может образовывать обычных а- и /3-структур из-за ограничений, налагаемых на его скелет пятичленным кольцом. Однако он может образовывать две односпиральные структуры, которые являются уникальными среди полипептидных вторичных структур, так как не содержат водородных связей. Полипролин I — левая спираль, содержащая 10 остатков на 3 витка. Все пептидные связи в ней находятся в цис-конформации, что довольно редко встречается в обычных пептидных структурах. Полипролин II — левая спираль, и ее пептидные связи находятся в транс-положении. Взаимопревращение этих двух форм может быть вызвано изменениями в растворителе. В нормальных водных буферах стабильной формой является спираль II. Она имеет 3 остатка на виток и смещение вдоль оси спирали 3,12 А на остаток по сравнению с 1,5 А в а-спирали. Структура полипролина II, изображенная на рис. 2.23, представляет собой более вытянутую цепь, чем а-спираль. В такой вытянутой спирали каждая боковая цепочка может быть сильно удалена от всех остальных. На самом деле полипролиновые спирали в значительной мере стабилизированы именно в результате таких стерических ограничений. [c.92]

    С. 3. Муминов, Э. А. Арипов (Институт химии АН УзССР, Ташкент). Модифицирование глинистых адсорбентов поверхностно-активными веществами и органическими основаниями приводит к существенным изменениям как вторичной, так и первичной структуры, причем в формировании пористой структуры существенную роль могут играть органические вещества из окружающей среды, прочно сорбированные на внешней поверхности и в порах глинистых адсорбентов. В некоторых случаях органические вещества оказывают отрицательное влияние на поверхностные свойства и пористую структуру и в целом на их адсорбционные свойства. Это подтверждается результатами изучения адсорбции паров бензола на двух глинистых породах, являющихся смешанно-слойными образованиями типа гидрослюд. Экстрагирование органических веществ из пород смесью хлороформа с бензолом показало, что образцы двух пород содержат 0,65 и 0,32 % битуминозных органических веществ, состав которых следующий 56,25 и 71,43 мае. % масел 25,00 и 28,57 мас.% смол 18,75 мас.% асфальтенов слюды. [c.214]

    Задавшись определенной моделью вторичной структуры тРНК с определенным содержанием комплементарных пар аденин урацил и гуанин цитозин, можно рассчитать соответствующую этой модели дисперсию оптического вращения, если известны изменения, вносимые в картину дисперсии односпиральной молекулы при образовании пар оснований. Величину этих изменений можно приближенно оценить, сопоставляя кривые дисперсий оптического вращения двухспиральных комплексов (поли-А) (поли-Н) и (поли-О) (поли-С) и односпиральных молекул поли-А, поли-и, поли-О и поли-С 2 Такое сопоставление, вообще говоря, дает принципиальную возможность выбора наиболее вероятных типов [c.292]

    Определены оптимальные условия ренатурации ДНК после ее тепловой денатурации I308]. Концентрация ионов патрия должна быть выше 0,4 М, а температура на 25 ниже температуры плавления. Так как переход спираль — клубок воспроизводим (в отношении физических свойств и тепловой инактивации биологических маркеров), при охлаждении образуется та же вторичная структура, а сколько-нибудь заметного образования неспецифических водородных связей не происходит. Полнота ренатурации увеличивается с увеличением молекулярного веса ДНК и, как и следовало ожидать, заметно зависит от гомогенности препарата. Степень реконструкции вторичной структуры убывает в последовательности для ДНК из бактериофага > мелких бактерий > бактерий > животных тканей, и этот порядок отражает изменение числа различных молекул ДНК и различие нуклеотидного состава, которыми характеризуется каждый из источников ДНК 1308]. Как было показано фракционированием ренатурированной трансформируюшей ДНК при иомош,и ультрацентрифугирования в градиенте плотности, ренатурация не относится к процессам типа все или ничего>л а образование двойной спирали вновь после разрушения может происходить в различной степени [309]. В основном это есть результат случайного расщепления ковалентных связей в полин клеотид-ной цепи при нагревании. При стандартных условиях тепловой денатурации и последующего охлаждения можно рассчитать, что в каждой цепи ДНК с молекулярным весом 10 может происходить в среднем по три разрыва. Поэтому в процессе ренатурации будут участвовать комплементарные цепи с длиной, различающейся на i/i—1/2, что понижает ренату рацию на 20—30% [310]. Действительно, на микрофотографиях часто наблюдаются клубки на одном или на обоих концах ренатурированных цепей, которые соответствуют выступающим концам однотяжных цепей. [c.605]

    При другом подходе были изучены ультрафиолетовые спектры поглощения различных нуклеопротеидов до и после разделения их на белок и нуклеиновую кислоту обработкой додецилсульфатом натрия [367]. Были введены соответствующие поправки на светорассеяние, а экспериментальные условия были таковы, что нуклеиновая кислота при депротеинизации оставалась нативной, т. е. обладала гипохромизмом, а отсюда и любое уменьшение оптического поглощения могло бы показать, что нуклеиновая кислота в интактном нуклеопротеиде обладает меньшим гипохромным эффектом, что в свою очередь указывало бы на конформационные изменения, происходящие при освобождении нуклеиновой кислоты. При разрушении ДНК-содержащих вирусов типа бактериофага Тб и вируса папилломы Шоупа никаких изменений в оптическом поглощении не происходило (хотя ясно, что изолированная ДНК была определенным образом упакована внутри вируса), и в этом случае вторичная структура нуклеиновой кислоты внутри вируса и в изолированном виде, по-видимому, одна и та же. Аналогичным образом оптическое поглощение рибонуклеопротеидных частиц из дрожжей фактически то же самое, что у разрущенных частиц [367 . [c.630]

    Известны три типа двухцепочечных кольцевых ДНК- Первый из них — ковалентно замкнутая кольцевая ДНК. Такие ДНК имеют сравнительно небольшой молекулярный вес.Примером указанных ДНК служат нуклеиновые кислоты вирусов полиомы и ЗУ 40, репликативная форма ДНК бактериофага ФХ174 В их молекулах обе полинуклеотидные цепи не имеют ни единого разрыва, поэтому любое изменение вторичной структуры, связанное с изменением количества остатков на один виток спирали, влечет за собой перестройку третичного строения ДНК. [c.47]

    Для всех эмпирических методов предсказания регулярных форм основной цепи на локальных участках аминокислотной последовательности, образования из этих форм супервторичных структур, доменов и трехмерных структур белковых молекул (с момента их появления и по сегодняшний день) характерны следующие черты принципиального порядка. Прежде всего, в основе всех исследований этого направления лежит конформационная концепция Полинга и Кори, согласно которой трехмерная структура белка представляет собой ансамбль регулярных, вторичных структур. Единство эмпирических методов предсказания по отношеш1ю к этой концепции неизбежно, поскольку в противном случае становится бесперспективным поиск эмпирических корреляций. Очевидно, если пространственное строение сложных макромолекул состоит не из отдельных немногочисленных стандартных блоков, а включает неограниченное количество разнообразных нерегулярных структурных сегментов, то нельзя рассчитывать на его описание с помощью простых правил, выведенных путем статистической обработки экспериментального материала, всегда крайне ограниченного в решении данной задачи. В первых работах предполагалось, что пространственное строение глобулярных белков почти сплошь состоит из вторичной структуры одного типа — а-спирали. Позднее к вторичным структурам был отнесен -складчатый лист, а затем -изгиб и недавно Q-петли. Привлечение последних двух означало принципиальный отход от строгого определения понятия вторичной структуры, так как -изгиб и Q-петли не являются регулярными формами. Кроме того, их идентификация отличается от идентификации а-спиралей и -структур по получаемой при этом информации о структуре белка. Если предсказание регулярной структуры в идеале означает определение на отдельном участке белковой цепи конформационных состояний составляющих его остатков, точнее, геометрии основной цепи участка, то предсказание изгибов и петель даже в идеале означает лишь утверждение об изменении направления цепи, причем, если это касается -изгибов, даже не на 180°, а лишь на угол больше 90° для петель и такое ограничение отсутствует. Это связано с тем, что -изгибы и Q-петли могут быть реализованы путем практически неограниченного количества различных форм основной цепи, а каждая форма — набором большого числа конформационных состояний остатков. Излишне говорить, что между -изгибами и 0-петлями нет четких границ. [c.328]

    По установившимся современным представлениям нефтяные остатки — сложная коллоидная нефтяная дисперсная система, Дисперсная фаза остатков в обычньк условиях состоит преимущественно из твердых частиц двух типов — ассоциатов асфальтенов и высокомолекулярных алканов с различной толщиной сольватной оболочки, состоящей из компонентов жидкой дисперсионной среды, представленной смолами и взаиморастворимыми высокомолекулярными углеводородами различных гомологических рядов. Следует иметь в виду, что нефтяные остатки - продукты, подвергавшиеся длительному температурному воздействию в процессе перегонки дистиллятной части нефти и, следовательно, претерпевшие более или менее глубокие химические изменения. Поэтому в исследовательской практике при оценке природы высокомолекулярных компонентов обычно пользуются терминами нативные , к которым отнесены вещества, вьщеленные из нефти в условиях, исключающих изменение их состава и структуры, и вторичные , т. е. претерпевшие изменения или образовавшиеся в процессе технологической обработки нефти. [c.15]

    Различные классификации нефтей включали разные системы соподчиненных понятий. В большей части различных классификаций распределение нефтей на классы, группы, типы проводилось по химическому составу. В качестве соподчиненных понятий принимались состав и количество УВ в легких бензиновых фракциях, содержание смолисто-асфаль-теновых компонентов. В дальнейшем это были особенности структуры УВ, их индивидуальный состав и т. д. Чем глубже изучались нефти, тем больше возникало их классификаций. Позже, когда широко начали применяться геохимические исследования, появились классификации, основанные по-прежнему на химическом составе нефти. Однако изменения отдельных показателей объяснялись характером превращений нефтей в земной коре, и классифицировались нефти по этому же принципу. Число соподчиненных понятий возросло, поскольку учитывались как химические особенности состава, так и геохимические превращения нефти. Вводились также понятия о типах нефтей окисленных, фильтрованных, метаморфизо-ванных и т. д. Некоторые исследователи придавали основное значение вторичным изменениям нефтей и называли их генетическими. [c.7]

    А.Н. Гусева и Е.В. Ск>болев разработали классификацию, основанную на представлениях о нефти как природном углеводородном растворе, в котором содержится наибольшее количество хемофоссилий (унаследованных структур) и меньше всего компонентов, изменяющихся под влиянием условий среды существования нефти в залежи, условий отбора пробы, транспортировки и хранения. Однако авторы почему-то назвали классификацию геохимической, хотя в основе ее лежат генетические признаки — хемофоссилии. В этой классификации нефти подразделялись по растворителю на классы — алкановый, циклано-алкановый, алкано-циклановый и циклановый, т. е. по химическому признаку, а классы — на "генетические" типы нефти, обогащенные парафином, затронутые вторичными процессами (осернение), обогащенные легкими фракциями. Однако это в большей мере признаки вторичных изменений нефтей, а не генетических различий. Кроме того, авторы классификации выделяли нефти разной степени катагенеза. Таким образом, А.Н. Гусева и Е.В. Соболев предложили много разных показателей, но их трудно использовать для четкой классификации нефтей. Они ценны главным образом для раскрытия механизма преобразования нефти при тех или иных процессах. Интересны предложенные этими авторами коэффициенты, отображающие соотношения содержания метановых УВ и твердых парафинов с долей углерода в ароматических структурах, которые увеличиваются с возрастанием степени катагенеза. [c.8]

    Приведенные выше данные свидетельствуют о том, что современный облик нефти определяется влиянием многих факторов, контролируемых геологическими условиями на всех этапах возникновения, миграции, аккумуляции и существования нефти. На первых стадиях, когда закладываются основы генетического типа УВ, большее значение имеют фациально-климатические условия, на последующих — особенности тектонического развития региона. Однако следует отметить, что масштабы и особенности вторичных изменений нефтей, отраженные в основном в ее свойствах и компонентном составе, определяются ее генетическим типом. В одних и тех же условиях катагенеза или гипергенеза нефти разных генетических типов существенно отличаются друг от друга по индивидуальному составу, структуре УВ и изотопному составу серы и углерода. Генетические признаки нефтей ("генетический код") достаточно устойчивы и практически мало изменяются при вторичных изменениях нефтей. [c.148]

    Наиболее важными структурными свойствами мембран являются их химическая природа, наличие заряженных частиц (на молекулярном уровне) и микрокристаллитной структуры (надмолекулярный уровень), пористость (размер пор, распределение пор по размерам и плотность, объем пустот), тип ячейки и степень асимметрии. Наиболее важными технологическими свойствами мембран являются проницаемость и селективность. Хотя большинство этих параметров и можно более или менее точно определить, они могут меняться со временем или с изменением рабочих условий. Поэтому такие вторичные свойства, как сопротивляемость сжатию, термостойкость, стойкость к гидролизу или микробному разложению, также во многом определяют экономику данного процесса и даже саму возможность его промышленного осуществления. [c.64]

    В тех случаях, когда удается определить относительные концентрационные характеристики распределения углеводородов, ГАС различных классов или фрагментов молекул ВМС, они оказываются сходными. Таковы распределения многих нафтенологов и бензологов ГАС по числу циклов в молекуле, нормальных и изопреноидных алифатических скелетов по числу атомов углерода и т. д. Изменения общих групповых и структурных характеристик, а также концентрационного распределения углеводородов и ГАС в зависимости от химического типа и условий залегания нефти так-же обладают заметными чертами сходства и в основном сводятся к преобладанию алициклических структур в молодых, слабо превращенных нефтях и параллельному обеднению углеводородов и гетероатомных соединений алициклическими, но обогащению алифатическими и ароматическими структурами в ходе катагенеза. Лишь асфальтеповые компоненты при катагенезе, по понятным причинам (см. гл. 7), обедняются насыщенными фрагментами в отличие от низкомолекулярных веществ. Гипергенные процессы вторичного окисления и осернения нефтей приводят к накоплению, по-видимому, тоже аналогичных типов структур и в низших ГАС, и в смолисто-асфальтовых фракциях. [c.206]

    В структуре второго типа доминирующую роль играют надмолекулярные вторичные образования смол, в узлах которых находятся не связанные и не взаимодействующие друг с другом асфальтены. Такие битумы имеют узкий интервал пластического состояния, нетик-сотропны и дают резкие изменения вязкости с изменением температуры. Они обладают высокими когезией и растяжимостью в интервале пластических состояний. Битумы второго типа содержат асфальтенов менее 18%, масел менее 48%, смол более 36%, отношение асфальтенов к сумме масел и смол менее 0,2, а отношение асфальтенов к сумме асфальтенов и смол менее 0,3. Получают такие битумы при незначительном доокис-лении гудронов после большого отбора масел, компаундированием асфальта деасфальтизации с экстрактами селективной очистки масел, из асфальта деасфальтизации. К ним относятся также остаточные битумы, полученные при перегонке легких масляных нефтей. [c.63]

    Сплав ХН58В после оптимальной термической обработки (закалки с 1070 °С в воде) имеет структуру никельхромового твердого раствора с зерном № 6—8, ГОСТ 5639—85 (рис. 3.006, а). При отпуске в интервале температур 600—900°С из у-твердого раствора возможно выделение карбидов типа МазС, и а-фазы. Количество, тип и морфология вторичных фаз определяется температурой и продолжительностью нагрева. При кратковременных выдержках (<1 ч) при 600—700 °С образуются пограничные выделения карбида МазСв (рис. 3.006, б, в), а при более длительных (>1 ч) при 700 °С и кратковременных (до 1 ч) нагревах при 800—900 °С образуется а-фаза. Так, если после 10 ч отпуска при 700 °С наблюдаются лишь пограничные колонии а-фазе (рис. 3.006, б, д), то повышение температуры отпуска до 800—900 С (при 10 ч выдержке) вызывает изменение морфологии а-фазы и переход к а-фазе, равномерно распределенной в объеме зерна (рис. 3.006, д, е). [c.171]

    На диаграмме состояния различают знантиотронные превращения (рис., а), для которых кривая полиморфного превращения расположена в устойчивой области, что определяет возможность взаимных переходов, и монотропные превращения (рис., б), для к-рых кривая полиморфного превращення расположена в иеус-тойчивм" области, что определяет невозмозкыость обратимых переходов. Механизм и скорость полиморфных превращений определяются энергетическими характеристиками исходных и конечных структур, зависящих от типа хим. связи и способа размещения атомов в структуре. У модификации, устойчивой нри более высокой т-ре и характеризующейся большей внутренней энергией, меньше координационные числа, больше межатомные расстояния или иной тин хим. связи. Полиморфные превращения могут быть связаны с изменением вторичной координации [c.220]

    Д. И. Менделеев стремился таким образом отобразить Периодический закон в Системе, чтобы последняя с максимальной полнотой позволяла, с одной стороны, судить об общих тенденциях в изменении свойств элементов, с другой — легко ориентироваться в их сходстве и различии, закономерностях проявления как тех, так и других. Представления о закономерном сходстве свойств определенных элементов получили свое отражение в рассматривании их в качестве элементов-аналогов и очень широко распространились. В то ше время многие исследователи, в том числе и сам Д. И. Менделеев, отмечали, что не только между элементами одной группы, но даже между элементами одной и той же подгруппы нет полной аналогии, которую следует рассматривать как определенную близость свойств элементов или линейное изменение свойств элементов и их соединений от X. Это привело Д. И. Менделеева к необходимости введения понятия типических элементов, появлению, начиная с Е. В. Бирона (1915), многочисленных работ по вторичной периодичности [Семишин, 1969 Семишин, Семишина, 1975], выявляющих причины неполной аналогии . Однако до сих пор, по существу, не сформулированы границы разных типов аналогий. Это затрудняет достаточно строгое использование данных о свойствах элементов (атомов и ионов) как для анализа общих закономерностей поведения элементов, так и для решения многих частных вопросов, в том числе прогноза соединений с заданными составом, структурой и свойствами. В связи с этим, обобщая приведенный выше материал по свойствам элементов, представляется целесообразныд выделить четыре типа аналогии элементов, отражающих постепенное усиление сходства в их свойствах. [c.57]

    Комплексы, образованные монтмориллонитом и галлуазитом с различными спиртами, систематически изучал Мак-Юан . Он показал, как молекулы проникают в структуру глинистого минерала и расширяют всю решетку и как С помощью рентгенографического изучения можно наблюдать изменения расстояний между слоями. Молекулы сначала образуют двухмерный слой и ложатся насколько возможно плоско. Монтмориллонит и спирт образуют такие комплексы в виде одного, двух или трех слоев галлуазит же может удерживать только один такой слой. Исследованные спирты гвключали несколько моногидратных или полигвдратных типов, а также алкиловые эфиры, углеводороды и другие простые соединения. Этот тип адсорбции лишь действие вторичной валентности, а не обмен оснаваниями. Таким образом, объясняется, почему галлуазит, который обмённо не активен, также образует такие соединения. Эти последние служат непосредственным подтверждением связи ионов кислорода в структурных слоях глинистых минералов сопряженной группы ОН —О. Длина органических групп, несущих активный радикал СН — О, выводится из расстояний между базальными слоями в галлуазите. По величине длины определяется сила влияния усиливающейся электроотрицательности в адсорбируемом атоме и множественности связей, усиливающих электроотрицательность атомов углерода. Таким образом, можно использовать опыты по адсорбции для определения молекулярных построек, если, например, вводить циклогексановое кольцо с его угловатой структурой или [c.337]


Смотреть страницы где упоминается термин Изменение типа вторичной структуры: [c.576]    [c.392]    [c.221]    [c.50]    [c.300]    [c.287]    [c.300]    [c.158]    [c.29]    [c.132]    [c.132]    [c.199]    [c.50]    [c.111]    [c.467]    [c.152]    [c.355]   
Смотреть главы в:

Биофизическая химия Т.3 -> Изменение типа вторичной структуры




ПОИСК





Смотрите так же термины и статьи:

Изменение структуры пор



© 2024 chem21.info Реклама на сайте