Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лазерный флуоресцентный анализ

    Лазерный флуоресцентный анализ [c.245]

    Предлагаемое практическое руководство обобщает опыт преподавания физических и физико-химических методов анализа, накопленный на кафедре аналитической химии Московского государственного университета. Руководство включает два больших раздела— спектроскопические и электрохимические методы. В спектроскопические методы включены методы эмиссионной фотометрии пламени, атомно-абсорбционной спектроскопии пламени, абсорбционной молекулярной спектроскопии и люминесцентный в электрохимические — потенциометрический (в том числе с использованием ионоселективных электродов), кулонометрический, полярографический и амперометрический методы. Наряду с перечисленными методами в современных аналитических ла- бораториях используют и другие методы атомно-флуоресцентный анализ, рентгеновские методы, искровую и лазерную масс-спектрометрию, радиоспектроскопические, ядерно-физические и радиохимические методы, однако ограниченное число учебных часов не позволяет включить их в данное руководство. Изучение этих курсов предусмотрено [c.3]


    Не надо думать, что на сегодняшний день все проблемы аналитической химии решены с применением в атомно-флуоресцентном анализе лазерных источников возбуждения. Несмотря на достигнутые очень хорошие пределы обнаружения элементов для реальных образцов, проблемы атомизации пробы, стабильности лазерных источников, технической эксплуатации лазеров, дезактивации возбужденных состояний и т. п. не позволяют еще считать атомно-флуоресцентный метод анализа наиболее широко применяемым методом для решения всех возникающих задач. [c.133]

    Атомно-флуоресцентный анализ близок к атомноабсорбционному анализу. С помощью этого метода решают не только задачи, выполняемые атомно-абсорбционным анализом, он позволяет определить отдельные атомы в газовой среде. Например, возбуждая атомную флуоресценцию лазерным лучом, можно определять натрий в верхних слоях атмосферы на расстоянии 100 км от Земли. [c.648]

    В последние годы возможности флуоресцентного анализа значительно расширились благодаря использованию для возбуждения высокоинтенсивного и чрезвычайно монохроматического лазерного излучения. [c.365]

    Непрекращающийся рост требований к чистоте материалов для полупроводниковой, вакуумной и лазерной техники, особенно по примесям распространенных элементов (натрий, кальций, магний, железо и др.), вызвал необходимость создания новых аналитических методов. Задача не, полностью решалась даже таким высокочувствительным методом, как химико-спектральный анализ. С 1969 г. для оценки чистоты материалов стали применять методы атомно-абсорбционного и атомно-флуоресцентного анализа с импульсным испарением. Благодаря удачной конструкции созданной в Гиредмете установки, обеспечивающей практическое отсутствие поправки на холостой опыт , удалось определять примеси натрия, кальция, железа в окислах редкоземельных элементов на уровне 10 — 10 % вместо достигнутых ранее 10 —10 %. Некоторые элементы (цинк, кадмий) можно определять при содержаниях 10 %. [c.9]

    В аналитической спектроскопии в названиях различных методов, как правило, отражены объекты исследования и процессы, лежащие Р) основе определения этих объектов, например атомно-абсорбционный, атомно-флуоресцентный методы анализа. В методе, основанном на селективной лазерной ионизации, объектом исследований являются атомы, а процессы, позволяющие детектировать эти атомы, связаны с образованием ионов. Поэтому, с точки зрения авторов настоящего учебного пособия, данный метод логично называть в общем виде атомно-ионизационным (АИ). [c.183]


    Эта глава посвящена в основном теории и аналитическим результатам, полученным при применении импульсных лазеров на красителях в комбинации с пламенами и электротермическими атомизаторами, обычными в атомно-флуоресцентной спектроскопии. Возбуждение флуоресценции непрерывными лазерами описано в гл. 8. Характеристики флуоресцентного метода с лазерным возбуждением обсуждаются в аспекте процессов возбуждения и дезактивации возбуждения (разд. 4.2 и 4.3), эффектов насыщения для двух- и трехуровневых систем (разд. 4.4), влияния плотности падающего излучения источника на форму градуировочного графика (разд. 4.5) и возможности локального измерения таких физических параметров, как температура, квантовый выход, а также концентрации (разд. 4.6). Общие узлы установок для атомно-флуоресцентной спектроскопии, используемых различными авторами, рассмотрены в разд. 4.7, а аналитические результаты описаны в основном в виде достигнутых пределов обнаружения по отношению к водным растворам в разд. 4.8. Читателю можно также рекомендовать две обзорные статьи [7, 8], касающиеся общих вопросов применения в аналитической спектроскопии перестраиваемых лазеров па красителях, включая флуоресцентные методы анализа. [c.192]

    Следует подчеркнуть, что рассеяние происходит не только на частицах в газах пламени и частицах пыли, но и вследствие рэлеевского рассеяния излучения молекулами и атомами, и поэтому последнее явление представляет собой основное ограничение в измерениях методом резонансной флуоресценции. Сечения рэлеевского рассеяния увеличиваются пропорционально AJ где h — длина волны падающего лазерного излучения. Вклад рэлеевского рассеяния (от атомов и молекул) в пламенах соответствует 200—2000 отсчетов в 1 с для типичной флуоресцентной установки, в которой в качестве источника возбуждения используется обычная ксеноновая дуговая лампа на 150 Вт фирмы ElM.iV . Поэтому, допуская, что время интегрирования 10 с и дробовой шум из-за рассеяния мал, шум составляет 100 отсчетов, что типично для ограничивающего уровня шума в обычной атомной флуоресценции с обычными источниками света, особенно в ультрафиолетовой области. Конечно, в видимой области ( 300 нм) шум фона пламени может даже превышать шум рассеяния в некоторых областях спектра. Во всяком случае, величина шума рассеяния, неотъемлемая в любых флуоресцентных методах, достаточно велика, чтобы оправдать крупные исследования в области использования нерезонансной флуоресценции для анализа. [c.229]

    Метод измерения отражения и гашения флуоресценции можно также применять при ТСХ веществ, поглощающих УФ-излучение. Метод гашения флуоресценции позволяет определять только вещества с максимумом поглощения выше 240 нм, так как максимум возбуждения обычно используемого флуоресцентного индикатора находится около 280 нм. Сравнивая эти методы, можно сказать, что наилучшие результаты дает количественное детектирование по отражению по сравнению с пропусканием и гашением флуоресценции. Наиболее эффективным методом количественного анализа является измерение интенсивности флуоресценции веществ в слое сорбента. Это — высокоселективный, высокочувствительный (особенно при использовании лазерных флуоресцентных детекторов) метод анализа с широким интервалом линейной зависимости количество вещества — интенсивность флуоресценции, не зависящий от формы зоны. Широкие возможности метода флуоресцентного детектирования в ТСХ связаны с возможностями дерийатиза-ции веществ до или после ТСХ с превращением их в флуоресцирующие производные или инициированием флуоресценции разделенных веществ электрохимическими или химическими методами. [c.371]

    Несмотря на значительное развитие лазерной техники метод флуоресцентного анализа не получил пока широкого развития в газоаналитической практике и реализуется только на сложных лабораторных установках. Наиболее заметные результаты в лазерном атомно-флу оресцентном анализе достигнуты при определении содержания неона в гелии 10 мол. %, а в лазерном молекулярно-флуорес-центном — при определении оксида и диоксида азота, диоксида серы = 10" мол. %. На основе применения импульсных газоразрядных ламп созданы флуоресцентные газоанализаторы для определения диоксида серы и сероводорода до 10" мол. %. [c.921]

    Значительно более разнообразны методы второй группы, использующие эхо-сигнал на смещенной длине волны спонтанное комбинационное рассеяние (СКР), рамановская спектроскопия комбинационного рассеяния (РСКР), когерентная антистоксова рамановская спектроскопия (КАРС), оптоакустические методы лазерной спектроскопии. Среди прочих методов лазерная флуориметрия выделяется простотой реализации, высокой чувствительностью, однако обладает слабой селективностью. Улучшение селективности потребовало создания ряда модификаций флуориметрии методов синхронной флуориметрии, метода ТЬ8-диаграмм, метода на основе эффекта Шпольского и др., а также интенсивного развития численных методов обработки спектров флуоресценции многокомпонентных органических смесей. Еще одним решением проблемы многокомпонентного флуоресцентного анализа является использование кинетической спектроскопии. [c.165]


    Необходимо более тщательное изучение возможностей применения в атмосферном анализе ряда других лазерных методов, включая адсорбционный и флуоресцентный анализ, когерентное рамановское рассеяние и двухлазерные методы. Одной из целей подобного изучения должно было бы быть совершенствование измерений в тропосфере (ближайшем к поверхности слое атмосферы) и стратосфере, расположенной выше. Быстрые, надежные, точные и более дешевые методы требуются для определения концентраций следовых примесей, играющих ключевую роль а атмосферной химии, например радикалов ОН. [c.16]

    Для атомизации веществ находят применение лазеры, а также дуговой и тлеющий разряды. Дальнейшее развитие атомно-флуоресцентного анализа связано с использованием лазерных источников возбуждения. Второе дыхание эмиссионного спектрального анализа в значительной мере обусловлено созданием новых спектроаналитических установок, в качестве источника возбуждения спектра в которых используется индуктивно связанная плазма. [c.4]

    Если принять во внимание все эти соображения, то легко понять, почему импульсные перестраиваемые лазеры на красителях [6—8] могут стать инструментом, помогающим решить большое число проблем в атомно-флуоресцентном анализе. На самом деле, лазер на красителе обладает следующи.ми уникальными характеристиками 1) излучением, непрерывно перестраиваемым в видимой области спектра, а прн использовании удвоения частоты вплоть до 250 н г, 2) чрезвычайно высокими иико-выми мощностями излучения, порядка нескольких десятков киловатт 3) высокой степенью когерентности, как иространствен-ной, так и временной, что приводит к очень высоким плотностям мощности (малый размер пятна) и малой шнр1ше линии (монохроматичность) 4) при импульсном режиме очень низкой скважностью, что позволяет достичь максимального значения отношения сигнал/шум при использовании стробирующей аппаратуры для систем с ограниченным фоновым шумом. Поэтому в случае лазерного возбуждения можно ожидать лучшей чувствительности обнаружения (в связи с высокой интенсивностью [c.191]

    Определение следов загрязняющих веществ в окружающей атмосфере рассмотрено в разд. 8.3.6. Такую же важную и интересную проблему ставит обнаружение следов веществ в растворах. В этой области важную роль играют флуоресцентные методы в конденсированной фазе применение лазерного возбуждения в флуоресцентном анализе некоторых образцов значительно повышает чувствительность. В большинстве случаев возбуледение проводят при одной длине волны, а свечение наблюдают совсем при другой. Путем тщательного подбора системы фильтров, чтобы отделить испускаемый свет от возбуждающего, удается существенно уменьшить влияние рассеянного лазерного излучения, а используя высокоинтенсивное лазерное возбул(дение, достичь большого увеличения чувствительности. [c.580]

    Способность высокомолекулярных соединении нефти к люминесценции лежит в основе методов дистанционного зондирования [102]. Проводится анализ флуоресцентного отклика нефтяной системы на зондирующий импульс лазерного излучения. Интенсивность, форма и структура сигнала соотносятся с репером, в качестве которого служит сигнал комбинационного рассеяния воды. В качестве каналов информации при идентификации нефтей и нефтепродуктов можно использовать не только ширину спектра и положение максимума длины волны флуоресценции, но и такие зависимости, как зависимость продолжительности жизни возбужденного состояния по снектрз, зависимость параметров спектров от длины волны возбужденного света. Про- [c.57]

    В соответствии с существующей в настоящее время теоретической концепцией получение абсолютно чистых веществ т. е. совершенно не содержащих примесей) принципиально возможно, но только в очень небольшой области концентраций для достаточно большой пробы чистого вещества и за более или менее ограниченный промежуток времени. Для контроля чистоты необходимы особо чувствительные методы анализа. Применение методов ультрамикроанализа позволяет осуществить мечту аналитиков — обнаружение отдельных атомов в матрице вещества. Одним из таких методов является лазерная спектроскопия. Вещество испаряют и атомы селективно возбуждают действием лазерного излучения в узкой области частот. Возбужденный атом затем ионизируется вторичными фотонами. Число испускаемых при этом свободных электронов фиксируют пропорциональным счетчиком. С помощью эффективно действующей лазерной установки можно ионизировать все атомы определяемого вещества. Метод, основанный на использовании этого явления, называют резонансной ионизационной опектро-скопией (РИС). Например, можно определять отдельные атомы цезия. В другом варианте метода — оптически насыщенной нерезонансной эмиссионной спектроскопии (ОНРЭС) — измеряют интенсивность флуоресцентного излучения возбужденных атомов. Чтобы отличить излучение определяемых элементов от излучения других компонентов пробы, длины волн флуоресценции сдвигают воздействием других атомов или молекул. Этим методом также можно определять отдельные атомы вещества, например натрия. [c.414]

    Эксперименты на пикосекундной временной шкале и более короткой требуют других подходов. Световая вспышка, вызывающая возбуждение или фотолиз молекул исследуемого вещества, генерируется лазером с пассивной синхронизацией мод, оснащенным системой выделения одиночного импульса из цуга. Хотя пикосекундная импульсная спектроскопия опирается на методику двух вспышек — возбуждающей и зондирую -щей,— импульс зондирующего света обычно получается за счет преобразования части света возбуждающей вспышки, а необходимая короткая временная задержка легко достигается благодаря конечной скорости света. Зондирующий световой пучок направляется по варьируемому более длинному оптическому пути. Для абсорбционных экспериментов спектр этого излучения может быть уширен (например, ССЬ преобразует малую часть излучения лазера на неодимовом стекле с длиной волны 1060 нм в излучение в широком спектральном диапазоне). Для других диагностических методик, например КАСКР, это излучение может быть преобразовано в излучение другой частоты. Существует также ряд специализированных методик для изучения испускания света в пикосекундном диапазоне. Одна из них связана с электронным вариантом стрик-камеры. Для регистрации временной зависимости интенсивности сфокусированного пучка или светового пятна в механическом варианте стрик-камеры используется быстро движущаяся фотопленка. В электронном варианте изображение вначале попадает на фотокатод специального фотоумножителя типа передающей телевизионной трубки. Под действием линейно изменяющегося напряжения, прилагаемого к пластинам внутри трубки, образующиеся фотоэлектроны отклоняются тем сильнее, чем позже они вылетели из фотокатода. Для регистрации мест попадания отклоненных электронов может использоваться фосфоресцирующий экран с относительно длинным послесвечением, изображение на котором фотографируется или преобразуется с помощью электроники для последующего анализа. Этот метод носит название электронно-оптической хроноскопии. В альтернативном методе для изучения флуоресценции с пикосекундным временным разрешением Используется затвор, основанный на эффекте Керра (вращение плоскости поляризации света в электрическом поле), индуцируемом открывающим лазерным импульсом. В еще одном методе (флуоресцентная корреляционная спектроскопия) часть света возбуждающего импульса проходит через оптическую линию задержки и смешивается с испускаемой флуоресценцией в нелинейном кристалле (см. конец разд. 7.2.3), давая на выходе [c.203]

Таблица 8-2. Аналитические характеристики наиболее важных приборов, используемых для элементного анализа. Аналитические характеристики включают пределы обнаружения (ПО) в растворе (нг/мл) или твердой пробе (млн ), помехоустойчивость (робастность, отсутствие влияния основы), селективность (отсутствие спектральных помех) и воспроизводимость. Инструментальные характеристики включают желательную форму пробы, жидкую или твердую, минимальный расход пробы и максимальную солевую концентрацию в случае раствора. АЭС — атомно-эмиссионная спектрометрия, А АС— атомно-абсорбционная спектрометрия, МС —масс-спектрометрия, ИСП — индуктивно-связанная плазма, ЛТР — лампа с тлеющим разрядом, ГП — графитовая печь, ТИ — термоиониэация, ИИ — искровой источник, ЛИФС - лазерно-индуцированная флуоресцентная спектрометрия, РФСВД — рентгенофлуоресцентная спектрометрия с волновой дисперсией Таблица 8-2. <a href="/info/140729">Аналитические характеристики</a> <a href="/info/410326">наиболее важных</a> приборов, используемых для <a href="/info/5100">элементного анализа</a>. <a href="/info/140729">Аналитические характеристики</a> включают <a href="/info/5532">пределы обнаружения</a> (ПО) в растворе (нг/мл) или <a href="/info/5543">твердой пробе</a> (млн ), <a href="/info/1403099">помехоустойчивость</a> (робастность, <a href="/info/1418543">отсутствие влияния</a> основы), селективность (отсутствие <a href="/info/140811">спектральных помех</a>) и воспроизводимость. <a href="/info/142820">Инструментальные характеристики</a> включают желательную <a href="/info/583350">форму пробы</a>, жидкую или твердую, <a href="/info/146195">минимальный расход</a> пробы и максимальную <a href="/info/481813">солевую концентрацию</a> в случае раствора. АЭС — <a href="/info/141079">атомно-эмиссионная спектрометрия</a>, А АС— <a href="/info/140797">атомно-абсорбционная спектрометрия</a>, МС —<a href="/info/6125">масс-спектрометрия</a>, ИСП — <a href="/info/141592">индуктивно-связанная плазма</a>, ЛТР — лампа с тлеющим разрядом, ГП — <a href="/info/140765">графитовая печь</a>, ТИ — термоиониэация, ИИ — <a href="/info/141596">искровой источник</a>, ЛИФС - лазерно-индуцированная <a href="/info/85822">флуоресцентная спектрометрия</a>, РФСВД — <a href="/info/141885">рентгенофлуоресцентная спектрометрия</a> с волновой дисперсией
    Лазеры используются во флуоресцентном мегоде определения как атомов, так и молекулярных компонентов. Применение селективного лазерного возбуждения позволяет получать при низких (гелиевых) температурах тонкоструктурные спектры флуоресцирующих молекул в произвольных растворителях, например, проводить прямой анализ сложных продуктов на содержание полициклических углеводородов [62]. [c.245]

    Принципиальная схема аналитического лазерного атомнофлуоресцентного спектрометра практически не отличается от схемы флуоресцентного спектрометра, в котором для возбуждения используют какой-либо классический источник света. В блоке атомизатора анализируемый образец переводится в состояние атомного пара, содержащего, в том числе, и атомы определяемой примеси. Резонансное излучение источника света возбуждает эти атомы, а их флуоресцентное излучение собирается (обычно в перпендикулярном направлении) в спектральный прибор и детектируется фотоэлектронной системой. Использование перестраиваемого лазера в качестве источника для возбуждения флуоресценции позволяет возбудить максимально возможное число атомов примеси, присутствующей в зоне анализа. В ЛАФ- спектрометре проводится прямой анализ образцов с отбором пробы 20 мкл, одно определение занимает 3-5 мин. [c.245]

    В микрофлуоресценции применяется лазерное возбуждение, которое, естественно, имеет преимущества перед возбуждением обычными источниками света. Высокая когерентность и направленность излучения лазеров позволяет достигать чрезвычайно высоких плотностей мощности излучения. При флуоресцентных исследованиях отдельных клеток лазерный луч с малыми потерями общей мощности можно сфокусировать в пятно диаметром менее 1 мкм, используя конденсор высококачественного микроскопа [105, 106]. В табл. 8.2 приведено сравнение плотностей мощности, достигаемых различными источниками. Освещение лазером является наиболее интенсивным, и благодаря высокой плотности мощности излучения лазеров микрофлуорес-центный анализ получает ряд преимуществ. [c.583]

    При использовании этой двухлазерной установки можно, например, применять освещение с длинами волн 488 и 600 нм для последовательного возбуждения флуоресцеина, фикоэрит-рина и техасского красного. Два независимых луча пересекают поток клеток в вертикально отстоящих друг от друга точках, так что клетка вначале пересекает луч с длиной волны 488 нм, а затем — с длиной волны 600 нм. Каждая клетка генерирует при этом три флуоресцентных сигнала, два в первом луче и один во втором. Сигналы, индуцируемые двумя лазерами, разделены в пространстве и во времени, и промежуток между ними равен тому времени, которое необходимо клетке, чтобы пройти от первого участка пересечения лазерного луча с потоком до второго. Этот промежуток времени позволяет электронике проводить раздельный анализ сигналов. Пространственное разобщение обеспечивает регистрацию сигнала каждым детектором с оптимальным соотношением сигнал/шум. [c.191]


Смотреть страницы где упоминается термин Лазерный флуоресцентный анализ: [c.437]    [c.23]    [c.275]    [c.23]    [c.43]    [c.285]   
Смотреть главы в:

Методы исследования структуры и свойств полимеров -> Лазерный флуоресцентный анализ

Методы исследования структуры и свойств полимеров -> Лазерный флуоресцентный анализ




ПОИСК





Смотрите так же термины и статьи:

Флуоресцентный анализ

флуоресцентное



© 2025 chem21.info Реклама на сайте