Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматография разрешение

Рис. 30. Разделение триглицеридов методом гель-проникающей хроматографии с высоким разрешением Рис. 30. <a href="/info/763402">Разделение триглицеридов</a> <a href="/info/176601">методом гель</a>-проникающей хроматографии с высоким разрешением

    Сочетание масс-спектрометрии с газожидкостной хроматографией дает превосходный метод анализа смесей. В этом случае требуются очень небольшие количества вещества. Масс-спектрометр используется в качестве детектора в газожидкостной хроматографии, и многочисленные масс-спектры регистрируются по мере поступления компонентов из колонки. Частично разрешенные пики в хроматограмме легко идентифицируют по изменению во времени масс-спектра вещества, соответствующего этому пику. [c.323]

    Успешному разрешению этой весьма грудной задачи в последнее время способствовал значительный прогресс в создании сложной и автоматизированной аппаратуры для проведения газожидкостной хроматографии и спектральных методов исследования. Именно эти аналитические приемы позволяют расшифровать состав многокомпонентных нефтяных смесей не только узкого, но и широкого фракционного состава. Так, сочетание газожидкостной хроматографии и масс-спектроскопии дает возможность устанавливать индивидуальный состав бензинов с пределами кипения 35—180°С. [c.61]

    Одной из основных проблем хроматографии является обеспечение достаточной селективности разделения а. Когда а=1, разрешение равно нулю [ем. уравнение (28.4)] независимо от числа теоретических тарелок в колонке. Из характера функции а [см. уравнение (28.10)] видно, что небольшие изменения а могут приводить к большим изменениям величины / з. В табл. 28.2 показано число эффективных теоретических тарелок, необходимое для достижения определенного разрешения Как видно из таблицы, при приближении а к 1 требования к эффективности хроматографической системы резко возраста.ют. [c.593]

    Для характеристики степени разделения в жидкостной хроматографии используется обычно тот же критерий, что и н газовой хроматографии,— разрешение R. [c.336]

    Емкость, селективность, эффективность и разрешение колонны в жидкостной хроматографии влияние размеров пор и зерен адсорбента [c.283]

    Для достижения разрешения Я= (касание пиков) при малом а =1,01 требуется около 150000 эффективных тарелок, а при а=1,10 уже только около 2000. Для достижения 1,5 (при этом достигается полное раздвигание пиков 1 и 2 с участком нулевой линии между ними) при а=1,01 требуется около 350000 теоретических тарелок, а при а=1,10 только около 5000. Эти числа показывают, что для реализации селективности колонны, определяемой химией поверхности и структурой скелета адсорбента, а также природой элюента, в жидкостной хроматографии для разделения близких по структуре молекул нужны весьма высоко [c.285]


    Недавно высказано предположение, что часть порфиринов в асфальта X Мертвого моря связана в триглицеридную форму с высшими жирными кислотами [799]. Это предположение сделано на основе масс-спектрометрии высокого разрешения и подтверждено ГЖ-хроматографией метиловых эфиров жирных кислот, полученных щелочным гидролизом порфириновых фракций. Однако исследованию подвергался.деметаллированный материал, претерпевший обработку метансульфокислотой (4 ч, 100°С), в связи с чем представляется маловероятным, чтобы триглицериды в этих условиях могли сохраниться. Во всяком случае это предположение нуждается в тщательной проверке. [c.146]

    Как и при других видах хроматографического анализа, возможность разделения в молекулярно-ситовой хроматографии можно охарактеризовать количественно степенью разрешения, которую определяют по уравнению зависимости разрешения от основных хроматографических параметров  [c.72]

    Еще первые работы по молекулярно-ситовой хроматографии показали, что с уменьшением диаметра колонки ее эффективность падает. Поэтому в обычной практике используют колонки большего диаметра, чем обычно применяемые в распределительной или адсорбционной хроматографии. Чаще всего для аналитических целей применяют колонки с внутренним диаметром 7—8 мм, а для препаративных целей — более 60 мм. что дает возможность достичь эффективности более 6000 тарелок на один метр. Использование колонок большого диаметра и большой длины для получения высокого разрешения требует специального оборудования. [c.78]

    Во всех моделях хроматографов Цвет-500 (кроме 550) благодаря наличию дифференцирующего усилителя УД-2М возможна запись производной сигнала детектора, что дает дополнительные возможности по разрешению не полностью разделенных пиков, [c.117]

    Чаще всего об этом приходится заботиться при очистке или фракционировании ферментов. Нередко их хроматографию приходится вести на холоду, хотя для целей самого хроматографического процесса это и невыгодно — увеличивается вязкость элюента, ухудшается разрешение пиков (низкомолекулярные вещества хроматографируют при комнатной, а иногда и при повышенной, до 50—60°, температуре в этом случае особое внимание должно быть уделено деаэрации обменника н элюента и опасности смены температур из-за возможности появления пузырей газа, как было подробно сказано в гл. 3). [c.292]

    Если по указанным причинам приходится использовать динамический вариант аффинной хроматографии, то объем колонки, как уже упоминалось, берут из такого расчета, чтобы объем препарата составлял не более 5% от него, а соотношение высоты колонки к ее диаметру — в пределах от 20 1 до 50 1. Использование элюции градиентом концентрации одного из перечисленных десорбирующих агентов улучшает качество фракционирования за счет сужения зон элюции (см. гл. 1). Крутизна градиента (объем элюции) выбирается эмпирически — по характеру разрешения зон фракционируемых веществ или отделения зоны вещества от примесей. [c.410]

    Раствор препарата наносят на поверхность слоя сорбента на расстоянии 0,5—1,5 см от того края пластины, с которого будет начинаться миграция элюента (при вертикальной установке — с нижнего). Препарат или препараты можно наносить в виде одного пятна, находящегося близ угла пластинки (для двумерной хроматографии), в виде серии равноотстоящих от края и равноудаленных друг от друга пятен (для сопоставления картин хроматографического фракционирования), для той же цели — в виде полосок длиной 5—I0 мм, поскольку разрешение близко расположенных полос на хроматограмме всегда лучше, чем так же расположенных пятен, [c.467]

    Самым эффективным из современных методов исследования состава слоншых смесей и структуры присутствующих в них компонентов можно считать хроматомасс-снектрометрию, сочетающую огромную разделительную способность газовой хроматографии с высокой чувствительностью и идентификационной мощью масс-снектрометрии (метод ГХ — МС). Для создания этого метода потребовалось решить две главные технические задачи разработать быстродействующие масс-спектрометры с очень большой скоростью развертки спектров (за время, меньшее времени элюирования любого соединения из ГХ колонки) и специальных сепарирующих устройств для концентрирования элюатов. Современные масс-спектрометры позволяют получить спектр вещества в интервале массовых чисел 50—500 за время, меньшее 1 с, при разрешении т/Ът= 500 и более [328, 329]. Отделение большей части (80— 90%) газа-носителя от элюирующихся органических соединений, необходимое для поддержания в масс-спектрометре низких остаточных давлений, возможно с помощью молекулярных сепараторов различных типов струйных [330, 331], эффузионных с тонконорис-тыми стеклянными трубками [332] или металлическими мембранами [333, 334], сепараторов с полупроницаемыми полимерными мембранами (тефлоновой [335], силиконовой [336]) и др. [c.40]

    Аналитическая химия оказалась при этом в парадоксально трудном положении. Парадокс заключается, с. одной стороны, в том, что значение химического анализа, сложность его задач и вооруженность методами и приборами необычайно возросли, а с другой стороны, состояние аналитической химии как предмета преподавания значительно ухудшилось. Чтобы проиллюстрировать первую часть нашего утверждения, достаточно сослаться на возникновение специальных разделов аналитической химии—электроана-литической химии, аналитической биохимии, хроматографии, радиоаналити-ческой химии и т. д. (все приведенные названия легализованы изданием соответствующих международных журналов) указать на историю развития новых отраслей техники — например, атомной, полупроводниковой — и на роль химического анализа в разрешении таких проблем, как проблема плодородия в сельском хозяйстве и экологическая проблема. Вторая сторона парадокса очевидна из того, что аналитическая химия изгоняется как дисциплина из учебных планов многих вузов или отводимое ей время сокращается, как пишет Пикеринг, до неэффективного минимума — и это происходит во всех странах мира. [c.5]


    Основной недостаток применения динамических масс-спек-грометров в качестве хроматографического детектора заключается в сравнительно низком качестве измерения отношений интенсивностей линии, получаемых при быстрой съемке спектра, и относительно низкой чувствительности. Эти недостатки были исключены при использовании в комбинации с хроматографом масс-спектрографа высокого разрешения [233, 234]. На одной пластинке можно зарегистрировать до 30 спектров, что позволяет расшифровать довольно сложную смесь. При этом для каждого хроматографического ника получают наи" более полную масс-спектрометрическую информацию. [c.128]

    Крупным шагом вперед к разрешению проблемы сорбционных соединений явилось исследование Н. А. Шиловым (1928 г.)—выдающимся ученым химиком, создавшим теорию динамической сорбции,— твердых продуктов окисления угля. В этом исследовании участвовали его ученики К. В. Чмутов, М. М. Дубинин, Т. Ша-туновская, Л. К. Лепинь, которые впоследствии внесли ценный вклад в теорию и технику сорбции и хроматографии. Шилов с учениками изучили природу данных продуктов — твердых оксидов углерода щелочного и кислотного характера —и установили, что при взаимодействии данных твердых соединений с кислотами и [c.50]

    Отскуда следует, что разрешение колонны падает при уменьшении термодинамических факторов — селек ивности и емкости колонны (при наименьших значениях а=1 и к-=0, к = 0), г также при уменьшении числа теоретических тарелок, т. е. при уменьшении эффективности колонны. Для достижения / =1 или =1,5 (касание или полное раздвижение пиков к и 1 на рис. 7.6) при малой селективности адсорбента по отношению к компонентам к и 1, например при а= 1,0 1, требуется резкое сужение пиков и уменьшение высоты, эквивалентной теоретической тарелке, Н=ЦМ (где — длина колонны). В газовой хроматографии на наполненных адсорбентом колоннах при низкой селективности а величина Н не должна превышать 0,4 мм. Это достигается применением капиллярных колонн внутренним диаметром около 1 мм и меньше, заполненных узкой фракцией гранул адсорбента размером около 0,1 мм (см. рис. 1.7).  [c.140]

    Бурно развивающаяся новая техника потребовала быстрого совершенствования методов анализа. Однако классические методы анализа вследствие их малой чувствительности часто оказываются совершенно непригодными для определения малых количеств примесей. Возникшая проблема разработки методов определения ультрамалых количеств примесей оказалась практически разрешенной широким использованием разнообразных физических и физнко-хнмическнх методов анализа хроматографии, ионного обмена, экстракции, спектроскопии, люминесцентного анализа, полярографии, рентгеноскоги и, масс-спектро.метрии, радиометрических, кинетических и других методов анализа, основанных на применении прецизионных физических и ([ изико-химнческнх приборов. [c.20]

Рис. 6.2. Разделение фенолов с иомощыо метода обращенной жидкостной хроматографии высокого разрешения (элю-ент — смесь вода — метанол) Рис. 6.2. <a href="/info/51722">Разделение фенолов</a> с иомощыо <a href="/info/430746">метода обращенной</a> <a href="/info/1564114">жидкостной хроматографии высокого разрешения</a> (элю-ент — <a href="/info/48349">смесь вода</a> — метанол)
    Многочисленные носители, применяемые в молекулярно-ситовой хроматографии, имеют различные химические свойства и подразделяются на мягкие, полужесткие и жесткие гели (табл. 6). Эта классификация очень важна, так как с этими свойствами связаны разрешение колонки и способ использования носителей. [c.75]

    Расходы на контроль качества термореактивных смол очень велики, поэтому кроме основных требований к аналитической процедуре— воспроизводимость, точность н чувствительность — все большее значение приобретает экономичность метода, определяемая, в первую очередь, степенью автоматизации соответствующего оборудования. Сегодня в аналитической химии фенольных смол все шире используют фнзнко-химическне методы исследований гель-проникающую хроматографию (ГПХ), газовую хроматографию (ГХ), жидкостную хроматографию высокого разрешения (ЖХВР) в сочетании с системами обработки информации на ЭВМ. [c.92]

    Жидкостная хроматография высокого разрешения. Несмотря на общеизвестные достоинства ЖХВР — возможность анализа термолабильных соединений, а также соединений, физико-химические свойства которых определяются внутримолекулярным взаимодействием,— этот метод вплоть до настоящего времени для анализа фенольных форполимеров применяется относительно редко [17, 18]. Причиной этого является то, что для ФС до сих пор еще не подобрана подходящая элюирующая система. [c.98]

    До сих иор мы считали зону чисто гауссовой, молчаливо пренебрегая протяженностью исходной зоны и как следствие возможностью наличия площадки иа профиле дшгрирующей зоны (рис. 10). Ширина переднего и заднего фронтов зоны у ее основания равна 2а, и если к концу колонки близкие соседние зоны еще сохранят площадку и[ирпной е, то минимальное расстояние между зонами, отвечающее их разрешению, будет составлять А с = 4о 8. В препа-ративнь[х вариантах хроматографии бывает, что е о. В так]1х случаях расширение фронтов зон можно не учитывать, а условие разрешения записать п[)още lS.x 5 е. Разрешение в этом случае лучше представить себе как Н = Д с/8. Оно пропорционально длине колонки (за счет А с), а не корню из ее длины. [c.35]

    В большинстве случаев перед хроматографическим процессом стоит задача надежного разделенпя двух илп более заранее известных компонентов исходной смеси. Еслп хроматографическая система j e определена, то в распоряжении экспериментатора етце остается возможность выбора целого ряда физических параметров процесса с целью оптимизации условий разрешения зон (пиков) в этой снстеме. Краткое знакомство с основами теории хроматографии имело целью дать обоснования для такого выбора. Теперь можно подвести итоги. Последовательно рассмотрим следующий ряд параметров геометрия колонки, размер гранул, набивка колонки, скорость элюции, физические свойства элюента (вязкость, температура) и, наконец, загрузка колонки. Рассмотрение будем вести с позиции улучшенпя разрешения и одновременно уменьшения продолжительности хроматографического процесса. Но сначала надо привести еще одну зависимость — скорости ЭоЛюции и от разности давлений иа входе и выходе колонкп Д/ ( перепад давления ) и от размера гранул. Ее описывает уравнение Дарси  [c.36]

    Процедура набивки колонки описана в гл. 3. Все операции производят особенно тш,ательно, так как при гель-фпльтрации, как пп при каком другом методе хроматографии, однородность пабивкп колонки необходима для хорошего разрешения пиков. Напрпмер, во время заполнения колонки надо проверить, нет лн одностороннего ее нагревания близко расположенным источником тепла, солнцем или же охлаждения сквозняком. Повышенные требования предъявляются к самим колонкам и остальным элементам хроматографической системы в отношении величины мертвого объема [c.127]

    Гель-фильтрация (эксклюзивная хроматография) биополимеров при высоком давлении делает еще своп первые шаги, поатоАгу естественно, что методические подходы здесь претерпевают быстрое изменение и появляющиеся в периодической печати рекомендации достаточно противоречивы. Мы постараемся отметить эти противоречия, понимая, что право их окончательного разрешения принадлежит только практике эксперимента. [c.154]

    Рассмотрению возможностей обратнофазовой гидрофобной хроматографии белков в основном посвящен сравнительно недавно опубликованный обзор [Rubinstein, 1979]. Основные его выводы совпадают с тем, что было сказано выше при рассмотрении обратнофазовой гидрофобной хроматографии пептидов. Для белков с молекулярной массой в интервале 12—30 тыс. Дальтон автор отдает предпочтение силикагелям, модифицированным октилсиланом (Са). В качестве органического компонента элюента, по его мнению, следует предпочесть градиент концентрации пропанола, вплоть до 40%-ной концентрации, если позволяет растворимость белка. Для получения узких пиков рекомендуется в качестве водного компонента использовать буфер высокой (примерно 1 М) концентрации, подавляющий ионное взаимодействие белка с силанольными группами матрицы. При pH 5—6 разрешение получается обычно хуже, чем при pH 4 (формиатно-пиридиновый буфер) или 7,5 (Na-ацетатный буфер). Существенно указание на то, что скорость элюции следует снизить до 60—90 мл/см Ч. Продолжительность фракционирования белков при этом остается относительно небольшой — 1—3 ч. Белки целесообразно разделить предварительно на группы [c.210]

    Для разделения близких по своим хроматографическим свойствам веществ используют изократическую элюцию — раствором неизменного состава. Этот вариант элюции дает наилучшее разрешение пиков, однако нередко — за счет увеличения длительности хроматографии и объема разделяемых фракций по сравнению с градиентными методами элюции. Объем препарата при изократической элюции не должен превышать 1—5% объема колонки, так как вещество в этом случае, сорбируясь пе слишком прочно, не будет существепно концентрироваться в верхней части колонки во время сорбции. [c.289]

    На рис. 171 изображен способ переноса, предложенный позже Саузерном. Он не требует поясненпй, кроме того, что фильтровальную бумагу время от времени дополнительно смачивают водой. Благодаря использованию круглой палочки препарат переносится ыа старт пластинки в виде узкой полоски, что улучшает разрешение при последующей хроматографии [Southern, 1974]. [c.497]

    Разрешение как параметр, характеризующий разделение пиков, увеличивается по мере возрастания селективности, отражаемой ростом числители, и роста эффективности, отражаемой снижением значения знаменателя из-за уменьшения ширины пиков. Поэтому быстрый прогресс жидкостной хроматографии привел к изменению понятия жидкостная хроматография вьюокого давления — оно было заменено на жидкостную хроматографию вьюокого разрешения (при этом сокращенная запись термина на английском языке сохранилась НРЬС как наиболее правильно характеризующее направление развития современной жидкостной хроматографии). Сокращение, принятое в отечественной литературе, — ВЭЖХ, расшифровываемое как высокоэффектиная жидкостная хроматография , для современной жидкостной хроматографии несколько менее удачно, так как не учитывается важнейший фактор разделения — селективность. [c.10]


Смотреть страницы где упоминается термин Хроматография разрешение: [c.95]    [c.257]    [c.125]    [c.111]    [c.30]    [c.31]    [c.38]    [c.39]    [c.46]    [c.195]    [c.211]    [c.212]    [c.215]    [c.293]    [c.316]    [c.324]    [c.463]   
Аналитическая химия Том 2 (2004) -- [ c.241 , c.242 ]




ПОИСК





Смотрите так же термины и статьи:

Гель-проникающая хроматография высокого разрешения

Емкость, селективность, эффективность и разрешение колонны в жидкостной хроматографии влияние размеров пор и зерен адсорбента

Жидкостная хроматография высокого разрешения

Применение бумажной хроматографии антибиотиков для разрешения других задач

Разделение полимергомологов методом гель-проникающей хроматографии высокого разрешения

Разрешение в ситовой хроматографии

Тонкослойная хроматография ТСХ высокого разрешения

Хроматография высокого разрешения

Эксклюзионная хроматография высокого разрешения



© 2025 chem21.info Реклама на сайте