Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение железа (III) методом комплексообразования

    При подготовке вещества к анализу для отделения или связывания мешающих компонентов во всех методах широко применяют различные типы реакций. Однако конечный этап определения связан в большинстве случаев с реакцией одного из этих типов. В зависимости от реакции, метод определения того или другого компонента относят к соответствующей группе методов объемного анализа. Так, например, кальций в силикатах можно определить следующим путем. К раствору после разложения силиката прибавляют лимонную кислоту, чтобы связать алюминий и железо (реакция комплексообразования), затем осаждают кальций щавелевокислым аммонием (реакция осаждения) промытый осадок щавелевокислого кальция растворяют в кислоте и освободившуюся щавелевую кислоту титруют (окисляют) перманганатом. Несмотря на использование в ходе анализа реакций различных типов, описанный метод определения кальция относят к группе методов окисления и восстановления. [c.272]


    Титрование по методу комплексообразования Определение железа (III) [c.69]

    Определение железа (III) методом комплексообразования [c.143]

    Для определения основных характеристик комплексообразования — состава и констант устойчивости комплексонатов железа — использовали методы полярографии и высокочастотного титрования. [c.45]

    Определению железа роданидным методом мешают большие количества сульфатов, хлоридов, фосфатов, фторидов, ацетатов, тартратов, боратов, а также кобальт, никель, хром, висмут, молибден, вольфрам, медь, титан, кадмий, цинк, свинец, нио-бин, палладий, ртуть и др. Мешающее влияние анионов обусловлено конкурирующими реакциями в процессе комплексообразования [53]. По степени мешающего влияния анионы можно расположить в ряд Р">оксалаты>тартраты>цитраты>фос-фаты>ацетаты>504 >С1->.Н0з СЮ4- Мешающее влияние катионов связано с образованием перечисленными металлами роданидных комплексов, большинство из которых окрашено л хорошо экстрагируется. [c.99]

    Разработаны методы кондуктометрического определения алюминия, основанные, например, на реакции комплексообразования с оксалатами [344]. К раствору, содержащему ионы алюминия, добавляют в избытке оксалат натрия, некоторое количество насыщенного раствора метилового фиолетового и сухого растертого оксалата кальция. Избыток оксалата титруют нитратом кальция. Метиловый фиолетовый вводят для предотвращения адсорбции ионов на выпадающем осадке, а порошок оксалата кальция — для улучшения условий кристаллизации. Описан тиосульфатный метод устранения ионов Fe +, мешающих определению. Для кондуктометрического определения алюминия в присутствии железа описан тартратный метод [345]. При титровании тартратом калия сначала в реакции комплексообразования вступают ионы алюминия, образующие более устойчивые комплексы. Окончание этой реакции фиксируется изломом кривой. Метод использован для анализа металлического алюминия, бокситов и силикатных пород. Кондуктометрический метод определения алюминия в присутствии железа и марганца описан в работе [346]. Определение основано на реакции с фторидом аммония, приводящей к образованию растворимых комплексов. Железо (И) и марганец не мешают определению, если содержание каждого не превышает содержание алюминия более чем в 20 раз. [c.232]

    Предложен кондуктометрический метод определения алюминия в присутствии железа, кальция и магния [347]. Определение основано на взаимодействии лактат-ионов с ионами алюминия, приводящем к образованию растворимых комплексных соединений, обладающих большей прочностью, чем соответствующие комплексы Ре2+, СгР- и Mg2+. Ионы Fe + мешают определению, их восстанавливают аскорбиновой кислотой. Метод применим для анализа бокситов и глин. Описан другой метод кондуктометрического определения алюминия в присутствии железа, кальция и магния, использующий реакцию комплексообразования с ацетат-ионами [348]. Железо (И), кальций и магний не мешают определению в количествах не более 30-кратных, по сравнению с концентрацией ионов алюминия. Мешают определению ионы Fe , их восстанавливают аскорбиновой кислотой. Метод использован для анализа металлического алюминия, бокситов и горных пород. [c.232]


    Методы, основанные на образовании комплексов. Реакции комплексообразования, подобно реакциям осаждения, сравнительно редко применяются в объемном анализе для прямого определения. Однако основные трудности здесь связаны со ступенчатым характером образования комплексных соединений, причем отдельные комплексы нередко мало отличаются друг от друга по свойствам. В известной степени трудности обусловлены недостаточной изученностью реакций образования комплексов. Тем не менее известен ряд важных методов объемного анализа, основанных на реакциях комплексообразования. Так, например, хлориды можно удобно определять титрованием раствором азотнокислой ртути (II) (см. 119). Такой метод, позволяет заменить при определении хлоридов соли серебра азотнокислой ртутью (II) и поэтому применяется довольно широко. Очень широко применяется титрование многих катионов посредством этилендиаминтетрауксусной кислоты, которая образует прочные комплексы с кальцием, магнием, железом, цинком, свинцом и др. [c.268]

    Определение железа (III) по методу комплексообразования проводят титрованием 0,05 М стандартным раствором комплексона III с индикаторным Pt-электродом и Нас. КЭ сравнения, Э. д. с. потенциометрической ячейки изд еряют компенсационным методом. [c.69]

    Комплексный диметилглиоксимат был предложен Чугаевым и Орелкиным для колориметрического определения железа [1]. Предложен экстракционно-фотометрический метод онределения железа в виде диметилглиоксимата в присутствии пиридина [9]. Тем не менее роль аммиака и пиридина до настоящего времени остается невыясненной. Обычно принимают, что NH4OH вводят лишь для создания определенного значения pH. Однако приведенные нами данные указывают на то, что аммиак принимает также непосредственное участие в комплексообразовании. В зависимости от того, прибавляют аммиак или пиридин, изменяются свойства образующихся комплексов. [c.300]

    В работе [26] этим методом исследовано комплексообразование диметилглиоксима с сульфатом никеля, пикриновой кислоты — с сульфатом меди, а, а -дипиридила — с хлорным железом. Метод ВЧ-титрования дает ценную информацию о процессах комплексообразования в растворах. Если титрование проводить в области максимальной крутизны характеристической кривой, построенной для данной ячейки и данного высокочастотного устройства, то при определенных молярных соотношениях металла и комплексообразующего вещества на кривой титрования появляются перегибы, точки излома и т. п. эти характерные точки соответствуют изменению электропроводности раствора, возникающему в процессе комплексообразования, например, в результате вытеснения ионами металла ионов водорода из ЭДТА. [c.146]

    Одним из путей влияния на значение молярного коэффициента поглощения метода может быть использование разноли-гандного комплексообразования, частным случаем которого является участие молекул органического растворителя в образовании экстрагируемого соединения. На примере методов определения железа можно рассмотреть роль разнолигандных комплексов в экстракционно-спектрофотометрических методах анализа (табл. 3.4). [c.85]

    Показана возможность определения констант устойчивости для глутаминовой кислоты, норлейци-на и триптофана по результатам исследования потенциометрическим методом комплексообразования ионов меди(П) и железа(П) с некоторыми аминокислотами при использовании халькогенидных электродов. Изучено влияние температуры и водно-органического растворителя на константы устойчивости аминокислотных комплексов с ионами меди(П) и железа(П). [c.185]

    Поульзен, Бьеррум и Поульзен [28] исследовали ту же систему при постоянной ионной силе в присутствии достаточного количества кислоты для подавления гидролиза. Комплексообразование контролировалось с помощью измерения концентрации свободного лиганда либо добавлением аликвотной части равновесной смеси к охлажденному льдом раствору, который содержал избыток нитрата серебра, и обратным титрованием с раствором тиоцианата, либо добавлением избытка раствора железа(П1) и спектрофотометрическим измерением концентрации получающегося комплекса FeS №+. Второй метод предпочтителен для растворов, в которых для тиоцианатных комплексов хрома п имеет большую величину. После определения концентрации свободных тиоцианат-ионов по уравнению (3-4) находили п и вычисляли константы устойчивости из функции п[а). Подобным образом были изучены инертные фторидные комплексы с помощью оптического измерения концентрации свободного лиганда [30]. [c.153]

    Некоторые методы определения констант устойчивости комплексных соединений были разработаны Яцимирскнм [7]. Им рассмотрен также вопрос о получении термодинамических характеристик комплексообразования в растворе. Часто необходимо знать зависимость констант устойчивости от ионной силы раствора. В работе [8] на примерах галогенидных и псевдога-логенидных комплексов показана применимость уравнения Дэвиса для оценки изменения констант устойчивости при изменении ионной силы раствора вплоть до ионной силы р,=0,8М. Васильев [9] нашел, что зависимость константы устойчивости от ионной силы монороданидного комплекса железа (П1) в широком интервале величин ионной силы и=0,3 — 5,0 М удовлетворительно описывается уравнением типа Дебая — Хюккеля [c.490]


    Для хлорфенслов характерны реакции комплексообразования с солями железа. Так, специфической реакцией на 2,4,6-трихлорфе-нол является взаимодействие его с феррицианидом калия и хлорным железом, которая сопровождается образованием зеленой окраски [34б], Метод использован для определения 2,4,6-трихлор енола в хлораниле, ошибка составляет 0,5-6/ . [c.33]

    Молочная кислота СНзСН0НС00Н(Нгас1) обладает свойствами слабого комплексующего агента, применяется как фон для полярографического определения ряда металлов, а также как буферный раствор для электрофоретического разделения различных ионов. Как показали наши исследования [1], растворы молочной кислоты могут быть использованы для электрофоретического разделения ионов ванадия (IV) и (V). Присутствие ионов железа (II) и (III) усложняет поведение и определение различных валентных форм ванадия, поэтому представляет интерес исследовать возможность их разделения при совместном присутствии. Предварительно в связи с отсутствием в литературе сведений о состоянии ионов ванадия (IV) в растворах молочной кислоты было изучено комплексообразование в системе ванадий (IV) — молочная кислота методами электрофореза на бумаге и потенциометрического титрования. [c.134]

    На рис. 6 и 24 приведены кривые смещения pH (Л ) в растворах ацетатов натрия и железа в водноуксуснокислой среде, на рис. 25—27 кривые е — рА железоацетатно-го комплексообразования в 70,56 80,48 и 90,35% раство- 250 рах уксусной кислоты. По этим кривым определены константы нестойкости комплексов. РеАг и РеАз и установлено вероятное сущест- 20в вование в растворах комплексов Ре А РеА , РеАг и РеАз [64]. Константы нестойкости, определенные методом окислительного потенциала, согласуются с точностью до половины порядка со значениями этих величин, полученными методом электропроводности [65, 66]. [c.79]


Смотреть страницы где упоминается термин Определение железа (III) методом комплексообразования: [c.235]    [c.171]    [c.372]    [c.233]    [c.193]    [c.142]    [c.184]   
Смотреть главы в:

Основы аналитической химии -> Определение железа (III) методом комплексообразования




ПОИСК





Смотрите так же термины и статьи:

Железо определение методом ААС

Комплексообразование

Комплексообразования методы

Комплексообразованне

Метод определения комплексообразования



© 2025 chem21.info Реклама на сайте