Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Открытие атомных ядер

    С открытием нейтрона (см. гл. 12) у химиков появились новые возможности. Нейтроны представляют собой незаряженные частицы, и атомные ядра их не отталкивают. Направив нейтрон в нужном направлении, его легко можно заставить столкнуться с ядром. [c.174]

    Период полураспада (Т. д)- время, за которое количество нестабильных частиц уменьшается наполовину. П. п.— одна из основных характеристик радиоактивных изотопов, неустойчивых элементарных (фундаментальных) частиц. Периодическая система элементов Д. И. Менделеева — естественная система химических элементов. Расположив элементы в порядке возрастания атомных масс (весов) и сгруппировав элементы с аналогичными свойствами, Д. И. Менделеев составил таблицу элементов, выражающую открытый им периодический закон Физические и химические свойства элементов, проявляющиеся в свойствах простых и сложных тел, ими образуемых, стоят в периодической зависимости от их атомного веса (1869—1871 гг.). Периодический закон и периодическая таблица элементов Д. И. Менделеева позволяют установить взаимную связь между всеми известными химическими элементами, предсказать существование ранее неизвестных элементов и описать их свойства. На основе закона и периодической системы Д. И. Менделеева найдены закономерности в свойствах химических соединений различных элементов, открыты новые элементы, получено много новых веществ. Периодичность в изменении свойств элементов обусловлена строением электронной оболочки атома, периодически изменяющейся по мере возрастания числа электронов, равного положительному заряду атомного ядра Z. Отсюда современная формулировка периодического закона свойства элементов, а также образованных ими простых и сложных соединений находятся в периодической зависимости от величин зарядов их атомных ядер (Z). Поэтому химические элементы в П. с. э. располагаются в порядке возрастания Z, что соответствует в целом их расположению по атомным массам, за исключением Аг—К, Со—N1, Те—I, Th—Ра, для которых эта закономерность нарушается, что связано с нх изотопным составом. В периодической системе все химические элементы подразделяются на группы и периоды. Каждая группа в свою очередь подразделяется на главную и побочную подгруппы. В каждой подгруппе содержатся элементы, обладающие сходными химическими свойствами. Элементы главной и побочной подгрупп в каждой группе, как правило, обнаруживают между собой определенное химическое сходство главным образом в высших степенях окисления, которое, как правило, соответствует номеру группы. Периодом называют совокупность элементов, начинающуюся щелочным металлом и заканчивающуюся инертным газом (особый случай — первый период) каждый период содержит строго определенное число элементов. П. с. э. имеет 8 групп и 7 периодов (седьмой пока не завершен). [c.98]


    Но только когда на основе открытия атомного ядра Резерфордом (1911 г.) Нильс Бор создал свою модель атома (1ЙЗ г.), возникли сразу две следующие проблемы в применении к атомам состав—строение и строение-свойство из них, как и прежде, самой важной оказалась последняя. Ибо она замыкала новый цикл исследований (виток спирали) и возвращала мысль ученых к исходному пункту всего научного движения на данном его уровне. [c.260]

    Использование продуктов радиоактивного распада в качестве снарядов привело к открытию атомного ядра. В свою очередь открытие явления естественной радиоак- [c.264]

    Методы, основанные на ядерных реакциях—радиоактивационный, или (его главная часть)—нейтронно-активационный метод анализа. Нейтронно-активационный метод возник после открытия атомной энергии и создания действующих атомных реакторов. Принцип метода заключается в следующем. Анализируемый материал подвергают действию нейтронного излучения в атомном реакторе или посредством нейтронного генератора. При взаимодействии нейтронов с ядрами элементов происходят ядерные реакции и образуются радиоактивные изотопы всех элементов, входящих в состав пробы. Затем пробу переводят в раствор и разделяют элементы химическими методами. Завершающим этапом определения является измерение интенсивности радиоактивного излучения каждого элемента пробы. [c.32]

    Как и при открытии атомного ядра, успех при его разрушении был достигнут с помощью достаточно мощ-го снаряда , каким является уже знакомая нам а-частица. В 1919 г. Резерфорд подверг бомбардировке а-частицами ядра атомов азота, рассчитывая, что быстролетающий снаряд достигнет цели, преодолев силы электростатического отталкивания, которые вследствие малости заряда ядра азота относительно невелики. Резерфорд использовал весьма простой прибор, представлявший собой камеру, заполненную газообразным азотом, внутри которой помещался радий 1, испускавший а-частицы (рис. 71). Стенка камеры имела окошко 2, закрытое очень тонкой серебряной пластинкой. Снаружи [c.275]

    Этот метод визуального счета сцинтилляций сыграл важную роль в развитии экспериментальной ядерной физики в период с 1906 г. до начала 30-х годов. С его помощью были определены природа и заряд а-частиц, открыто атомное ядро и зарегистрировано первое искусственное деление ядра. Одним из последних важных экспериментов, выполненных в 1932 г. с использованием визуального счета сцинтилляций, был опыт Кокрофта и Уолтона, которые применили этот метод для определения энергии и направления разлета двух а-частиц, испускаемых при расщеплении протонами ядра Li. [c.151]


    Изучение явления радиоактивности первоначально привело к предположению, что ядра различных атомов построены из протонов и электронов. Эта гипотеза долгое время была общепризнанной. Однако последующее изучение ядерных реакций, открытие нейтронов Чедвиком и выявившаяся возможность выделения нейтронов из любых атомных ядер (кроме протона) привели к отказу от ранее принятой гипотезы. Д. Д. Иваненко и Е. Н. Гапон (1932) и Гейзенберг (в том же году) высказали и обосновали положение, что атомные ядра состоят из протонов и нейтронов, и предложили протонно-нейтронную теорию атомных ядер. [c.51]

    Использование рассмотренных в настоящем параграфе методов воздействия на атомные ядра дает возможность искусственно осуществлять превращения всех элементов. Однако, в отличие от естественных радиоактивных превращений, описанные выше ядерные реакции протекают лишь до тех пор, пока имеет место внешнее воздействие. Мост между теми и другими процессами был перекинут открытием искусственной радиоактивности. [c.517]

    Гамма-спектроскопия основана на эффекте резонансного поглощения атомными ядрами у-квантов. Это явление было открыто немецким ученым Мессбауэром в 1958 г. (эффект Мессбауэра). Как указывалось (стр. 42), при радиоактивном распаде образуются изотопы в возбужденном состоянии, которое существует около 10 сек. При переходе ядер из возбужденного в основное состояние происходит у-излучение. Невозбужденные атомные ядра в свою очередь могут поглощать V-кванты и переходить в возбужденное состояние. [c.179]

    Это открытие дало новое обоснование расположению элементов в периодической системе. Вместе с тем оно устраняло и кажущееся противоречие в системе Менделеева — положение некоторых элементов с большей атомной массой впереди элементов с меньшей атомной массой (теллур и йод, аргон и калий, кобальт и никель). Оказалось, что противоречия здесь нет, так как место элемента в системе определяется зарядом атомного ядра. Было экспериментально установлено, что заряд ядра атома теллура равен 52, а атома йода — 53 поэтому теллур, несмотря на большую атомную массу, должен стоять до йода. Точно так же заряды ядер аргона и калия, никеля и кобальта полностью отвечают последовательности расположения этих элементов в системе. [c.39]

    Метод Оже-спектроскопии основан на явлении эмиссии вторичных электронов, которые возникают при облучении вещества потоком электронов. Сущность этого явления, открытого в 1925 г. французским ученым П. Оже, состоит в следующем. Электроны, окружающие атомное ядро, располагают на последовательных уровнях К, L, М [c.84]

    Открытие сложности строения атома и его изменяемости (конец XIX и начало XX в.) вызвало к жизни целый ряд теорий химической связи и образования молекул. Было совершенно ясно, что образование химической связи идет только за счет электронов, окружающих атомное ядро, так как заряд ядра и место атома в периодической системе элементов в химических процессах не изменяются. Однако электронная теория валентности оказалась весьма сложной, и прошло много времени, прежде чем она стала современным учением о химической связи. [c.69]

    Одним из наиболее важных положений химической теории является положение о разделении веществ на два класса —на элементарные (простые) вещества и соединения. Такая классификация была предложена в 1787 г. французским химиком Антуаном Лораном Лавуазье (1743—1794) на основании выполненных им за предшествующие 15 лет количественных исследований множества веществ (реагентов и продуктов реакций), участвующих в химических процессах. Лавуазье определял соединение как вещество, которое можно разложить на два или несколько других веществ, а элементарное вещество (или элемент)— как вещество, которое нельзя разложить. В своем Элементарном курсе химии , опубликованном в 1789 г., Лавуазье перечислил 33 элемента и среди них 10 еще не выделенных в виде простых веществ (но уже известных по своим окислам, сложную природу которых он предугадал точно). После открытия электрона и атомного ядра определения элементарных веществ и соединений были пересмотрены этому вопросу посвящены последующие разделы данной главы. [c.77]

    За последние сравнительно немногие годы достигнуты огромные успехи в познании окружающего мира. Так, было установлено, что атомы состоят из электронов и ядер, а атомные ядра из протонов и нейтронов. Помимо электрона, протона и нейтрона, были открыты многие другие Частицы. [c.584]

    После открытия нейтрона в 1932 г.. стало очевидным, что более тяжелые атомные ядра можно считать построенными из протонов и нейтронов, причем электрический заряд их должен быть равен числу протонов, а массовое число — сумме числа протонов и нейтронов, т. е. должно быть равно числу нуклонов в ядре, если понимать под нуклоном как протон, так и. нейтрон. Тогда сразу же возник вопрос о природе сил, удерживающих вместе нейтроны и протоны. Если бы между [c.591]


    Исследования рассеяния электронов на атомных ядрах и связанные с ними открытия в области структуры нуклонов [c.778]

    Разработка т.наз. обобщенной модели атомного ядра Открытие тяжелой элементарной частицы нового типа [c.779]

    Для всех остальных элементов масса атомов больше суммы масс электронов и протонов, входящих в их состав. В начале 1920-х гг. разность указанных величин стали приписывать наличию в атомах еще одного типа частиц, названных нейтронами, однако в то время эти частицы еще не были обнаружены экспериментально. Нейтроны были открыты только в 1933 г. английским ученым Чедвиком при исследованиях ядерных реакций, и с этих пор считается установленным, что нейтроны являются элементарными частицами, входящими в состав атомного ядра наряду с протонами. [c.60]

    Атомное ядро может вступать в реакции и, следовательно, изменяться несколькими различными способами. Некоторые ядра неустойчивы и самопроизвольно испускают субатомные частицы и электромагнитное излучение. Такое самопроизвольное испускание частиц или излучения из атомного ядра называется радиоактивностью. Открытие этого явления Анри Беккерелем в 1896 г. описано в разд. 2.6, ч. 1. Изотопы, обладающие радиоактивностью, называются радиоактивными, или радиоизотопами. В качестве примера приведем уран-238, который самопроизвольно испускает альфа-лучи эти лучи представляют собой поток ядер гелия-4, называемьк альфа-частицами. Когда ядро урана 238 теряет альфа-частицу, оставшийся фрагмент ядра имеет атомный номер 90 и массовое число 234. Таким образом, он представляет собой не что иное, как ядро изотопа торий-234. Обсуждаемую реакцию можно описать следующим ядерным уравнением  [c.245]

    Из работ Мозли следовало, что с помощью рентгеновских лучей, образующихся при столкновении пучка электронов с металлической мишенью, можно измерить заряд атомного ядра. Именно в этой характеристике заключалось основное различие между атомными ядрами разных элементов, и Мозли назвал ее порядковым (атомным) номером элемента (рис. 4.11). Это позволило установить строгую последовательность элементов, не обращаясь к свойствам внешних частей атома, различным спектрам, связанным с его внешними частями (см. разд. 5.1), и к химическим свойствам элементов. Оказалось, что Мозли нашел способ измерения числа единичных положительных зарядов (позднее названных протонами) в атомном ядре. Это открытие позволило разрешить несколько невыясненных вопросов [c.64]

    Открытие нейтрона сыграло исключительно важную роль в науке. Оно привело прежде всего к созданию протонно-нейтронной модели атомного ядра, предложенной советским физиком Д. Д. Иваненко. Она существует и в настоящее время. [c.19]

    Атомное ядро. Раннее развитие теории внутриатомной структуры во многом обязано открытию радиоактивности. Встречающиеся в природе радиоактивные элементы испускают три вида лучей, одни из которых, а-лучи, представляют собой атомы гелия с двойным положительным зарядом. Энергия частиц, из которых состоят а-лучи, очень велика, и их можно использовать для бомбардировки вещества с целью выяснения деталей строения атомов. Если эти снаряды , обладающие высокой энергией, направить на тонкий лист из любого вещества, то большая часть их пройдет через него без заметного отклонения — результат, который подтверждает, что внутриатомные частицы очень малы по сравнению с объемом свободного пространства, которое они занимают. Однако иногда а-частица довольно заметно отклоняется, как будто бы она прошла вблизи материальной частицы, которая ее сильно оттолкнула. На основании таких наблюдений Резерфорд разработал теорию строения атомов, в которой атомы рассматриваются как частицы, состоящие из положительно заряженного ядра, занимающего исключительно малый объем, и окружающих его электронов. [c.21]

    Открытие атомного номера привело к установлению заряда ядра атома и соответственно к установлению числа планетарных электронов у каждого вида атомов. Но порядок расположения электронов, уровни их вращения по орбитам оставались неизвестными. Между тем становилось все более очевидным, что электронной структурой атомов определяются их химические и физические свойства, в частности валентность. [c.216]

    Первое искусственное осуществление ядерной реакции (Резерфорд, 1919) положило начало новому методу изучения атомного ядра. Открытие нейтронов (Чэдвик, 1932) привело к возникновению протонно-нейтронной теории атомных ядер, предложенной сначала Д. Д. Иваненко и Е, Н. Гапоном (1932) н в том же году Гейзенбергом. Вскоре Фредерик и Ирен Жолио-Кюри (1934) открыли явление искусственной радиоактивности В 1938 г. Хан и Штрассман осуществили деление атомного ядра урана, а в 1940 г. К. Д. Петржак и Г. Н. Флеров открыли явление самопроизвольного деления атомных ядер. В 40-х годах была осуществлена цепная ядерная реакция (Ферми) и вскоре был открыт новый вид ядерных превращений — термоядерные реакции. Дальнейшее развитие ядерной физики сделало возможным использование ядерной энергии. Позднее эти явления стали использовать при химических и биологических исследованиях. В настоящее время разрабатывается проблема осуществления управляемых термоядерных реакций. [c.19]

    В конечном итоге попытка открыть первый заурановый элемент обернулась великим открытием расщепления атомного ядра. С другой стороны, опыты, целью которых было изучение процессов деления, привели к открытию нептуния, а затем и других трансурановых элементов. [c.387]

    В статьях В. И. Ленин и физика , Ленин и современная физика , Ленин и философские проблемы современной физики С. И. Вавилов показывает образцы практического применения ленинского наследия для дальнейшего, развития науки об атоме и атомном ядре. Исходя из ленинского положения о неисчерпаемости электрона, о бесконечности материи вглубь , он анализирует выдающиеся открытия XX века в области строения вещества  [c.43]

    Одной из главных вех на пути создания новой физики было открытие Резерфордом в 1911 г. атомного ядра. Само существование атома Резерфорда находилось в вопиющем противоречии с основными законами классической физики. На смену старой физике пришла новая, квантовая физика, которая призвана была объяснить устойчивость атомов и их удивительные линейчатые спектры. [c.7]

    О важности кристаллофосфоров для современной техники уже упоминалось. Но еще до того как они получили распространение в промышленности, началось их использование в научных исследованиях, причем в этой области они сыграли исключительно большую роль. Достаточно упомянуть, что по свечению экрана из пла-тиносенеродистого бария, Ва [Р1(СМ)4] 4НгО, Рентген обнаружил названное его именем излучение, и что наблюдение сцинтилляций (вспышек люминесценции) под действием а-частиц на экране из сернистого цинка привело Резерфорда к открытию атомного ядра. И в настоящее время сцинтиллирующие монокристаллы Ыа1-Т1 и Сз1-Т1 и многочисленные приборы с люминесцентными экранами находят широчайшее применение в ядерной физике. Люминесценция является важнейшим средством изучения кристаллических материалов для оптических квантовых генераторов. Немаловажное значение имеет и то обстоятельство, что многие полупроводники (в том числе сульфид кадмия) являются в то же время кристалло-фосфорами. [c.9]

    Эту проблему разрешил Мозли (1914 г.). Он пока-... противоречия зал, что гораздо большее значение, чем относитель-устранили, расположив ные атомные массы, играют атомные номера (числа элементь в порядке протонов в атомных ядрах). Это открытие (разд. 1.5) увеличения зарядов послужило последним этапом в обосновании Перио-их ядер дической системы элементов. В современной Периодической системе элементы расположены в порядке возрастания их атомных номеров (зарядов атомных ядер). [c.50]

    Большой объем информации о фундаментальных частицах получен за последнее десятилетие. Ученые, работавшие в этой области, сделали множество совершенно еожиданиых открытий, изменяющих представления об окружающем мире. И как открытия в области науки об атомах и молекулах (рассмотренные в предшествующих главах), как открытия в области науки об атомных ядрах (о чем будет сказано в последующих разделах данной главы) глубоко воздействовали на повседневную жизнь, изменяя характер цивилизации ла Земле и, в частности, методы ведения войны, точно так же следует ожидать, что и овые знания в области фундаментальных частиц окажут столь же глубокое влияние на жизнь человечества. Если бы Бенджамин Франклин был жив сегодня, он имел бы все основания сказать Нельзя даже вообразить, каких высот достигнет в ближайшие двадцать лет власть человека над материей . [c.584]

    После проведения в 1945 г. последнего из таких экспериментов физики снова лишились возможности объяснить межнуклонные силы, но ненадолго, поскольку вскоре были открыты сильно взаимодействующие мезоны, получившие название пионов. Эксперименты по изучению космических лучей с использованием многослойной фотоэмульсии для фиксирования треков заряженных частиц, выполненные в 1947 г. английским физиком К. Ф. Пауэллом (1903—1969) и его сотрудниками, привели к открытию трех частиц положительного пиона, нейтрального пиона и отрицательного пиона с массовым числом 273,3 для я+ и я и 264,3 для я° эти частицы обладали способностью к сильному взаимодействию-с нуклонами, как это и было предсказано Юкавой. В настоящее время не вызывает сомнений, что межнуклонные силы, действующие в атомных ядрах, реализуются при участии пионов. Экспериментально было показано участие в межнуклонных силах как заряженных пионов, так  [c.594]

    Теория конденсированной матфии, в особеиностн жидкого гелия Вклад в теорию атомного ядра и элементарных частиц Открытие оболочечной структуры атомного ядра [c.778]

    Синтезы циклопентадиенил-аниона и циклооктатетраена, осуществленные в начале двадцатого столетия, совпали с новым пробуждением интереса к природе вещества. Открытие электрона, радиоактивности и атомного ядра активизировали научную мысль успехи в области физики были вскоре использованы при обсуждении строения молекул. Теории Косселя, Лангмюра, Льюиса и других позволили формально описать химические связи с участием электронов. Особенно плодотворной оказалась октетная теория Льюиса, в которой магическому числу восемь приписывалась важнейшая роль в образовании электронной валентной оболочки вокруг атомов. В 1925 г. Армит и Робинсон [17], модифицировав гексацентричесКую теорию Бамбергера на основе электронных представлений, предположили, что ароматический секстет, подобно октету, представляет собой особо устойчивую комбинацию электронов. Как и в случае октета, причина, почему шесть, а не четыре или восемь электронов принимают устойчивую конфигурацию, оставалась непонятной. Примерно в то же время Ингольд [18] предположил, что помимо структур Кекуле в основное состояние бензола могут вносить вклад структуры ара-связанного бензола Дьюара, и таким образом была создана резонансная картина бензола. [c.286]

    Открытие нейтрона привлекло к с бе пристальное внимание физиков. Возник вопрос какую роль играют нейтроны в Tpyji-туре атомного ядра В мае 1932 г. советский физик Д. Д. Иваненко (1904) выступил с идеей, что нейтроны наряду с протонами входят в структуру атомного ядра. Через две недели эта же идея была высказана В. Гейзенбергом (1901) и вскоре получила всеобщее признание. [c.218]

    О составе атомных ядер и энергии их образования. Изучение явления радиоактивности первоначально привело к предположению, что ядра различных атомов построены из протонов и электронов. Эта гипотеза долгое время была общепризнанной. Однако последующее изучение ядерных реакций, открытие нейтронов Чедвиком и выявившаяся возможность выделения нейтронов из любых атомных ядер (кроме протона) привели к отказу от ранее принятой гипотезы. Д. Д. Иваненко и Е.Н. Га-пон (1932) и Гейзенберг (в том же году) высказали и обосновали положение, что атомные ядра состоят 8 88 90 92 9 из протонов и нейтронов, и предложили протонно-нейтронную теорию Рис. 8. Энергетические уровни 5/ атомных ядер и 6 -подуровией электронов в ато- [c.51]

    Этот факт был осознан довольно давно. Например, вскоре после открытия электрона в 1897 г. Томсон пытался разработать электронную теорию валентности. Аналогичные попытки предпринимали другие ученые, в особенности Льюис, Ирвинг Ленгмюр и Коесель. Указанные теории имели один весьма серьезный дефект — электроны рассматривались как покоящиеся электрические заряды. Эта ситуация хорошо иллюстрируется геометрической моделью Ленгмюра, в которой каждое атомное ядро находится в центре воображаемого куба, а в вершинах последнего располагаются электроны. Предполагалось, что при химическом соединении двух атомов их кубы [c.15]

    Радиохимия имеет ряд фундаментальных достижений открытие радия и синтез множества радиоактивных изотопов, выяснение сути радиоактивного распада ядер. Достопримечательно, что явление, лежащее в основе всей атомной энергетики, — деление атомного ядра — открыто именно ири помощи радиохимических методов (О. Ган и Ф. Штрасман). [c.22]

    Начиная с работ Кюри, химики всегда играли главную роль в фундаментальных исследованиях радиоактивности и свойств ядер, а также в разработке методов применения радиоактивных веществ в других областях. Так, Нобелевская премия 1944 г. за открытие деления ядер была присуждена химику Отто Гану. В 1951 г. Нобелевская премия за открытие двух первых в Периодической системе трансурановых элементов была присуждена химику Гленну Сиборгу и его коллеге — физику Эдварду Мак-Миллану. Большая часть достижений в нашем понимании природы атомного ядра — это плод совместной работы химиков и физиков, где искусство и подходы дополняют друг друга. Более того, использование явления радиоактивности и основанных на ней методов в таких различных областях J aк биология, астрономия, геология, археология и медицина, а также в различных областях химии до сих пор было и продолжает оставаться ареной пионерских работ специалистов, получивших подготовку по ядерной химии. Поэтому ядерная химия имеет междисциплинарный характер. [c.200]


Смотреть страницы где упоминается термин Открытие атомных ядер: [c.145]    [c.186]    [c.222]    [c.229]    [c.191]    [c.542]   
Смотреть главы в:

Химия -> Открытие атомных ядер




ПОИСК





Смотрите так же термины и статьи:

Атомное ядро

Открытие ядра



© 2025 chem21.info Реклама на сайте