Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Подобие физическое моделирование

    Методы подобия (физическое моделирование) применимы при проектировании сравнительно простых процессов и операций, в частности протекающих в однофазных системах с фиксированными границами, при небольших изменениях масштабов. Для анализа двухфазных систем со свободными поверхностями (процессов, осложненных химическими реакциями), а также процессов с многозначной стохастической картиной связи между явлениями использование методов физического моделирования затруднительно. Основным методом расчета и анализа сложных систем реакторов стал метод математического моделирования. [c.31]


    Для сравнительно простых гидродинамических и тепловых систем методом физического моделирования можно получить удовлетворительные результаты, так как в этих случаях можно оперировать с ограниченным числом критериев подобия. Физическое моделирование имеет много достоинств  [c.198]

    Технологический процесс и аппарат, в котором он происходит, исследуют, как правило, в лабораторных условиях на модели промышленного аппарата. С помощью теории подобия (физического моделирования) можно определить, каким условиям должна удовлетворять модель, чтобы результаты проведенных в ней опытов могли быть адекватно перенесены на промышленную установку. [c.23]

    Исторически в исследованиях наибольшее распространение получил метод физического моделирования, согласно которому связи между физическими величинами устанавливаются только в пределах данного класса явлений. В таком случае основные уравнения, опис ыв щие процесс, преобразуются в группу критериев подобия, которые являются инвариантными к масштабам реактора. Это позволяет результаты исследований на модели переносить (масштабировать) на промышленный аппарат. Поскольку химический процесс характеризуется одновременно р личными классами физических и химических явлений, то при физическом моделировании его с изменением масштаба физической модели реактора инвариантности критериев подобия достичь не удается. Стремление сохранить при изменении масштабов постоянство одних критериев приводит к изменению других и в конечном счете к изменению соотношения отдельных стадий процесса. Следовательно, перенос результатов исследования с модели реактора на его промышленные размеры становится невозможным. При математическом моделировании указанное ограничение автоматически снимается, так как необходимости в переходе от основных уравнений к форме критериальной зависимости здесь нет, нужно иметь лишь описание химического процесса, инвариантного к масштабам реактора. При этом количественные связи, характеризующие процесс, отыскиваются в форме ряда чисел, получаемых как результат численного решения на электронных вычислительных машинах. [c.13]

    Принцип подобия оправдывает себя при физическом моделировании, так как для сравнительно простых гидравлических или тепловых систем можно получить удовлетворительные результаты, используя ограниченное число критериев подобия. Для сложных (в том числе и химических) процессов применение только физического моделирования затруднительно. — Прим. ред. [c.230]


    Если при физическом моделировании необходимо обеспечить равенство нескольких критериев подобия, могут возникнуть трудности из-за различия масштабов натуры и модели в этом случае часть второстепенных явлений не моделируют или моделируют приближенно. [c.14]

    Третья теорема подобия устанавливает следующие правила физического моделирования оригинал и модель должны быть геометрически подобны процессы в модели и оригинале должны относиться к одному классу и описываться одинаковыми дифференциальными уравнениями начальные и граничные условия для модели и оригинала должны быть подобны определяющие безразмерные критерии должны быть равны для модели и оригинала. [c.136]

    ПРИНЦИП ПОДОБИЯ, КАК ОСНОВА ФИЗИЧЕСКОГО МОДЕЛИРОВАНИЯ ОДНОФАЗНЫХ СИСТЕМ [c.121]

    Физическое моделирование выполняется в следующей последовательности 1. Опыты ставятся в аппаратах различных размеров при соблюдении геометрического подобия и определяются зависимости искомых переменных величин от физических параметров. [c.129]

    Физическое моделирование сводится к воспроизведению постоянства определяющих критериев подобия в модели и объекте. Практически это означает, что надо в несколько этапов воспроизводить исследуемый физический процесс, т. е. переходить от меньших масштабов осуществления данного физического процесса к большим, закономерно варьируя определяющими линейными размерами. Таким образом, деформация физической модели осуществляется непосредственно на самом физическом процессе. Такой подход требует воспроизведения физического процесса во все больших и больших масштабах (вплоть до заводских). [c.131]

    Для сравнительно простых систем, таких, как гидравлические или тепловые с однофазным потоком, принцип подобия и физическое моделирование оправдывают себя, оперируя ограниченным числом критериев. Для сложных систем и процессов, описываемых сложной системой уравнений с большим набором критериев подобия, которые становятся, одновременно несовместимыми, использование принципов физического моделирования наталкивается на трудности принципиального характера. Они заключаются в том, что не существует уравнений движения двухфазных потоков общего вида, отсутствует возможность задать граничные условия на нестационарной поверхности раздела фаз. Тем более не представляется возможным написать уравнения общего вида для двухфазной системы, осложненные массообменом. [c.131]

    Физическое моделирование. Основой рассматриваемого вида моделирования служит теория подобия, которая устанавливает условия подобия модели и, оригинала, дает возможность обобщать единичные эксперименты в безразмерных критериях и распространят найденные зависимости на подобные системы. Теория подобия и физическое моделирование получили большое развитие в СССР и хорошо известны инженерам-технологам. Эти методы успешно применяют при изучении, разработке и проектировании тепловых-и массообменны 4 аппаратов, а также гидродинамических устройств. [c.461]

    В общем случае из-за изменения соотношения отдельных стадий процесса в реакторе масштабный переход на основе физического подобия и физического моделирования осуществить нельзя. Поэтому для масштабного перехода к укрупненным, опытным и полупромышленным установкам ранее использовали преимущественно эмпирический метод постепенного увеличения размеров реакторов. Однако вследствие отсутствия при таком подходе научного предвидения результатов протекания процесса число стадий его оказывалось значительным, что приводило к большим затратам времени и средств и не позволяло достигнуть оптимальных результатов. [c.466]

    Согласно теории подобия при физическом моделировании происходит изменение масштаба и сохраняется природа физических явлений. Основные приемы неполного моделирования приведены в [51]. Для неполного моделирования напряженного состояния и перемещений частиц достаточно подобия по основным размерным и безразмерным параметрам [18, 44]. Обычно механическое подобие процессов определяют критерием Ньютона [18], который для нашего случая будет равен [c.32]

    Экспериментальная установка для физического моделирования состоит из несущей конструкции, генератора, усилителя мощности, электромагнитного вибратора, датчиков вибрации, электронно-измерительного устройства и персонального компьютера. В качестве физической модели использованы металлические трубки, выбранные по критериям подобия. [c.205]

    Физическое моделирование, основанное на использовании принципа подобия. Принцип подобия позволяет путем использования набора безразмерных критериев выделить из определенного класса явлений группу взаимно подобных явлений. Эти критерии связывают различные параметры процессов, протекающих как в лабораторных, так и в производственных условиях. Процессы (явления) считаются подобными, если равны их критерии, то есть все характеризующие их величины (параметры) находятся в одинаковых взаимных отношениях. Например, критерий Дамкелера [c.141]


    Более совершенным является метод физического моделирования, который позволяет получить структурную модель. В основе физического моделирования лежит возможность сформулировать условия, при которых явления в образце и в модели будут подобными. Эти условия — определенное число инвариантов подобного преобразования, которые принято называть критериями подобия. Критерии подобия могут быть получены или путем использования теории размерностей, или путем математического описания процессов. При этом нет нужды в аналитическом решении уравнений, характеризующих тот или иной процесс, так как это решение получается экспериментально путем построения гидравлических, тепловых, а также аналоговых электрических моде- лей реального процесса. Результаты эксперимента на моделях, представленные в виде графиков, затем превращаются в формулы связи между безразмерными комплексами — критериями. Невозможность создания точных физических моделей заставляет прибегать к упрощениям, и поэтому полученная таким образом математическая модель для использования в практических целях должна быть идентифицирована с образцом. [c.15]

    Принципы аналогии. Сущность математического моделирования. Для весьма сложных химико-технологических процессов, проводимых, например, в химических реакторах с катализаторами, подобное преобразование дифференциальных уравнений приводит к выводу зависимостей между большим числом критериев подобия. Надежное моделирование таких процессов на малой опытной установке с последующим распространением полученных данных на производственные условия, т. е. применение изложенных выше принципов физического моделирования, практически невозможно. Причина этого станет ясна на примере более простого случая — гидродинамического подобия (см. стр. 81). [c.74]

    При физическом моделировании изучение данного явления происходит при его воспроизведении в разных масштабах и анализе влияния физических особенностей и линейных размеров. Эксперимент производят непосредственно на изучаемом физическом процессе. Опытные данные обрабатывают представлением их в форме зависимостей безразмерных комплексов, составленных комбинаций различных физических величин и линейных размеров. Эта безразмерная форма позволяет распространить найденные зависимости на группу подобных между собой явлений, характеризующихся постоянством определяющих безразмерных комплексов, или критериев подобия. Безразмерные -комплексы получают на основе дифференциальных уравнений либо методом теории размерностей. [c.14]

    Для сравнительно простых систем (например, гидравлических или тепловых с однофазным потоком) принцип подобия и физическое моделирование оправдывает себя, поскольку приходится оперировать ограниченным числом критериев. Однако в случае сложных систем и процессов, описываемых сложной системой уравнения, получается большой набор критериев подобия, которые становятся одновременно несовместимыми и, следовательно, не могут быть реализованы. Принцип подобия оправдал себя при анализе детерминированных процессов, описываемых законами классической механики и протекающих в однофазных системах с фиксированными границами (обычно твердые стенки). Для анализа недетерминированных процессов с многозначной стохастической картиной связи между явлениями и, в частности, для анализа двухфазных систем со Свободными поверхностями и процессов, осложненных химическими реакциями использование физического подобия затруднительно. [c.15]

    Однако, как уже отмечалось (см. стр. 15), применение принципов физического моделирования для сложных процессов, какими, в частности, являются химические процессы, не дает желаемых результатов. Тем не менее попытки ввести критерии подобия для химических процессов на основании формального приведения основных дифференциальных уравнений закона сохранения материи и энергии с учетом химических превращений к безразмерным комплексам позволили формализовать эти уравнения и получить четыре критерия именуемых критериями Дамкелера (DaJ, Da , DaJ и Ва ), а для обратимых реакций — критерии контакта (Ко) и равновес ности (Ра), сущность которых ясна из табл. У1-2. [c.418]

    При физическом моделировании необходимо обеспечить геометрическое и физическое подобие модели и натуры, т. е. пропорциональность однородных переменных величин, характеризующих явление для модели и натуры. Такое соответствие, устанавливаемое на основе теории подобия и анализа размерностей, позволяет вы- [c.12]

    Впервые моделирование было использовано в аэро- и гидромеханике [4-7]. С этой целью была развита теория подобия, основанная на физическом моделировании, в котором природа процесса и модели одинаковая. В химической технологии физическое моделирование широко используют для изучения тепловых и диффузионных процессов [8]. В химическом реакторе протекают химические реакции, и происходит перенос тепла и вещества. Их взаимное влияние и результаты процесса зависят от размера и типа реактора. Поэтому для изучения химических процессов и реакторов теорию подобия [9, 10] применяют весьма ограниченно [11-13]. Для изучения этих процессов используют преимущественно математическое моделирование [11-16], поскольку оно позволяет тождественными уравнениями описывать свойства процесса различной природы. Математическая модель может быть знаковой, представленной уравнениями, и реальной, представленной физическим объектом, как правило ЭВМ. В дальнейшем под моделью подразумевается знаковая или реальная математическая модель, адекватно отражающая физико-химические превращения и явления переноса тепла и вещества в изучаемом процессе и используемая для масштабного перехода. Статистические модели, описывающие процесс как черный ящик , для этой цели не пригодны. [c.5]

    В настоящей работе авторы стремились обобщить имеющиеся материалы, а также более подробно изложить ряд вопросов, которые в отечественной литературе освещены недостаточно полно (классификация сепараторов,. методы оценки эффективности сепарации пыли, теория подобия газопылевых потоков, математическое и физическое моделирование процессов инерционной сепарации пыли). Не претендуя на полноту изложения всех затронутых вопросов, книга, на наш взгляд, может быть использована при проведений дальнейших работ по исследованию процессов воздушной сепарации с целью усовершенствования имеющихся и разработки новых конструкций сепараторов. [c.5]

    Числовое значение коэффициента массопередачи зависит от болт>того числа переменных величин, как-то от природы поглощаемого вещества и адсорбента и их физических свойств, от режима газового потока и его скорости и т. д. Коэффициент массопередачи находят опытным путем, обобщая опытные данные, на основе принципов теории подобия и моделирования. В данном случае, так же как и при абсорбции, теория подобия приводит к критериальному уравнению [c.530]

    Общая сущность подобия и моделирование физических процессов химической технологии рассматриваются в курсе процессов и аппаратов химической технологии. [c.29]

    Физическое моделирование предполагает изучение химико-технологического процесса непосредственно при его воспроизведении в разных масштабах и проведении анализа влияния физических параметров и линейных размеров. Эксперименты проводят на исследуемом объекте, а обработка опытных данных осуществляется составлением критериальных уравнений на основе общего метода подобия или анализа размерностей Для составления критериального уравнения методом анализа размерностей входящих в него величин достаточно представить определяемые характеристики процесса как функции определяющих параметров по типу функциональной связи [см. уравнение (1.24)] Степень влияния каждого параметра находится экспериментально и выражается показателями степени при критериях, в которые входит данный параметр. [c.30]

    Естественное физическое моделирование-это замена изучения интересующего нас явления в натуре экспериментальным изучением аналогичного явления на модели меньшего (или большего) масштаба, обычно в специальных лабораторных условиях. Основной смысл такого моделирввания заключается в том, чтобы по результатам опытов с моделями можно было давать необходимые ответы о характере эффектов и о различных характеристиках, связанных с явлением в натурных условиях. При этом должны выполняться определенные условия (критерии) подобия (геометрического и физического) модельных и натурных процессов. Для этого размеры модели, свойства пласта и флюидов выбирают в лабораторных условиях таким образом, чтобы были выполнены условия геометрического, подобия и чтобы соотношения различных сил в пласте и физической модели были одинаковыми. Большое значение при физическом моделировании фильтрационных процессов имеет теория размерностей и подобия. [c.374]

    Обычно методы теорий размерностей и подобия относят к методам физического моделирования. Однако они, как и любые другие методы моделирования, основаны на сочетании экспериментальных и расчетных исследований. Теория размерностей используется для постановки и обобп ения результатов экспериментальных исследований, когда по каким-либо причинам создание математического описания на основе уравнений балансов вызывает затруднения. При этом целью исследования является не нахождение оптимальных условий (оно рассмотрено в главе I), а получение уравнений для расчета коэффициентов, характеризующих гидродинамику, тепло- и массоперенос. Эти уравнения обычно предполагается использовать при проектировании подобных систем. Методы теории размерностей позволяют упростить исследование и сделать его более общим за счет перехода от размерных переменных к полученным из них безразмерным комплексам. [c.130]

    При осуществлении процесса в неподвижном слое катализатора невозможно одновременно удовлетворять условиям физического и химического подобия. Однако в случае автомодельного режима относительно одних из указанных условий можно исключить последние из математической модели реактора. Так, для химически подобных процессов, протекающих во внешнедиффузионной области, применимы методы физического моделирования. При организации автомодельного режима относительно физических условий можно использовать модель идеального вытеснения, согласно которой процесс в слое идентичен процесссу в отдельнс зерне катализатора. [c.73]

    Физическое моделирование сводится к воспроизведению постоянства определяющих критериев подобия в модели и объекте. Практически это означает, что надо в несколько этапов воспроизводить исследуемый физический процесс, т. е. переходить от меньших масштабов его осуществления к большим, закономерно варьцруя определяющими линейными размерами (принцип подобия). [c.14]

    Критерии подобия. Масштабирование некоторых физических процесов, протекающих в одной фазе, можно осуществить с применением принципов физического моделирования. При этом используют критерии геометрического и физического подобия, получаемые из дифференциальных уравнений, описывающих рассматриваемый процесс, пли на основании анализа размерностей величин, определяющих ход процесса. [c.418]

    Основной частью экспериментальной установки, в которой реализуется и исследуется процесс, является экспериментальный участок (или ячейка). Исследования на моделях проводят с учетом правил моделирования, или правил подобия 1) процессы на модели должны быть той же физической природы, что и в натурных условиях, 2) условия однозначности для процессов на модели и в натурных условиях должны быть подобными, 3) безразмерные комплексы, составленные из размерных величин, входящих в описание условий однозначности, должны быть равны (или изменяться в одинаковых пределах). При выполнении этих правил осуществляется физическое моделирование [4, 5]. Процессы различной физической природы, описывающиеся математически тождественными уравнениями, называются аналогичными. При организации на модели аналогичных процессов с выполнением второго и третьего правил осуществляется моделирование по методд аналогий (или математическое моделирование). К методу аналогий прибегают тогда, когда удается подобрать процесс, который существенно легче осуществить экспериментально, чем натурный, и в котором экспериментальные измерения проводятся с большей точностью, чем в натурных условиях. Наиболее распространены электрические модели, являющиеся, по существу, электроинтеграторами [6—10]. Решение задач на электрических моделях уступает по точности решению соответствующих уравнений на ЭВМ, однако имеет преимущества наглядности и возможности [c.399]


Смотреть страницы где упоминается термин Подобие физическое моделирование : [c.64]    [c.64]    [c.462]    [c.156]   
Процессы и аппараты химической технологии Часть 1 (2002) -- [ c.0 ]

Процессы и аппараты химической технологии Часть 1 (1995) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Подобие физическое



© 2025 chem21.info Реклама на сайте