Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метод определения комплексообразования

    При подготовке вещества к анализу для отделения или связывания мешающих компонентов во всех методах широко применяют различные типы реакций. Однако конечный этап определения связан в большинстве случаев с реакцией одного из этих типов. В зависимости от реакции, метод определения того или другого компонента относят к соответствующей группе методов объемного анализа. Так, например, кальций в силикатах можно определить следующим путем. К раствору после разложения силиката прибавляют лимонную кислоту, чтобы связать алюминий и железо (реакция комплексообразования), затем осаждают кальций щавелевокислым аммонием (реакция осаждения) промытый осадок щавелевокислого кальция растворяют в кислоте и освободившуюся щавелевую кислоту титруют (окисляют) перманганатом. Несмотря на использование в ходе анализа реакций различных типов, описанный метод определения кальция относят к группе методов окисления и восстановления. [c.272]


    Ряд других примеров влияния pH раствора, а также реакций осаждения и комплексообразования приведем при рассмотрении соответствующих методов определения. [c.357]

    Аналогия в химико-аналитических свойствах элементов, занимающих соседние клетки в периодической системе, открывает широкие возможности для прогнозирования и разработки новых методов анализа. Было известно, например, что Мо (V) дает цветную реакцию с тиоцианатом. Можно было ожидать, что N6 (V), как соседний элемент по периодической системе, также будет давать соединение с тиоцианатом. Эксперимент оправдал эти ожидания и для ниобия был также разработан тиоцианатный метод фотометрического определения, широко используемый в настоящее время. Аналогичные примеры известны для методов определения тантала и протактиния и для многих других сочетаний элементов. Аналогия свойств, соответствующая периодическому закону, проявляется не только непосредственно в химических реакциях кислотно-основного взаимодействия, комплексообразования, осаждения и т.д., но и во многих других процессах, имеющих химико-аналитическое значение, — их экстрагируемо- [c.15]

    Измерение электродных потенциалов лежит в основе потенциометрии. Потенциометрия применяется, например, для определения конечных точек титрования (потенциометрическое титрование). В зависимости от типа используемых при титровании реакций различают потенциометрическое титрование по методу осаждения, комплексообразования, нейтрализации и окислительно-восстановительное потенциометрическое титрование. В первых двух разновидностях потенциометрического титрования используют электроды, обратимые по отношению к ионам, которые входят в состав осадка или комплексного соединения. Потенциал таких электродов определяют относительно какого-либо электрода сравнения в ходе постепенного добавления титранта. Потенциометрическое титрование, например, очень удобно для определения анионов, образующих нерастворимые соли с ионом серебра. При этом часто в качестве индикаторного используют серебряный электрод. [c.276]

Рис. 57. Графический метод определения констант устойчивости комплексов в системах со ступенчатым комплексообразованием (метод Бьеррума) Рис. 57. <a href="/info/680439">Графический метод определения констант</a> <a href="/info/2533">устойчивости комплексов</a> в системах со <a href="/info/5389">ступенчатым комплексообразованием</a> (метод Бьеррума)

    При определении констаит нестойкости методом растворимости, при котором требуется найти растворимость соли, вступающей в комплексообразование, при различных концентрациях комплексообразователя, концентрация насыщенного раствора находится так же, как в случае описанного в гл. 10 радиометрического метода определения растворимости труднорастворимых соединений. [c.174]

    К. используют для определения мол. массы растворенного в-ва, степени диссоциации слабых электролитов, термодинамич. активности р-рнтеля и растворенного в-ва, исследования комплексообразования в р-рах, определения констант равновесия р-ций, чистоты орг. в-в. К.-более точный метод определения мол. масс, чем эбулиоскопия. [c.521]

    Н.С. Курнакову. Им были объединены в одно направление изучение сплавов и однородных р-ров и предложен термин Ф.-х. а. (1913). Исследования комплексообразования в р-рах с работами И.И. Остромысленского (1911), П. Жоба (1928) и разработкой методов определения состава хим. соед. и констант их устойчивости по данным измерений разл. физ. св-в р-ров. [c.92]

    Аналитическую химию натрия начали особенно широко изучать и развивать начиная с 50-х годов XX столетия. Известные, ставшие классическими гравиметрические методы определения натрия, основанные на образовании малорастворимых тройных ацетатов, были модифицированы за счет растворения осадка в кислотах и косвенного определения натрия титриметрическим определением ура-на(У1) или двухвалентного катиона с использованием реакций окисления-восстановления или комплексообразования. Вследствие этого возросла экспрессность анализа. [c.5]

    Развитие химии координационных соединений золота, особенно интенсивное за последние двадцать лет, характеризовалось накоплением большого экспериментального материала по количественным термодинамическим данным о комплексообразовании золота с неорганическими и органическими лигандами. Эти данные позволили обосновать многие существующие методы определения золота. Большой вклад в развитие аналитической химии золота внесли советские химики. [c.5]

    Титриметрические методы применяются при определении золота в различных объектах. Они основаны на реакциях окисления-вос-становления и комплексообразования. Кроме того, предложены косвенные методы определения, основанные на различных принципах. [c.118]

    В главе VI описаны основные титриметрические методы определения элементной серы, серусодержащих ионов всех валентностей и главнейших органических их соединений (меркаптанов, ксантогенатов, тиомочевины). Последовательно излагаются методы нейтрализации, осаждения, комплексообразования, окисления-восстановления. [c.65]

    Титриметрические методы очень широко применяют для определения брома и его соединений. Здесь используют реакции кислотно-основного титрования, осаждения, комплексообразования и окисления—восстановления. В этой главе будут рассмотрены титриметрические методы определения брома в различных степенях окисления с визуальной индикацией конечной точки титрования (КТТ). [c.75]

    Наиболее распространенные титриметрические методы определения кобальта основаны на реакциях окисления-восстановления и комплексообразования. Методы, основанные на реакциях осаждения, сравнительно немногочисленны и имеют небольшое значение. [c.106]

    Новый метод определения степени комплексности и комплексообразования у солей хрома [641]. [c.359]

    Наиболее полное определение потенциала парафинов в нефти дает метод карбамидного комплексообразования, извлекающий нормальные алканы от Се до С5 4 и выше. Простота метода по сравнению с действующими способствует быстро расширяющемуся применению его в исследовании и анализе как в НРШ, так и на производстве. [c.138]

    Отсюда видно, что 0,63% Ре2+ превратилось в Ре + зависимость электродных потенциалов от концентрации ионов представлена на рис. 10.2. Ординаты кривых для удобства даны относительно нормального водородного электрода (НВЭ) и насыщенного каломельного электрода (НКЭ). Абсциссы отложены в логарифмическом масштабе и равны логарифму концентрации или активности, взятому со знаком минус. Если считать, что по оси абсцисс отложены активности, то истинными потенциалами будут прямые пунктирные линии. С другой стороны, если считать, что по оси абсцисс отложены кониентрации, то истинные потенциалы— сплошные линии. Расхождение между пунктирными и сплошными линиями представляет собой поправку активности. Потенциальные измерения обеспечивают удобный метод определения коэффициентов активности. Можно видеть, что активность и концентрация становятся уже неразличимыми при 10 —10 " М. Сплошные линии на рис. 10.2 можно рассматривать только как приближенные, поскольку коэффициенты активности зависят от присутствия других веществ в растворе, комплексообразования и др. [c.146]

    Изучение процессов, происходящих в жидкой среде при растворении в ней различных веществ, дает много важных сведений для различных областей химии. Прежде всего оно необходимо для создания теории строения растворов, но не менее необходимы такие исследования и для аналитической химии. Как известно, в основе многих методов определения элементов, разработанных химиками-аналитиками, лежат процессы комплексообразования и сольватации, так как индивидуальные особенности различных элементов проявляются особенно резко при образовании ими комплексов в растворе. По этой причине изучение закономерностей комплексообразования и сольватации, исследование не только состава, но и строения комплексов и сольватов является очень важной задачей для исследователя, работающего в области аналитической химии. Однако решение этой задачи методами классической химии весьма затруднительно, а иногда и просто невозможно, поскольку выделение комплексов из растворов в твердую фазу очень часто сопровождается их перестройкой или разрушением. [c.107]


    С другой стороны, большая чувствительность параметров полос поглощения к изменениям не только состава, но и геометрической конфигурации координационной сферы комплекса позволяет изучать процессы образования комплексов в растворах при самых разнообразных условиях. До появления теории поля лигандов и ее признания были разработаны эмпирические методы изучения комплексообразования по спектрам поглощения (например, метод соответственных растворов Бьеррума), которые позволили добиться определенных качественных успехов. Дополнение старых методов и развитие новых на основе современной теории дает возможность не только определять число образующихся в данных условиях комплексов и сольватов и их примерный состав, но и судить о их строении и природе связей между лигандами и центральным ионом. [c.115]

    К. Б, Яцимирский [21] разработал другой метод определения константы нестойкости комплексов для случая ступенчатого комплексообразования. В данном случае используется описанный вьше прием при определении состава строят график, где на одной оси откладывают смещение полуволны, а на другой — логарифм концентрации лиганда. При наличии в системе одного комплекса эта зависимость выражена прямой линией. [c.137]

    В излагаемой работе использовались калориметрический и потенциометрический методы определения теплоты комплексообразования. В сочетании с имеющимися в литературе данными о константах устойчивости комплексов [1—5] полученные нами величины позволили рассчитать также и изменение энтропии при комплексообразовании Д к. [c.105]

    В принципе для определения констант устойчивости может быть использовано измерение любого свойства, которое изменяется ири комплексообразовании. Однако важно, чтобы данное свойство количественно изменялось в зависимости от природы присутствующих в растворе соединений. Подобная количественная связь находит свое отражение в так называемом факторе интенсивности, примером которого могут быть молярный коэффициент погашения (спектрофотометрия в УФ- и видимой областях) и коэффициент распределения (газовая хроматография). Экспериментальные методы определения констант устойчивости разделяют на две большие группы. [c.106]

    Спектрофотометры. Использование спектрофотометров с призмой или дифракционной решеткой обеспечивает высокую моно-хроматизацию потока излучения. Это открывает большие возможности для повышения чувствительности и для увеличения избирательности методов определения отдельных элементов, а также для исследования состояния вещества в растворе и процессов комплексообразования. Например, только спектрофотометр пригоден для изучеиия спектров поглощения редкоземельных элементов, которые имеют большое число узких максимумов поглощения. Нерегистрирующие однолучевые спектрофотометры СФ-4, СФ-4А, СФ-5, СФД-2 имеют общую оптическую схему, представленную на [c.473]

    В тридцатых — сороковых годах произошел резкий скачок в технических возможностях изучения химического состава сложных смесей. Для разделения тяжелых нефтяных фракций наряду с методами перегонки и ректификации начали использовать хроматографию на адсорбентах, комплексообразование с карбамидом, термическую диффузию. Получили широкое распространение многочисленные физические методы исследования УФ- и ИК-опектроскопия, ядерно-магнитный резонанс, масс-опектрометрия, дифференциально-термический анализ, электрофизические методы (определение диэлектрической проницаемости, удельного и объемного сопротивлений, диэлектрических потерь) и др. Большое применение нашли расчетные методы определения структурно-группового состава, позволившие в первом приближении получить представление о соста1ве масляных фракций. Новые методы разделения и анализа значительно углубили наши познания о составе и структуре тяжелых компонентов нефти и позволили более обоснованно решать технологические задачи производства масел и химмотологические проблемы рационального их использования в условиях эксплуатации. [c.8]

    Шлефер Г. Л. Комплексообразование в растворах. Методы определения состава и констант устойчивости комплексных соединений в растворах, М.—П., Хпмия, 1964. [c.35]

    Химический состав. Сутествуют различные приемы и метода изучения состава жидких парафинов ректификация. дробная кристаллизация, комплексообразование. адсорбция на цеолитах и различных адсорбентах, хроматография, масс-спектрометрия, ядерный магнитный резонанс, а также различные расчетные методы. Химический состав жидких парафинов начинают изучать с разделения их ректи. .икацией на узкие фракции, затем определяют групповое состав фракции. Из этих фракция выделяют тем или иным методом отдельные классы углеводородов, после чего изучают индивидуальный углеводородный состав соединении и их структуру, rio можно выделять отдельные классы углеводородов, а также определять их индивидуальный состав непосредственно из исследуемого парафина. Разработан ряд методов определения содержания 0 парафинах углеводородов различных классов, а также строения этих углеводородов [17].  [c.16]

    Кинетика реакции комплексообразования с одним промежуточным соединением. Методы определения элементарных констант усложняются с усложнением механизма реакции [39, 42]. Тем не менее для обратимой двухстадийной реакции комплексообразования лиганда А с активным центром фермента [c.208]

    Исследование реакций комплексообразования. Определение величины заряда ионов в растворах. Определение состава и констант стойкости комплексных соединений. В литературе описаны несколько методов изучения комплексообразования в растворах с применением синтетических ионообменных сорбентов. Во всех случаях определяют поглощение исследуемого элемента М одинаковыми навесками ионообменников (катионитов и анионитов) из равных по объему порций растворов с переменной концентрацией лиганда Ь Опыты ведут при постоянной ионной силе растворов и при условии, что общее количество М значительно меньше обменной емкости взятой навески ионита. После установле-яия равновесия получают кривые поглощения, аналогичные приведенным на рис. 56. Математически обрабатывают такие кривые различными методами. Рассмотрим наиболее простые из них. [c.208]

    Ионы палладия и платины, как ионы благородных металлов, обладают сильными окислительными свойствами. Так, Р(1 на холоду окисляет СО до двуокиси углерода (чувствительная реакция открытия СО). Из растворов Р1С14 при действии избытка восстановителей выделяется платина. Ионы благородных металлов характеризуются исключительно выраженной способностью к комплексообразованию. Из большого числа комплексных соединений платины в лабораторной практике находит применение, как реактив на ион калия, платинохлористоводородная кислота. Образующийся при этой реакции хлороплатинат калия — малорастворимое вещество, кристаллизующееся в виде микроскопических желтых октаэдров. Этой реакцией пользуются в микрокристаллоскопии — методе определения вещества по форме кристаллов, наблюдаемых в микроскоп. [c.329]

    Рассматриваются основные вопросы аналитической химии — протолитические и редоксиравновесия, равновесия комплексообразования, равновесия между твердой и жидкой фазами. Излагаются основы химической термодинамики и кинетики. Разбираются химические, электрохимические и фотометрические методы определения веществ, точность определений в количественном анализе, маскирование и методы разделения Во 2-е издание (1-е— 1980 г.) включены электродные равновесия и процессы и фотометрия. [c.2]

    Тепловые эффекты реакций кислотно-основного взаимодействия, комплексообразования и других реакций экспериментально могут быть найдены или по температурному коэффициенту констант равновесия (некалори-метрический метод), или путем прямых калориметрических измерений. Хотя тепловой эффект реакции не должен зависеть от метода определения, все же нередко величины, полученные по температурному коэффициенту констант равновесия, существенно отличались от результатов калориметрических определений иногда даже по знаку. Одной из основных причин возникновения противоречий такого рода является, по-видимому, пренебрежение температурной зависимостью теплового эффекта. В практических расчетах зависимость ДЯ от Т часто не учитывают, ссылаясь на так называемый сравнительно узкий температурный интервал, внутри которого тепловой эффект принимается постоянным. Интегрируя уравнение изобары реакции при ДЯ= oпst, получаем [c.269]

    Природные и промышленные материалы содержат рений от 10 до десятков процентов. В зависимости от содержания рения в анализируемых объектах для его определения используются весовые, титриметрические, электрохимические, спектрофотометрические, спектральные, флуоресцентные, рентгеноспектральные, радио-активационные, масс-спектрометрические и другие методы. Большое число публикаций относится к изучению взаимодействия рения с различными органическими реагентами и разработке спектрофотометрических и экстракционно-спектрофотометрических методов его определения. Такая тенденция вполне закономерна, если учесть большую склонность рения к комплексообразованию с различными реагентами, а также то, что фотометрические методы обладают высокой точностью и экспрессностью. Значительное развитие экстракционно-фотометрических методов определения рения, основанных на образовании ионных ассоциатов перренат-и гексахлороренат-ионов с красителями, связано с их высокой чувствительностью и избирательностью. Многие из этих методов позволяют определять рений в присутствии больших количеств молибдена — основного мешающего элемента. [c.73]

    При определении хрома наиболее часто используются реакции осаждения и экстракции. Например, предложено использовать для субстехиометрического выделения хрома и других элементов соосаждение в сочетании с реакциями комплексообразования, окисления и восстановления [963]. Было показано, что в присутствии субстехиометрических количеств ЭДТА Сг(П1), Ге(Н1), Т1(П1), Со(Н) и Мп(П) соосаждаются с осадком Т1(0Н)4, в то время как ионы ]ИеУ не соосаждаются. На основании этих данных разработан метод определения микроколичеств хрома О 1 мкг) 964], который используют для определения хрома в сплавах. [c.64]

    Фотометрические методы. Основные характеристики методов определения примесей в металлическом хроме и его соединениях приведены в табл. 23. Для устранения мешающего влияния хрома его отделяют злектролизом на ртутном катоде [490, 552], отгонкой в виде rOj Ia [19, 490], осаждением ВаСг04 [552], анионообменной хроматографией [421, 422]. Использовались также реакции окисления Сг(1И) до r(VI) [66, 104], комплексообразования [551]. [c.174]

    Исследовано комплексообразование скандия с АНПД-2,4 [575], ПААК [158], ПАР [93, 178, 577, 842] и ПАН-2 [178]. Фотометрические методы определения скандия в объектах с использованием данных реагентов не разработаны. [c.118]

    Исследовано комплексообразование тантала с ПАР 110, 18ба, 188, 7111 и ПАН-2 [712]. Для фотометрического определения тантала предложено применять ПАР в присутствии цитрата [186а] или оксалата [188]. Фотометрические методы определения тантала гетероциклическими азосоединениями сопоставлены в работе [181]. [c.131]

    Термометрическое титрование применяется при изучении реакций комплексообразования, а также при определении ионов металлов путем измерения тепловых эффектов реакций образования комплексных соединений. В последнем случае обычно выделяют катионы металлов из раствора в виде нерастворимого соединения или используют реакции образования растворимых анионных комплексов. В некоторых случаях эти реакции протекают последовательно. Примером последнего может служить метод определения серебра по реакции ионов серебра с цианид-ионами. Образующийся вначале нерастворимый цианид серебра затем растворяется в избытке цианида калия, образуя ион дициапида серебра. [c.80]

    И. Корыта теоретически разобрал различные случаи разряда комплексных ионов [233] обратимого и необратимого, ограниченного диффузией или скоростью диссоциации, и привел таблицу уравнений волн, зависимости от периода капания и концентрации комплексообразователя для рассмотренных случаев. Корыта рассмотрел также обпщй вопрос о влиянии комплексообразования на полярографические волны [234] и привел методы определения констант нестойкости комплексов и констант скорости их диссоциации из полярографических данных. [c.45]

    Объемные методы. Наиболее распространены методы определения кобальта, основанные на реакциях окисления — восстановления и комплексообразования. Широко распространен метод окисления двухвалентного кобальта в трехвалентный гексацианоферритом калия КзГРе(СЫ)в]. Точку эквивалентности устанавливают потенциометри-чески или амперометрически. Достоинство метода в том, что число мешающих определению элементов невелико и их влияние легко можно устранить маскировкой. [c.313]

    Некоторые методы определения констант устойчивости комплексных соединений были разработаны Яцимирскнм [7]. Им рассмотрен также вопрос о получении термодинамических характеристик комплексообразования в растворе. Часто необходимо знать зависимость констант устойчивости от ионной силы раствора. В работе [8] на примерах галогенидных и псевдога-логенидных комплексов показана применимость уравнения Дэвиса для оценки изменения констант устойчивости при изменении ионной силы раствора вплоть до ионной силы р,=0,8М. Васильев [9] нашел, что зависимость константы устойчивости от ионной силы монороданидного комплекса железа (П1) в широком интервале величин ионной силы и=0,3 — 5,0 М удовлетворительно описывается уравнением типа Дебая — Хюккеля [c.490]

    Метод ионного обмена для определения состава и констант устойчивости, по-видимому, первым в Советском Союзе применил Фомин [195, 1961 При помощи катионного обмена он определил устойчивость С0С2О4 [195]. Фомин одним из первых попытался использовать для этой цели метод анионного обмена [197, 198]. В работе [197] описан метод определения констант устойчивости комплексных анионов при помощи анионитов, если в растворе находится один комплексный анион и комплексные катионы и молекулы. Затруднением по сравнению с применением для той же цели катионов является сложность сохранения постоянной ионной силы при изменении концентрации ионов, участвующих в комплексообразовании. Общее уравнение, связывающее коэффициент распределения при анионном обмене с [c.504]

    Предложен новый спектрофотометрический метод определения свинца (И) с тиродином. Цветная реакция развивается при pH 2—6. Оптимальные условия комплексообразования наблюдаются при pH 3—5. Контрастность реакции дА,= 110 нм, е 4,2-10 Определению не мешают многие цветные и тяжелые металлы, наиболее часто сопутствующие свинцу в природных и промышленных объектах. [c.191]

    Исходя из аналогии между протолитическими равновесиями и процессами комплексообразования, Б. П. Никольский [30] предложил применить к изучению ступенчатого комплексообразования в растворах разработанный Кларком [31, 32] метод исследования протолитической диссоциации в органических окислительно-восстановительных системах. Метод Кларка основан на изучении и анализе зависимости окислительного потенциала указанных систем от pH. Кривая названной зависимости состоит из линейных участков, соединенных друг с другом плавными изгибами. Кларком предложены общие правила анализа кривых —pH и разработан графический метод определения констант дцссоциации протоногенных групп окисленной и восстановленной форм по точкам пересечения [c.190]

    Спектрофотометрню в ультрафиолетовой и видимой областях ие следует рассматривать как самостоятельный метод исследования комплексообразования. Обычно спектрофотометрический метод дополняет потенциометрический. В разд. 2.3 и 6.3 мы уже обсуждали преимущества спектрофотометрии по сравнению с потенциометрией при определении числа частиц в очень лoлi-ных системах. Более того, известны случаи, когда невозможно различить равновесные процессы на основании только потенциометрических результатов. При проведении потенциометрических исследований необходимо располагать соответствующими электродами, поэтому потенциометрический метод применим для изучения немногих реакций. Недавно вышел обзор [1], в котором обсуждается примепепие спектрофотометрии для определения констант устойчивости. Некоторые ограничения спектрофотометрического метода уже обсуждались в разд. 6.3 и 6.4. [c.132]


Смотреть страницы где упоминается термин Метод определения комплексообразования: [c.189]    [c.64]    [c.110]    [c.129]    [c.156]   
Количественный анализ Издание 5 (1955) -- [ c.244 , c.387 ]




ПОИСК





Смотрите так же термины и статьи:

Комплексообразование

Комплексообразования методы

Комплексообразованне

Определение железа (III) методом комплексообразования

Определение ионов железа(III) методом комплексообразования

Определение катионов и анионов кондуктометрическим и хронокондуктометрическим методами, основанными на реакциях комплексообразования

Определение констант образования комплексов из полярографических данных при ступенчатом комплексообразовании по методу Деформа и Юма

Определение констант устойчивости комплексов при ступенчатом комплексообразовании по методу наименьших квадратов

Р у д е и к о, И. Стары. Определение констант комплексообразования ацетилацетоната индия методом экстрагирования



© 2024 chem21.info Реклама на сайте