Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Покрытий характеристики теплопроводность

    Вид получаемых кривых существенно зависит от характеристик образца и эталона, атмосферы печи, скорости нагревания, которую можно изменять, меняя программу нагревания. Конструкция дериватографа позволяет проводить опыт либо в воздушной атмосфере, либо в атмосфере инертного газа. Наиболее определены требования к эталону и материалу тигля. Инертное вещество, выбранное в качестве эталона, не должно быть гигроскопичным, в исследуемом интервале температур с ним не должно происходить никаких превращений, его теплоемкость и теплопроводность должны быть близки к исследуемому веществу. Например, при исследовании карбонатов кальция и магния эталоном служит MgO, металлов — Си, Ni, глин и силикатов — АЬОз. Тигель должен быть сделан из материала, с которым исследуемое вещество не взаимодействует во всей области нагревания. К дериватографу прилагаются тигли из специальной термостойкой пластмассы и набор платиновых тиглей разного размера, что позволяет менять количество анализируемого вещества. Навеска образца должна быть такой, чтобы полностью было покрыто углубление в тигле, в которое помешается термопара. Примерно такое же по объему количество эталона помещают во второй тигель. Если в распоряжении исследователя нет достаточного количества образца, тигель заполняют тщательно перемешанной смесью образца с эталоном. Подробно влияние каждого фактора на запись рассмотрено в специальной литературе по термическим методам анализа. [c.344]


    Константа рассеяния. Константа рассеяния определяется как энергия (обычно в милливаттах), необходимая для повышения температуры термистора или другого элемента на 1° С выше температуры окружающей среды. Эта характеристика определяется площадью поверхности, весом и теплоемкостью шарика и теплопроводностью атмосферы. Поскольку термисторы мало отличаются по составу, шарики одинакового диаметра будут иметь одинаковые константы рассеяния. Небольшие, но измеримые различия могут возникнуть вследствие колебаний в толщине защитного стеклянного покрытия. При любых условиях константа рассеяния может определяться изменением напряжения и тока термистора. Напряжение и ток можно определить непосредственно на термисторе или рассчитать по току и напряжению, приложенным к мосту, и известным сопротивлениям моста при нулевом выходе. По значению величины р, которую дают фирмы, производящие термисторы, получим для константы рассеяния ф уравнение [c.230]

    Описанные в книге методы позволяют определять основные физические константы покрытий, такие, как модуль упругости, коэффициент линейного расширения, температура стеклования, коэффициент теплопроводности, и технические характеристики, такие, как когезионная и адгезионная прочность, разрывные удлинения, внутренние напряжения. [c.110]

    Определение теплофизических и электрических характеристик. В работе [351] исследовано изменение теплоемкости, теплопроводности и температуропроводности при формировании покрытий из ПН-Ь Изучена также [321] зависимость удельной теплоемкости полиэфирных смол от глубины отверждения. [c.120]

    Наполнители представляют собой белые или слабо окрашенные природные, реже синтетические (осажденные), неорганические порошкообразные вещества кристаллического иногда аморфного строения со сравнительно низким показателем преломления (1,4—1,75). Он мало отличается от показателя преломления масел и смол, поэтому наполнители не обладают укрывистостью в среде неводных пленкообразующих. В водных красках некоторые наполнители после улетучивания воды имеют достаточную укрывистость и могут играть роль пигментов. Наполнители значительно дешевле большинства пигментов и часто добавляются в лакокрасочные материалы для снижения их стоимости. Однако наряду с этим можно путем тщательного подбора соответствующих пигментов и наполнителей значительно улучшить такие характеристики красок, как вязкость, розлив, уменьшить оседание пигментов, повысить механическую прочность и атмосферостойкость лакокрасочных покрытий. В красках с высокой объемной концентрацией пигмента можно сохранить достаточную укрывистость, заменив часть пигментов наполнителями, и тем самым значительно снизить стоимость красок. Наполнители являются активной составной частью сложных лакокрасочных систем и оказывают существенное влияние не только на физико-химические и технические свойства красок и покрытий (твердость, прочность, теплопроводность, теплостойкость, стойкость к действию агрессивных сред диэлектрические, фрикционные и другие свойства), на и на распределение пигмента в пленкообразующем и структурообразование лакокрасочных Систем. Механизм взаимодействия пленкообразующего с наполнителем определяется химической природой этих материалов и характером поверхности наполнителя. Наибольший эффект достигается при возникновении между наполнителем и пленкообразующим химических связей или значительных адгезионных сил. Наполнители, способные к такому взаимодействию с полимерами, называют активными, а не взаимодействующие с полимерами — инертными. [c.404]


    Один из аспектов теории хрупких материалов — отыскание факторов и критериев для количественной характеристики их термостойкости. Пока что предложенные методы оценки термостойкости хрупких материалов не являются достаточно надежными. Объясняется это, вероятно, тем, что в связи с громоздкостью математических выкладок исследователи стараются учесть влияние теплопроводности и распределения температур с помощью различных факторов (например, факторов формы). При этом, естественно, предлагаемые критерии термостойкости теряют общность. Что же касается термостойкости покрытий, то сведения по этому вопросу весьма скудны [1, с. 194]. [c.7]

    В настоящее время большое внимание уделяется созданию покрытий на основе силицидов, боридов, карбидов и нитридов, а также фосфидов -переходных металлов (металлоподобные соединения). Описание условий синтеза и свойств этих соединений стало предметом новых глав неорганической химии-. Материалы, создаваемые на основе металлоподобных соединений, приобрели большое значение в новой технике. Будучи весьма тугоплавкими, они занимают по своим свойствам промежуточное положение между металлами и окислами металлов. Особенный интерес для практики, помимо тугоплавкости, представляют их высокая твердость, износостойкость и выгодные термоэмиссионные характеристики. Кроме того, повышенные теплопроводность и электропроводимость нередко сочетаются в них с устойчивостью к кислотам, щелочам, расплавленным металлам и агрессивным газам. Некоторые из них обладают значительной и высокой окалиностойкостью. Эти качества они- могут придавать и покрытиям. [c.140]

    Хорошо известно, что на деформационные, прочностные и теплоизоляционные характеристики пенопластов влияет не столько одновременное действие температуры и влажности, сколько изменения этих факторов. Были проведены циклические испытания карбамидных пенопластов в климатической камере по режимам, модулирующим зимние и летние условия эксплуатации материалов в конструкциях [34]. Так, зимний цикл включал в себя воздействие отрицательных (—10 °С) и положительных (-f 15°С) температур (рис. 6.7) с двукратным переходом через 0°С при ф = 80% (для средней полосы СССР 30 таких циклов соответствуют примерно 1 году эксплуатации пенопластов в натурных условиях). Испытания (30 циклов) показали, что мипора имеет большую стойкость к таким воздействиям, чем пенопласты МФП-1 и БТП-М, в которых после 20 циклов появляются трещины. Одновременно снижается разрушающее напряжение при сжатии у мипоры — на 5%, у МФП-1 — на 54%, а у БТП-М — на 20%. Специальные защитные покрытия (краска КЧ-26 Н, составы ВС-18 и 712) позволяют избежать разрушения этих материалов [34]. Коэффициент теплопроводности карбамидных пенопластов практически не изменяется после 30 циклов таких испытаний. [c.273]

    Таким образом, увеличение концентрации системы в процессе пленкообразования приводит к возникновению на ранних стадиях процесса формирования надмолекулярных структур глобулярного типа, способствует последующей агрегации их и образованию локальных связей между ними. Увеличение размера глобулярных структур с повыщением концентрации раствора можно проследить также путем изучения структуры и свойств покрытий одинаковой толщины, полученных из исходных растворов различной концентрации. Из рис. 5.19 видно, что эти характеристики изменяются также антибатно, как и при формировании покрытий. Из сравнения рис. 5.16 и 5.19 следует, что характер концентрационной зависимости внутренних напряжений и теплопроводности аналогичен кинетике изменения этих параметров в процессе формиро- [c.242]

    Выражение функциональные полимеры фактически не имеет того точно определенного значения, которое обычно подразумевается в научных терминах. Слово функциональность в приложении к природным и синтетическим полимерам имеет чрезвычайно широкий смысл. С глубокой древности человечество использовало для выживания различные материалы, первыми функциональными характеристиками которых, по-видимому, были теплопроводность и механическая прочность. Уже более 5000 лет назад в Индии и Китае люди начали использовать природные полимеры хлопок (целлюлоза), шелк (полиамид) и т. п. В современную эпоху к природным полимерным материалам добавились синтетические, и в настоящее время изделия из полимеров составляют неотъемлемую часть нашего окружения. Синтетические материалы по своим характеристикам часто значительно превосходят природные, и во многих областях они уже вытеснили последние. Этот процесс продолжается на наших глазах. Как пример можно указать на появление электроизоляционных покрытий из поливинилхлорида, сосудов из полипропилена, лабораторной аппаратуры из тефлона, стекол из полиметилметакрилата и многого другого. По температурным характеристикам, химической стойкости, электрическим и механическим свойствам новые материалы значительно превосходят все известные ранее. [c.9]

    Из сказанного следует, что известные методы расчета электро- и теплопроводности, диэлектрической и магнитной проницаемости и плотности гетерогенных многокомпонентных систем могут быть использованы и для характеристики КЭП. При расчете необходимо учитывать геометрию включений, как это показано на примере покрытий Си—Ш. [c.53]


    Коэффициент теплопроводности определялся на установке типа ИТ-> -400 на образцах диаметром 15 и толщиной 4 + 0.5 мм. Погрешность измерений не превышала +10%. Теплоемкость покрытий определялась калориметрическим методом и подсчитывалась по уравнению теплового баланса, а плотность покрытий — пикнометрическим способом в трех различных пикнометрах с точностью +0.001 г. Значения теплофизических характеристик для покрытий из модельных композиций представлены в таблице. [c.182]

    Теплопроводность покрытий может быть очень низкой и составлять в некоторых случаях /в от теплопроводности компактного металла например, для стали эта величина может быть равной 7 Вт/(м-°С). Удельное электрическое сопротивление осадков меди, цинка и серебра вдвое выше по сравнению с металлом, а для алюминия различие еще больше (в 5 раз). Эта характеристика сильно зависит от технологии напыления. Прочность сцепления (адгезия) на отрыв может изменяться при этом от 7,7 до 35 MH/м но деформация сдвига может быть в 5 раз выше (также в зависимости от технологии распыления). [c.384]

    Наиболее важными теплофизическими характеристиками покрытий, как и любых материалов, являются теплопроводность, температуропроводность, теплоемкость, коэффициент теплового линейного (или объемного) расширения. [c.145]

    Знание теплофизических характеристик необходимо при разработке покрытий теплообменной аппаратуры, электрических двигателей, электроприборов, обмоток электрических машин, элементов радио- и электронной аппаратуры. Теплопроводность слоя пленки определяет чувствительность термоиндикаторных [c.145]

    Количественный вклад турбулентного потока тепла из атмосферы и теплопритока из массива грунта в интегральную интенсивность парообразования зависит от термодинамических свойств конденсата, теплофизических характеристик фунта и уровня естественной турбулизации атмосферы в момент выброса. Проведенные исследования [I] показали, что с изменением компонентного состава и температуры кипения конденсата может происходить перераспределение количественного влияния этих составляющих суммарного теплового потока на интенсивность испарения и процесс формирования облака. Причем временной характер этого перераспределения зависит от класса устойчивости атмосферы и скорости ветра. Разработанная ВНИИГАЗом обобщенная модель теплообмена [1] учитывает указанные особенности тепломассообмена при пленочном и пузырьковом режимах кипения сжиженных углеводородов с низкой температурой кипения. Модель основана на численном расчете нестационарного поля температуры в прилегающем к поверхности разлива слое воздуха и решении одномерной задачи теплопроводности в массиве влажного грунта, полученном с учетом конвективного теплообмена сжиженного газа с поверхностью грунта при различных режимах кипения и фазовых превращений поровой влаги в соответствии с классическим условием Стефана-Неймана. Сравнение расчетов по этой модели с данными натурных экспериментов по кипению жидкого азота и сжиженного природного газа (СПГ) на проницаемых и непроницаемых покрытиях показало, что модель хорошо отражает процесс теплопередачи для грунтов с непроницаемой поверхностью. В случае проницаемых грунтов расчетную интенсивность испарения следует увеличить Б 2 - 3 раза. [c.139]

    Широкое применение неметаллических конструкционных материалов, футеровочных и обкладочных материалов, защитных неметаллических покрытии ограничено, однако, наличием ряда недостатков у этих материалов. К недостаткам неметаллических материалов относится их малая теплопроводность (за исключением графита) и невозможность применения многих из них при температурах выше 150—200° С. Быстрое разрушение прн деист ПИИ особо агрессивных сред не позволяет применять в этих условиях некоторые из неметаллических материалов, например в условиях воздействия окислительных сред. Невысокие прочностные характеристики не позволяют применять эти материалы в условиях повыщенных механических нагрузок и давлений. Из неметаллических материалов не всегда можно изготовить рациональную конструкцию иногда приходится создавать громоздкие установки или новые типы аппаратов и сооружений. К недостат-.  [c.352]

    Термообработку (нагрев) нанесенных на дефектный участок композиций осуществляют с помощью горячего воздуха, лампами накаливания, специальными электронагревателями различной конфигурации, а также пропусканием -пара, горячей воды через рубашку аппарата. Следует отметить, что в области создания и применения новых рецептур композиций и технологии их применения в конкретньгх случаях могут быть многовариантные решения. Срок защитного действия используемых средств во многом определяется не только адгезионной прочностью и химической стойкостью в рабочей среде, но и близостью теплофизических характеристик (коэффициентов термического расширения, теплопроводности) материалов основы и покрытия. [c.23]

    К главным тепловым свойствам покрытий относятся температуры плавления и хрупкости. Однако получить полную характеристику изоляции можно лишь при условии всестороннего учета и других термических показателей. Этими показателями являются старение изоляции под действием тепла (тепловое старение) размягчение покрытий под влиянием тепла (теплопластичность) теплопроводность покрытий при различных температурах окружающей среды коэффициент объемного теплового расширения температура воспламенения изоляции (воспламеняемость) и, наконец, допустимая рабочая температура, при которой покрытие трубопровода способно длительное время выполнять свои функции (теплостойкость). Следует заметить, что последний параметр находится в прямой зависимости от температуры размягчения изоляции и температуры ее плавления. [c.34]

    Все металлоподобные соединения пригодны только для получения покрытий с высокой электропроводимостью и теплопроводностью, причем бориды обладают более высокими указанными характеристиками, чем карбиды. Электро-проводимость и теплопроводность некоторых соединений даже выше, иногда в 2—3 раза (Т1В2, 2гВг, УВ2 и другие), чем самих исходных металлов. Это качество обеспечивает высокую устойчивость покрытий из металлоподобных соединений к резким многократным теплосменам. [c.142]

    Релаксационные процессы при формировании покрытий из дисперсий полимеров оказывают существенное влияние на изменение теплофизических параметров [59]. На рис. 4.10 и 4.11 приведены данные об изменении коэффициентов теплопроводности и температуропроводности в процессе формирования латексных покрытий. Видно, что теплофизические параметры, как и внутренние напряжения, в процессе формирования изменяются немонотонно вначале они уменьшаются, а затем нарастают. Время достижения минимального значения теплофизических параметров соответствует достижению равновесной влажности. При хранении покрытий в условиях формирования теплофизические параметры возрастают. Скорость нарастания теплофизических параметров и их абсолютная величина зависят от природы полимера. Из сравнения рис. 4.8 и 4.10 следует, что теплофизические параметры изменяются анти-батно возникающим в латексных покрытиях внутренним напряжениям. Наибольшие теплофизические характеристики обнаруживаются в менее полярном латексе СКС-50. С увеличением содержания метакриловой кислоты в латексе СКД-1 теплофизические параметры покрытий уменьшаются. Согласно представлениям о механизме переноса тепла в полимерах, связывающим теплофизические свойства со скоростью распространения фононов, следовало бы ожидать [c.209]

    Анизотропия теплопроводности и температуропроводности может быть оценена простым и изящным методом де Сенармонта, основанным на анализе фигур плавления тонкого покрытия, наносимого на пленку, при подведении к пленке точечного источника тепла. Форма оплавленной фигуры позволяет оценить анизотропию теплопроводности и температуропроводности. Если анизотропия теплофизических характеристик отсутствует, то фигура плавления представляет собой круг. При наличии анизотропии фигура плавления обычно является эллипсом. Решение соответствующей плоской задачи теплопроводности [131, 146] показывает, что [c.39]

    Знание теплофизических характеристик необходимо при разработке покрытий теплообменной аппаратуры, электрических двигателей, э.пектроприборов, обмоток электрических машин, элементов радио- и электронной аппаратуры. Теплопроводность слоя пленки определяет чувствительность термоиндикаторных покрытий, а коэффициент теплового линейного расширения — значение термических напряжений в покрытиях. Теплофизические характеристики исходных красок, особенно порошковых, влияют на скорость их нагрева, а следовательно, и на продолжительность формирования покрытий. [c.139]

    Основным требованием, предъявляемым к порошкам, является способность к образованию бездефектных покрытий (например, без пор, пузы рей), обладающих необходимыми электрическими и механическими характеристиками, нагревостойкостью и морозостойкостью. К образуемым покрытиям обычно предъявляются также требования повышенной теплопроводности, дугостойкости, химостойкости, устойчивости к воздействию растворителей, пропиточных лаков и компаундов, стойкости к продавливанию при температуре эксплуатации. [c.28]

    Важнейшими физико-механическими характеристиками напыленных покрытий являются адгезия, прочность на удар и изгиб, внутренние напряжения. Внутренние напряжения определяются показателями, главными из которых являются температурный коэффициент линейного расширения, коэффициент Пуассона и модуль упругости. Весьма важными являются также теплофизические свойства, определяющие стойкость покрытий к продавливанию при рабочей температуре, стойкость к резким перепадам температур (стойкость к термоударам), теплопроводность и нагрево-стойкость (см. 6.3). Определение этих показателей производится методами, изложенными в гл. 2. [c.99]


Смотреть страницы где упоминается термин Покрытий характеристики теплопроводность: [c.187]    [c.118]   
Защита от коррозии на стадии проектирования (1980) -- [ c.279 ]




ПОИСК







© 2025 chem21.info Реклама на сайте