Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллы зависимость от времени

    В свое время В. Г. Хлопин высказал предположение, что для внутренне-адсорбционных систем должна наблюдаться обратная, по сравнению с аномально смешанными кристаллами, зависимость между величиной константы фракционирования и концентрацией распределяющегося вещества. Если в случае осаждения кристаллографически сходных солей иногда имеет место процесс внутренней адсорбции, то при определенной концентрации микрокомпонента все активные адсорбционные центры внутри кристаллической решетки будут заполнены при дальнейшем увеличении концентрации распределяющегося вещества константа фракционирования должна уменьшаться. Таким образом, изучение зависимости величины константы [c.120]


    По виду зависимости от начального пересыщения выражение (19) совпадает с выражением, полученным для продолжительности индукционного периода в [6] из других соображений. Однако уравнение (19) отличается большей общностью, так как получено в результате решения уравнения материального баланса и, следовательно, в нем учтен не только процесс зародышеобразования, но и процесс роста кристаллов во время индукционного периода. [c.39]

    Внутренняя адсорбция. В условиях химического анализа осадок не вносится в раствор в готовом виде, а образуется в нем по мере прибавления осадителя. При этом возникают сначала мельчайшие зародышевые кристаллы, которые постепенно растут, причем поверхность их непрерывно обновляется за счет отложения все новых и новых слоев соответствующего вещества. В то же время эта постоянно обновляющаяся поверхность кристалла все время адсорбирует различные посторонние примеси из раствора. В процессе роста кристалла эти примеси постепенно вытесняются ионами, входящими в состав кристаллической решетки осадка. Однако такое вытеснение обычно происходит недостаточно полно. В зависимости от условий осаждения, большая или меньшая часть посторонних примесей, первоначально находившихся на поверхности частиц, оказывается отделенной от раствора вновь отложившимися слоями вещества. Такой захват первоначально адсорбированных веществ внутрь кристаллов в процессе их роста называется внутренней адсорбцией. [c.117]

    Согласно приведенной теории, кристалл данного вещества может иметь только одну характерную для него форму. Однако это противоречит хорошо известным фактам о существенном изменении габитуса кристалла в зависимости от условий его роста (степени пересыщения раствора, температуры и т. д.). Таким образом, теория Гиббса — Кюри — Вульфа не может быть использована для объяснения конечных форм роста кристаллов, на что непосредственно указывал и сам Гиббс, предлагая свой вывод лишь для кристаллов, находящихся в равновесии с раствором. Следовательно, речь здесь может идти только о кристаллах субмикроскопических размеров, для которых, очевидно, еще сохраняется зависимость растворимости от их размера . В самом деле, по мере увеличения размера кристалла уменьшается относительная роль поверхностной энергии в значении полного термодинамического потенциала. Нарушение же термодинамического равновесия при изменении формы кристалла может компенсироваться неоднородностью состава и температуры окружающего раствора, а также количеством и качеством дефектов, возникающих на различных гранях кристалла во время его роста. [c.83]


    При одном и том же содержании углеродных атомов в молекуле наиболее высокой температурой плавления обладают нормальные алканы, где дисперсионному взаимодействию подвергаются все углеродные атомы соседних молекул. С разветвлением структуры молекул такая возможность вследствие их иной ориентации понижается, что объясняет более низкую температуру кристаллизации. В твердом состоянии молекула алкана расположена упорядоченно, образуя кристаллы различной структуры, преимущественно большие агрегаты достаточно гибких кристаллов. Процесс кристаллизации складывается из двух стадий стадия образования центров кристаллизации (или зародышей) и стадия роста этих центров. Вторая стадия кристаллизации — многоступенчатый процесс, который по различным причинам (например, вследствие возникновения механических напряжений) может останавливаться на любой промежуточной стадии. Монокристаллы образуются только в особых условиях. Обе стадии кристаллизации сильно зависят от температуры. Понижение температуры благоприятствует образованию зародышей кристаллизации, но в то же время уменьшает молекулярную подвижность, а вместе с ней и скорость роста кристаллов. Поэтому температурная зависимость скорости кристаллизации проходит через максимум. Большинство алканов имеет несколько аллотропических модификаций, кристаллизуясь в гексагональной, триклинной, моноклинной и орторомбической формах. Некоторые [c.190]

    В последнее время широкое применение в качестве адсорбентов получили молекулярные сита. Примером таких сит являются цеолиты, кристаллы которых построены из чередующихся кремне- и алюмокислородных тетраэдров и содержат поры с диаметром от 4 до 7,5 А в зависимости от типа цеолита. Рыхлые пространственные решетки цеолитов способны поглощать и удерживать достаточно малые молекулы, в то время как большие молекулы в эти решетки проникнуть не могут. На этом и основано молекулярноситовое действие цеолитов, используемых для осушки, разделения смесей паро и выделения растворенного вещества из растворов. В частности, осушка органических растворителей с помощью цеолитов основана на том, что молекулы воды (диаметр 2,75 А) легко проникают в узкие поры кристаллов цеолита, в то время как большие по размерам молекулы растворителя в такие поры не попадают. [c.111]

    Для кристаллических тел теплоемкость при постоянном объеме сравнительно мало отличается от теплоемкости при постоянном давлении. В то же время в практике исследования теплоемкости кристаллов, как правило, получают Ср. Поэтому при выяснении характера периодической зависимости теплоемкости воспользуемся данными по Ср. [c.84]

    Долгое время не удавалось экспериментально подтвердить правильность соотношений (62.12) и (62.16). Это можно объяснить, во-первых, тем, что реальная структура поверхности кристалла оказывается гораздо более сложной, чем предполагалось в теории Фольмера и Эрдей-Груза. Так, на кристаллической поверхности электрода имеются ступени атомной высоты s, выступы, или кинки к, реберные вакансии I и дырки h (рис. 169). Во-вторых, поверхность электрода в ходе электроосаждения непрерывно изменяется, а потому меняется истинная плотность тока, а следовательно, и перенапряжение. В результате обычный метод снятия стационарных поляризационных кривых имеет ограниченные возможности. Наконец, на практике стадия образования зародышей не всегда оказывается наиболее медленной. В зависимости от природы металла и условий опыта процесс электрокристаллизации может лимитироваться диффузией реагирующих частиц к поверхности, химическими реакциями в объеме раствора и на поверхности электрода, стадией разряда, а также поверхностной диффузией разрядившегося иона (адатома) и встраиванием его в кристаллическую решетку. Поэтому количественная проверка изложенной теории оказалась возможной лишь после того, как в 50-х го- [c.331]

    Между четырьмя агрегатными состояниями нет резких границ. В зависимости от природы веществ, образующих систему, а также температуры и давления, возможно существование промежуточных или переходных агрегатных состояний. В настоящее время известно свыше 3000 веществ, образующих так называемые жидкие кристаллы . Широко известна способность расслоения некоторых газообразных смесей при сверхвысоких давлениях, аналогичная поведению жидкостей. [c.72]

    Зависимость теплоемкости кристаллов от температуры в данное время дается на основе квантовой теории. Еслн классической теорией теплоемкости для газов принимается, что вся теплота, идущая на нагревание, расходуется главным образом на увеличение энергии поступательного движения и вращения молекул, то у твердых тел она идет полностью (или почти полностью) на увеличение колебательной энергии составных частей кристаллической решетки око- [c.63]


    Из сказанного следует, что какова бы ни была предыдущая обработка образцов германия и кремния, их поверхностный потенциал постепенно принимает вполне определенное для данной среды значение. Время установления равновесия, т. е. постоянного значения ф , может очень сильно колебаться в зависимости от окружающей среды, температуры и предыдущей обработки кристалла, однако при температурах порядка 400° К оно редко превышает 2—100 часов. Поэтому для поддержания постоянного значения поверхностного потенциала совершенно необходимо, чтобы кристалл полупроводника находился в неизменной по своему химическому составу атмосфере. [c.209]

    Поглощение лучей — частичная передача их энергии атомам — зависит от элементного состава кристалла, его объема и, что самое существенное, от его формы. В настоящее время разработаны достаточно совершенные методы учета этой зависимости. Поскольку, однако, точное описание формы ограненного кристалла встречает определенные трудности, предпочтительно произвести предварительную обработку кристалла — придать ему форму цилиндра или сферы. Поглощение в кристаллах цилиндрической или сферической формы учитывается и проще, и надежнее, чем в ограненных кристаллах. [c.74]

    В отличие от упомянутых в предыдущем параграфе модельных, наглядных представлений о химической связи квантовомеханический подход есть способ математического описания состояния (энергетического, пространственного) электрона в той или иной-системе (атоме, молекуле, кристалле и т. п.). Естественно, что может существовать и на самом деле существует несколько математических методов решения одной и той же квантовомеханической задачи о движении электрона. Эти методы не очень строго называют теориями химической связи, хотя они тождественны в своей физической основе и опираются на один и тот же расчетный аппарат волновой механики при этом, однако, различаются исходные позиции и из-за вынужденной приближенности расчетов (как уже отмечалось в гл. 4, уравнение Шредингера точно решается в настоящее время только в случае одноэлектронной задачи) отличаются количественные результаты, получаемые при различных степенях приближения. Поэтому в зависимости от объекта рассмотрения (конкретной молекулы) или поставленной задачи используются разные более или менее равноправные методы. Здесь будут рассмотрены два из них метод валентных связей (ВС) и метод молекулярных орбиталей (МО) первый благодаря его большей наглядности и связи с предыдущими теориями хид и-ческой связи, в частности с теорией Льюиса—Ленгмюра электронных пар, а второй — из-за лучшего описания строения и свойств, молекул при использовании его простейшей формы. [c.107]

    Рентгеноструктурный анализ. Он применяется при исследовании структуры кристаллов, жидкостей и аморфных тел. В то же время рентгеноструктурный анализ — основной метод установления структуры кристаллических решеток твердых тел. Неорганическая и органическая кристаллохимия главным образом обязана результатам рентгеноструктурного анализа неорганических и органических веществ. В зависимости от цели и особенностей объекта исследования для получения дифракционной картины используют непрерывное тормозное или дискретное характеристическое излучение в том или ином методе рентгеноструктурного анализа (РСА). Исследование кристаллической структуры различными методами РСА позволяет определить размеры и симметрию элементарной ячейки, а также расположение атомов и молекул в твердом теле. [c.195]

    Кварц и кварцевое стекло. Кристаллы кварца бывают природные, а в настоящее время их готовят искусственно, причем качество кристаллов, полученных в промышленных условиях, выше, так как они более однородны. Кристаллы кварца вращают плоскость поляризации вправо или влево в зависимости от расположения тетраэдров [ЗЮц]" , образующих зеркальную симметрию (правый и левый кварцы). Кристалл кварца — шестигранная призма, завершенная двумя пирамидами, с рядом дополнительных граней. Оптическая ось 2 является главной осью симметрии. Оси х и у, перпендикулярные оси I и показанные в сечении на рис. 196, формируют пьезоэлектрический эффект, так как кварц является сегнетоэлектриком. Специальным образом вырезанные из кристалла пластинки позволяют преобразовывать механические напряжения в электрические и наоборот. Поэтому кварц является весьма ценным материалом (пьезодатчики, генераторы ультразвуковых колебаний, стабилизаторы частоты и т. д.). [c.419]

    Анионы — отрицательно заряженные частицы, в состав которых входят отдельные атомы или группы атомов различных химических элементов. Анион в зависимости от его состава может нести один или несколько отрицательных зарядов. Анионы наряду с катионами являются продуктом электролитической диссоциации молекул солей, кислот и оснований. Анионы существуют в водных и неводных растворах, а также в расплавах и кристаллах веществ с ионной решеткой. Большинство анионов имеет более сложный состав, чем катионы. В состав многих анионов входит несколько атомов, в то время как большинство катионов состоит только из одного атома. [c.241]

    А. А. Берлин при изучении трехмерных полимеров олигоэфира,крилатов отметил [135], что механическая прочность реальных густосшитых олигомерных сеток на несколько порядков ниже расчетных значений, определенных на основе представлений об однородных непрерывных сетках. Анализируя этот факт, он указал, что трехмерная полимеризация олигоэфиров (ОЭА) уже на ранних стадиях не является гомогенным процессом и характеризуется различными скоростями в локальных структурных областях и усредненном объеме. К числу фактов, которые не укладываются в рамки традиционных представлений о гомогенной радикальной полимеризации виниловых мономеров, относятся аномально высокие константы скорости роста цепи для тетрафункциональных ОЗА и зависимость константы скорости роста от молекулярной массы олигомера, возрастание начальной скорости полимеризации ОЭА при введении в состав молекул олигомера ароматических ядер или полярных групп и т. д. 135]. Эти наблюдения находят объяснение при учете ассоциативных образований, существующих в олигомерных жидкостях и подобных надмолекулярным образованиям типа жидких кристаллов. Если время жизни (продолжительность структурной релаксации) ассоциата Ха больше, чем продолжительность существования активного центра при полимеризации т, то ближний порядок жидкости при этом фиксируется в твердом полимере. Экспериментально показано, что Ха —10- с , а х л 10 , с [135], т. е. что Та Т.  [c.69]

    Для жирных кислот предельное значение о равно 20,5 A т. е. больше соответствующего значения 18,5 А , рассчитанного из структуры трехмерного кристалла. Одно время предполагалось, что цепи одинаково отклонены от вертикали на 26°. При таком угле наклона не исключена также возможность взаимного пересечения з у загообразных углеводородных цепей. Однако, как отмечалось в ра(ботах [93, 94], площадь 20,5 А на молекулу можно получить и без предположения о наклоне цепей, а лишь исходя из предпочтительной упаковки карбоксильных групп на поверхности. Расчет энергии электростатического взаимодействия плотноупакованных диполей показывает, что она может быть положительной или отрицательной — в зависимости от геометрии решетки [95]. Однако общий вывод сводится к тому, что вклад электростатического взаимодействия всегда мал по сравнению с вкладом сил притяжения между углеводородными хвостами. [c.118]

    Чтобы избежать перекристаллизации и изменения поверхности кристаллов во время адсорбции, что могло отразиться на эманирующей способности соли, в качестве адсорбента была использована суспензия, хранившаяся в течение нескольких лет, и адсорбция производилась в течение очень краткого времени — 5 мин. Таким путем исключались перекристаллизация и изменение поверхности адсорбента. В качестве примера приведе-дены кривые зависимости коэффициента эманирующей способности от температур для сокристаллизованных сернокислого и азотнокислого бария и радия. Из рис. 145, 146 видно, что в случае гомогенного распределения изотопов радия эманирование при комнатной температуре ничтожно мало. Резкий скачок на кривой имеет место при температуре разрыхления решетки. В слу- [c.262]

    Сделать массу более жидкой можно двумя путями повысить температуру в реакционной зоне до расплавления кристаллов или увеличить мольное соотношение фзнола к ацетону. Первый путь нежелателен из-за увеличения выхода побочных продуктов и ух ше-ния качества дифенилолпропан что будет показано ниже. лее целесообразен второй путь — увеличение мольного соотношения, так как при этом не только обеспечивается хорошая подвижность массы, но получаются почти теоретические выходы качественного продукта за короткое время. Изменение температуры кристаллизации в зависимости от мольного соотношения фенола к ацетону и выхода дифгнилолцропана можно иллюстрировать данными автервв- [c.122]

    Во многих случаях удельная активность, в зависимости от температуры предварительного прокаливания катализатора, имеет максимум. На рис. XIII, 4 показан пример подобной зависимости для серебряных катализаторов разложения муравьиной кислоты. В то время как общая поверхность катализатора в результате термического роста кристаллов закономерно уменьшается с увеличением температуры двухчасового предварительного прогрева, удельная активность имеет отчетливый максимум примерно при 600° С. [c.338]

    Твердые углеводороды масляных фракций нефти, как указывалось выше, относятся к изоморфным и в то же время полиморфным веществам, которые в зависимости от условий кристаллизации и фракционного состава сырья в процессах депарафинизации и обезмасливаиия могут образовывать смешанные кристаллы, эвтектические смеси или кристаллизоваться раздельно. Образование кристаллов той или иной формы, а также эвтектических смесей имеет большое значение с точки зрения отделения твердой фазы от жидкой. Для обеспечения нормального роста кристаллов необходимы оптимумы концентрации твердых углеводородов в растворе и вязкости последнего. [c.150]

    Порционная подача растворителя эффективна при депарафинизации и обезмасливании дистиллятного сырья, причем широкого фракционного состава. При депарафинизации рафинатов узкого фракционного состава или остаточных [32, 59] такой способ подачи растворителя менее эффективен в силу большей однородности состава твердых углеводородов и сравнительно низкого содержания в остаточном сырье углеродородов парафинового ряда. Содержащиеся в нем твердые циклические углеводороды образуют мелкие кристаллы смешанного типа. В то же время лабораторные исследования [55] изменения структурной вязкости суспензий твердых углеводородов остаточного рафината в растворе ацетон (35%)—толуол (65%) показали, что в зависимости от способа подачи растворителя структурная вязкость суспензии изменяется в широких пределах (рис. 52). Это объясняется тем, что при небольшом пересыщении раствора в начальный момент охлаждения на образовавшихся центрах кристаллизации начинается рост кристаллов, при этом вязкость суспензии почти не изменяется. [c.151]

    При очень низких температурах, которые стали доступными в настоящее время (см. примечание на стр. 111), составляющая теплоемкости Ср, обусловленная энергией колебания атомов и ионов, образующих кристаллическую рещетку, становится очень малой — большей частью не превышает 10 —10 кал/ град г-атом). В этих условиях в металлических кристаллах выявляется составляющая теплоемкости, обусловленная движением электронов. Эти две составляющие могут быть определены раздельно благодаря сильному различию их зависимости от температуры. Первая из них Ср, реш возрастает с повышением температуры прямо пропорционально третьей степени температуры, а вторая Ср,эц (кроме сверхпроводников в области сверхпроводимости) — пропорциональна первой степени ее. В соответствии с этим температурная зависимость суммарной теплоемкости может быть представлена в форме [c.154]

    Квантовомеханическое исследование процесса взаимодействия молекулы гзза с поверхностью кристалла показывает, что в зависимости от вида молекулы и кристаллической решетки такое взаимодействие может быть различным как по характеру образующейся связи и прочности ее, так и по изменению свойств молекулы в адсорбированном состоянии. В образовании связи могут принимать участие электроны или дырки кристаллической решетки ( 55). Связь может образоваться не только за счет имевшихся свободных валентностей поверхностных атомов, но и за счет валентностей, возникаюш,их при взаимодействии поверхностных атомов с молекулой газа. В хемосорбированном состоянии молекула может вновь оказаться в валентно насыщенном состоянии или перейти в состояние радикала или в ионо-радикальную форму. Во многих случаях за время пребывания молекулы в хемосорбированном состоянии может изменяться характер связи ее с поверхностью кристалла, состояние ее и энергия связи. Для полупроводниковых адсорбентов введение донорных или акцепторных примесей, вызывая изменение в соотношении энергетических уровней электронов в кристалле, может влиять ыа характер хемосорбционных процессов. Подобное же влияние могут оказывать и различные структурные дефекты поверхности. [c.371]

    Темпцжтура. Поскольку энергии активации отдельных реакций термолиза различаются между собой весьма существенно, то температура как параметр управления процессом позволяет обеспечить не только требуемую скорость термолиза, но и регулировать соотношение между скоростями распада и уплотнения, а также, что особенно важно, между скоростями реакций поликонденсацни, тем самым меняя свойства фаз и условия кристаллизации мезофазы. При этом регулированием продолжительности термолиза представляется возможным обрывать на требуемой стадии "химическую эволюцию в зависимости от целевого назначения процесса. Для получения кокса с лучшей упорядоченностью структуры коксования сырья целесообразно проводить при оптимальной температуре. При пониженных температурах из-за малой скорости реакций деструкции в продуктах термолиза будут преобладать нафтено-ароматические структуры с короткими алкильными цепями, которые препятствуют дальнейшим реакциям уплотнения и форхшрованию мезофазы. При температурах выше оптимальной скорости реакций деструкции и поликонденсации резко возрастают. Вследствие мгновенного образования большого числа центров кристаллизации коксующийся слой быстро теряет пластичность, в результате чего образуется дисперсная система с преобладанием мелких кристаллов. Возникающие при этом сшивки и связи между соседними кристаллами затрудняют перемещение и рост ароматических структур. Более упорядоченная структура кокса получается при средних (оптимальных) температурах коксования ( 480 С), когда скорости реакций деструкции и уплотнения соизмеримы со скоростью роста мезофазы. Коксующийся слой при этом более длительное время остается пластичным, что способствует формированию крупных сфер мезофазы и более совершенных кристаллитов кокса. [c.63]

    Парафины, применяемые в упаковочной промышленности, должны обладать низкой пароводопроницаемостью, определяемой количеством водяных паров, проникающих через единицу площади парафинированной бумаги за определенное время [39, 40]. Изучение пароводопроницаемости показало, что водяные пары не проникают через кристаллы парафина, а проходят между ними. Скорость проникновения водяных паров зависит от природы, размера кристаллов парафина, их ориентации в парафинированном слое, а также от способа введения парафина в материал, последующей обработки парафинированного материала, условий его хранения и применения. В зависимости от этих показателей паро-водопроницаемость изменяется от 0,01 до 1,7 г водяных паров на 1 л 2 в сутки [40]. [c.61]

    В последнее время все большее применение в качестве адсорбентов и катализаторов находят цеолиты, как природные, так и синтетические. Цеолиты — это алюмосиликаты, обладающие строго регулярной кристаллической структурой. Каркас кристалла цеолита состоит из структурных тетраэдрических элементов 8104 и А1О4 , соединенных между собой общими атомами кислорода. Отрицательный заряд каркаса благодаря наличию в нем трехзарядного алюминия компенсируется зарядом катионов щелочных и щелочноземельных металлов, располагающихся в полостях структуры. В зависимости от кристаллической структуры окна этих полостей имеют размеры 0,4—1,1 нм (соизмеримые с размерами молекул). Поэтому на цеолитах могут адсорбироваться только те вещества, молекулы которых имеют размер по наименьшей оси (критический диаметр) меньше диаметра окна полости. Отсюда второе название цеолитов — молекулярные сита. Цеолиты жадно поглощают воду, и поэтому широко применяются для осушки газовых и некоторых жидких сред. При нагревании вода из них испаряется, с чем и связано нх название — цеолиты (кипящий камень — кипеть, литое — камень). Цеолиты научились синтезировать совсем недавно (1948). Особенностью их синтеза является процесс кристаллизации после получения алюмосиликагеля. [c.130]

    В последнее время, однако, получен ряд неопровержимых фактов, свидетельствующих- о нелинейной зависимости между изменением активности и дисперсности. П. Д. Данков [47] высказал сперва предположение о возможности существования максимума химической активности при некоторых определенных размерах кристаллов, после чего с дальнейшим увеличением дисперсности и уменьшением величины кристаллов активность должна падать. П. Д. Данков и А. А. Кочетков [48] доказали экспериментально, на примере разложения Н.р. и гидрирования С2Н4 над Р1, что существует острый максимум активности при линейных размерах кристаллов [c.150]

    При термообработке нефтяных остатков образуется анизотропная фаза, получившая название мезофазы, которая по своим оптическим и физическим свойствам напоминает нематические хщкие кристаллы С I 3. В настоящее время сложились определенные представления о структурной организации жидкокристаллических сфер мезофазы - это упакованные определенным образом плоские дископодобные молекулы С 2 Д. Проведены многочисленные исследования, направленные на выявление зависимости характера протекания мезофазных превращений от различных факторов-тешературы, давления, химического состава сырья [3,4 Л. Но, несмотря на общепризнанность факта формирования структуры кокса на стадии мезофазных превращений, в литературе не показано, как влияет динамика изменения сфер мезофазы на структуру получаемого продукта карбонизации. [c.47]

    Исследованиями ученых многих стран установлено, что к соединениям переменного состава относятся не только оксиды, но н субоксиды, халькогениды, силициды, бориды, фосфиды, нитриды, многие другие еорганические вещества, а также органические высокомолекулярные соединения. Во всех случаях, когда сложное вещество имеет молекулярную структуру, оно представляет собой соединение постоянного состава с целочисленными стехиометриче-скими индексами. Некоторые ионные кристаллы и даже атомные кристаллы и металлы могут также подчиняться законам стехиометрии. Но в случае немолекулярных кристаллов, как отмечает Б. Ф. Ормонт, уже не молекула, а фаза т. е. коллектив из Л/о (числа Авогадро) атомов, определяет свойства кристаллической решетки . Он предлагает для подобных веществ расширить формулировку закона постоянства состава Если... в твердом агрегатном состоянии соединение не имеет молекулярной структуры, то в зависимости от строения атомов и вытекающего отсюда строения фазы и характера химической связи в ней состав соединения и его свойства могут сильно зависеть от путей синтеза. Даже при одном и том же составе свойства могут сильно зависеть от условий образования . Б. Ф. Ормонт подчеркнул необходимость исследования зависимости условия образования—состав — строение — свойства,— направленного. на установление связи между условиями образования, химическим и фазовым составом системы, химическим составом и строением отдельных фаз и их свойствами. Нетрудно заметить, что добавление к обычной формуле, закона постоянства состава слов состав срединения зависит от условий его образования ,— лишает закон постоянства состава его смысла. В то же время указание на важность изучения в связи с проблемой стехиометрии не только состава, но и строения твердых веществ представляется очень существенным. [c.165]

    Понижение температуры замерзания растворов. Температурой замерзания жидкости является такая температура, при которой давление насыщенного пара над кристаллами льда и над жидкостью одинаково. Это равенство давлений выражает достигнутое системой состояние равновесия, при котором лед, жидкость и пар могут сосуществовать длительное время. Чтобы определить температуры замерзания чистого растворителя (Т1) и растворов (F,, T f), необходимо найти точки пересечения кривой 4 с кривыми I, 2, 3 и опустить перпендикуляр на ось абсцисс (рис. 5.3). Кривая 4 выражает температурную зависимость давления насыщенного пара растворителя над твердой фазой. Переход твердой фазы в пар характеризуется молярной теплотой возгонки (ДЯвозг). Она больше молярной теплоты испарения. Если Д//аозг> А//исп, то в уравнении Клапейрона — Клаузиуса (4.10) (dp/d7 ),,. > (d/7/dT ) , поэтому кривая 4 идет круче кривых /, 2, 3. Найденные температуры замерзания указывают на то, что раствор замерзает при более низкой температуре, чем чистый растворитель. Температура замерзания раствора тем ниже, чем больше его концентрация ( , > 7 з> 7 э ). [c.80]

    Лизоцим в зависимости от условий кристаллизуется с образованием ряда полиморфных форм — тетрагональной, триклииной, моноклинной, орторомбической [29, 30]. Наиболее известна тетрагональная структура, с использованием которой и было получено большинство рентгеноструктурных данных. По мнению самого Филлипса [5], тетрагональная структура кристаллического лизоцима имеет один серьезный недостаток — молекулы фермента в ней подходят друг к другу особенно плотно и взаимодействуют в области участков Е и Р активного центра, что не позволяет наблюдать связывание сахаров с данными участками без разрушения кристаллов. Это, видимо, стимулировало изучение других кристаллических форм лизоцима [29—31], хотя и без особого успеха в выявлении новых деталей строения активного центра и механизма его действия. Более того, выяснилось, что триклигшый лизоцим еще менее пригоден в данном отношении для исследований, поскольку у него в кристаллической ячейке взаимно блокированы три участка активного центра — О, Е и Е [32, 33]. По предварительным данным, моноклинная и орторомбическая формы кристаллического лизоцима страдают тем же недостатком [34, 34а]. В настоян ее время надежды возлагаются на лизоцимы из других источников, такие как лизоцим из белка яиц черепахи [34], четвертичная структура которого практически идентична лизоциму из белка куриных яиц, но кристаллы содержат аномально большое количество воды. Возможно, и этом случае активный центр фермента будет более доступен для аналогов субстрата и эффекторов и соответствующий рснгеноструктурный анализ приведет к более определенным выводам о топографии связывающих участков активного центра. [c.154]

    На рис. 9.3 показано изменение энергии Гиббса системы ЛО в зависимости от размера г образующегося кристалла. Субмикрокристалл, для которого работа образования максимальна, называют критическим зародыилем. Ассоциаты с размерами, большими критического, устойчивы и становятся зародышами, вырастающими в кристалл. Метастабильная фаза может существовать неопределенно долгое время, но при появлении в ней зародыша стабильной фазы она превращается в эту стабильную фазу. [c.240]

    Дальнейшее развитие теории катализа тесно связано с исследованием состояния катализатора во время реакции. Принципы структурного и энергетического соответствия, оставаясь решающими, должны относиться к системе катализатор — реагирующее вещество, сложившейся ко времени достижения стационарного состояния катализатора. Степень окисления поверхностных атомов катализатора, природа лигандов и состав промежуточного координационного комплекса определяют направление реакции и лимитирующие стадии. Решающую роль играют методы определения состояния катализатора и всей системы во время реакции. Одним из таких методов является измерение потенциала (или электропроводности) катализатора во время реакции. Легче всего это сделать в проводящих средах как в жидкой, так и в газовой фазе для гетерогенных и гомогенных катализаторов. В окислительно-восстановительных процессах структурным фактором являются не только размеры кристаллов и параметры решеток, но и кислотно-основные характеристики процессов. Всякая поверхность или комплексное соединение представляют собой кислоту или основание по отношению к реагирующему веществу, а это определяет направленность (ориентацию) и энергию взаимодействия вещества с катализатором. Для реакции каталитической гидрогенизации предложена классификация основных механизмов, основанная на степени воздействия реагирующего вещества на поверхность катализатора, заполненную водородом. В зависимости от природы гидрируемого вещества в реакции участвуют различные формы водорода. При этом поверхность во время реакции псевдооднородна, а энергия активации— величина постоянная и зависящая от потенциала поверхности (или раствора). Несмотря на локальный характер взаимодействия, поверхность в реакционном отношении однородна и скорость реакции подчиняется уравнению Лэнгмюра — Хиншельвуда, причем возможно как взаимное вытеснение адсорбирующихся веществ, так и синергизм, т. е. увеличение адсорбции БОДОрОДЗ ПрИ адсорбции непредельного вещества. Таким образом, созданы основы теории каталитической гидрогенизации и возможность оптимизации катализаторов по объективным признакам. Эта теория является продолжением и развитием теории Баландина. [c.144]

    При экспериментальном изучении кинетики зароды-шеобразования определяют либо зависимости числа зародышей от времени, либо время возникновения первой частицы при заданном перенапряжении. Для расчета кинетической константы и работы образования зародышей по Фольмеру находят среднюю скорость возникновения кристаллов либо среднее время образования первого зародыша. [c.236]

    Кинетическая модель. Опыт показывает, что прочность твердых тел зависит не только от температуры, но и от времени действия нагрузки. Так, образец, разорванный (при Т — onst) за короткое время, обладает повышенной прочностью по сравнению с таким же образцом, разорванным за больший промежуток времени. Зависимость прочности от времени при статической нагрузке, получившая название статической усталости материала, наблюдалась многими исследователями в стеклах, полимерах, металлах, ионных кристаллах и т. д. Влияние времени на прочность модель Гриффитса не объясняет. В модели Инглиса—Зинера временная зависимость прочности связывается с перераспределением со временем напряжения в отдельных областях напря- [c.182]


Смотреть страницы где упоминается термин Кристаллы зависимость от времени: [c.23]    [c.183]    [c.904]    [c.117]    [c.43]    [c.192]    [c.95]    [c.15]    [c.149]    [c.64]    [c.177]   
Основы техники кристаллизации расплавов (1975) -- [ c.99 ]




ПОИСК







© 2025 chem21.info Реклама на сайте