Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Клеточная мембрана структура

    У всех фотосинтезирующих организмов, включая высшие растения, фотосинтез протекает в мембранных структурах. У пурпурных бактерий поглощающие свет пигменты (бактериальные хлорофиллы и каротины) встроены в мембраны, которые представляют собой складки наружной клеточной мембраны. Эти участки имеют характерную структуру и называются хроматофорами. Они состоят из соединяющихся между собой полых пузырьков, параллельно расположенных трубочек или параллельных пластинок (ламелл) диаметр всей структуры — 50—100 нм. У зеленых бактерий пигменты выстилают внутриклеточные пузырьки. В настоящее время фотосинтезирующие бактерии обитают только в серных источниках и глубоких озерах, но когда-то они были, вероятно, распространены гораздо более широко и являлись единственными фотосинтезирующими организмами на Земле. [c.25]


    В основе сложных патологических механизмов отравления змеиными ядами лежит процесс повреждения клеток организма и субклеточных структур. Известно, что функциональная целостность клеточных мембран являет ся одним из ведущих ф акторов, обеспечивающих нормальную жизнедеятельность клеток, тканей, органов и целостного организма. В змеиных ядах содержатся компоненты, активно воздействующие на клеточные мембраны и приводящие к развитию целого ряда патофизиологических реакций (гемолиз, изменение проницаемости [c.73]

    Во втором издании мне пришлось сделать ряд сокращений. О некоторых из них я уже говорил. Однако самое большое сокращение сделано в конце книги. Я решил отказаться от гл. 27 первого издания, посвященной ферментам и структуре клеточной мембраны. Причиной тому служит ограниченное время, не позволяющее большинству читателей ознакомиться со всем материалом, изложенным в книге. Еще одна область биологии, не вошедшая во второе издание, касается рассмотрения химических процессов, протекающих в нервно-мышечном соединении. [c.8]

    Как и все прокариоты, Е. соИ имеет клеточную стенку, к которой с внутренней стороны примыкает клеточная мембрана. Кроме большой двухцепочечной ДНК, локализованной в нуклеоиде, Е. соН, подобно другим прокариотам, содержит несколько мелких кольцевых ДНК, которые называются плазмидами. Бактерии способны передвигаться в водной среде при помощи мембранных структур, называемых жгутиками. Важнейшая роль цитоплазматической мембраны заключается в избирательном транспорте питательных веществ в клетку и продуктов метаболизма из клетки. В цитоплазме Е. соИ локализованы рибосомы, секреторные гранулы, а также запасники питательных веществ — жиров или углеводов. Для прокариотических клеток характерно образование нитевидных ассоциатов, которые в определенных условиях могут диссоциировать на отдельные клетки. [c.12]

    Жиры выполняют несколько биохимических функций, самая главная из которых — запасание энергии. Если организм получил больше пищи, чем ему требуется в настоящий момент, ее избыток превращается в жир и хранится до тех нор, пока последний не понадобится. Таким образом, животные могут переносить длительные зимовки, не получая пищу. Далее, соединения, весьма близкие к жирам, играют важную роль в поддержании структуры клеточной мембраны. [c.136]

    Эта система участвует не только в синтезе ферментов, которые сек-ретируются клеткой, но и в образовании новых мембран. По-видимому, шероховатый ЭР поставляет мембранный материал гладкому ЭР и аппарату Гольджи, а компоненты мембран Гольджи включаются в состав наружной клеточной мембраны. В растительных клетках наружные мембраны митохондрий и мембраны, окружающие вакуоли, также образуются непосредственно из ЭР [19]. Компоненты наружных клеточных мембран, вероятно, могут использоваться повторно, включаясь в соответствующую структуру в ходе эндоцитоза [20]. [c.33]


    Полезно сравнить эти размеры с размерами самых мелких клеточных структур например, жгутик бактерии имеет диаметр 13 нм, а толщина клеточной мембраны составляет - 8—10 нм. Из кирпичиков, эквивалентных по размеру цепи из 300 остатков, могут быть построены жгутики бактерий или микротрубочки эукариот. а-Спиральный полипептид может пройти сквозь клеточную мембрану, выступая с обеих сторон, тогда как глобулярный белок с той же длиной цепи целиком уместится внутри мембраны. [c.103]

    Лизолецитин образуется из лецитина путем отщепления одного из остатков жирной кислоты при действии фосфолипаз Ai или Аг. Мы уже упоминали в гл. 2, что лизолецитин является промежуточным соединением при образовании и распаде липидов, что он очень быстро реацилируется и, вероятно, играет важную роль при поддержании определенного липидного состава мембраны. Лизолецитин не должен накапливаться в клетке, так как он заметно разрушает бислойную структуру клеточной мембраны. Схематически этот процесс изображен на рис. 3.6. [c.72]

    Примером таких комплексов являются сложные мембранные структуры, включающие рецепторы и преобразователи сигналов, действие которых начинается с восприятия внещнего импульса (первичного посредника) на внещней стороне клеточной мембраны и заверщается образованием вторичного посредника на внутренней стороне мембраны. Рассмотрим передачу и трансформацию сигнала от первичного посредника, роль которого, как правило, выполняют разнообразные гормоны, не проникающие через клеточную мембрану (см. главу 8). [c.316]

    На третьей - фармакодинамической - стадии изучаются проблемы распознавания лекарственного вещества (или его метаболитов) мишенями и их последующего взаимодействия. Мишенями могут служить органы, ткани, клетки, клеточные мембраны, ферменты, нуклеиновые кислоты, регуляторные молекулы (гормоны, витамины, нейромедиаторы и т.д.), а также биорецепторы. Рассматриваются вопросы структурной и стереоспе-цифичной комплементарности взаимодействующих структур, функционального и химического соответствия лекарственного вещества или метаболита (например, фармакофорной группировки) его рецептору. Взаимодействие между лекарственным веществом и рецептором или акцептором, приводящее к активации (стимулированию) или дезактивации (ингибированию) биомишени и сопровождающееся ответом организма в целом, в основном обеспечивается за счет слабых связей - водородных, электростатических, ван-дер-ваальсовых, гидрофобных. [c.13]

    ГОДЫ быстрое развитие иммунологии, клеточной биологии и нейробиологии стало возможным именно потому, что клеточные мембраны рассматривались не только как интересные структурные образования, но и как высокоактивные кооперативные системы. Будучи извлеченной из мембраны, отдельная молекула по определению теряет важную часть своих функций, и даже ее структура сохраняется только при ограниченных условиях. Биохимик, который выделяет ионный канал или пору нервной мембраны, похож на гурмана, пытающегося добыть дырку от бублика. [c.36]

    Имеются многочисленные доказательства того, что основной функцией сфинголипидов является их участие в передаче сигналов с наружной поверхности клетки в ее внутреннее пространство. Структура этих молекул и их локализация отвечают этой функции сфинголипиды состоят из липофильной (церамид) и гидрофильной (углеводной) частей (рис. 2.12). Это позволяет им с помощью церамида прочно закрепляться в липидной фазе клеточной мембраны и вместе с тем взаимодействовать с окружающей полярной средой. Молекулы сфинголипидов ориентированы исключительно наружу, и со стороны цитоплазмы мембрана, по-видимому, не содержит их углеводных остатков. Разнообразие углеводных частей сфинголипидов делает эти липиды носителями специфичности и информации. [c.45]

    Пространственные формы молекул насыщенных и ненасыщенных высших жирных кислот заметно различаются. Для первых наиболее вероятна вытянутая форма. В случае ненасыщенных кислот невозможность свободного вращения относительно двойной связи обусловливает жесткий изгиб углеродной цепи под углом приблизительно 30°, что имеет значение при формировании структуры клеточной мембраны. [c.467]

    Клеточная мембрана — неотъемлемый элемент любой клетки. Ее роль в первую очередь состоит в том, чтобы отгородить содержимое клетки от окружающей среды, сосредоточить в небольшом объеме простран,ства все необходимые информационные и функциональные структуры, а у клеток эукариот, кроме того, разделить внутреннюю часть клетки на различные функционально автономные отсеки-ядро, митохондрии и ряд других. Во внешней плазматической мембране клетки функционируют транспортные белки, рецепторы и связанные с ними белковые системы преобразования полученных сигналов. Но структурную основу мембран составляют липиды. [c.55]

    Клеточная стенка прокариот занимает свое особое место в структуре и архитектонике клеток Ее нельзя исключать из метаболических процессов, так как она занимает пограничное положение между внутренней (протопласт) и внешней средами, и через нее должны проходить различные вещества в обоих направлениях Однако главные функции ее — поддержание формы клетки и защитная, тогда как основная функция клеточной мембраны — регуляторно-метаболическая Клеточная стенка и клеточная мембрана вместе формируют оболочку [c.91]


    Биополимеры, образующие эти винтовые структуры, очень разнообразны. В стенках растительных клеток и в покровах некоторых морских животных (оболочников) в основном содержится целлюлоза. Другой полисахарид, хитин, образует винтовые волокна покровов членистоногих. Иную винтовую организацию дают белки, находящиеся, вероятно, в форме а-спиралей. К смектическим аналогам в живых системах относятся- главным образом пачечные клеточные мембраны (миелин) и мембраны зрительных клеток (колбочек и палочек). Удлиненные надмолекулярные структуры, наблюдаемые в мышечных волокнах и некоторых вирусах, также образуют нематические и смектические фазы. [c.307]

    Самые ранние стадии развития дрозофилы, когда устанавливаются так называемые пространственные координаты эмбрионов, определяющие передний и задний или брюшной и спинной отделы, контролируются группой генов матери. Эти гены функционируют-на стадии образования яйца, и их продукты неравномерно распределяются по яйцеклетке. Предполагается, что материнские гены и нх продукты обеспечивают позиционную информацию, которая воспринимается генами, работающими после оплодотворения, в зиготе. Представление о наличии в цитоплазме яйца позиционной информации, определяющей направление развития групп эмбриональных клеток, подчеркивает роль взаимного влияния частей будущего эмбриона в развитии, но никак не вскрывает природы этих взаимодействий. Мутации в генах, определяющих структуру неоп-лодотворенного яйца, оказывают так называемый материнский эффект, нарушая развитие эмбриона. Например, структуры, свойственные данному району, заменяются иными, характерными для других районов развивающегося организма. Вероятно, такие материнские гены оказывают свое действие на стадии ядерного синцития, до образования клеток бластодермы, когда диффузия продуктов генов затрудняется в результате образования клеточной мембраны. Транскрипты таких генов локализуются в соответствующих отделах (например, переднем или заднем) неоплодотворенного яйца или развивающегося эмбриона. [c.214]

    Таким образом, МАП обладают способностью вскрывать>, поверхностные структуры мембран, обнажая фосфолииидный субстрат для атаки фосфолииа-ЗОЙ А. Синергизм в действии МАП и фосфолипазы, всегда присутствующих в цельном яде, объясняет его деполяризующее действие на клеточные мембраны. [c.123]

    С нарушением клеточной мембраны связаны радиационные изменения поведенческих функций ЦНС. Радиационное повреждение эндоплазматического ретикулума приводит к уменьшению синтеза белков. Поврежденные лизосомы высвобождают катаболические ферменты, способные вызвать изменения нуклеиновых кислот, белков и мукополисахаридов. Нарушение структуры и функции митохондрий снижает уровень окислительного фосфорили-рования. [c.17]

    Каким же образом белковый токсин такого типа проникает в клетку Имеются основания считать, что структура одно.-го нз участков белковой молекулы обладает способностыб связываться с определенными участками клеточной, мембраны. Возможно, что связывание в этих участках стимулирует [c.305]

    Предприняты попытки встраивания молекул пигмента в искусственные системы и повыщения эффективности их использования. В частности, растущие бактерии Н. каЬЫит переносят в мелкие водоемы с высокой концентрацией КаС1 и других минеральных солей, в которых исключается загрязнение. У некоторых щтаммов половина клеточной мембраны покрыта пурпурным пигментом, и из 10 л бактериальной культуры можно получить 0,5 г пурпурных мембран. В таких биомембранах содержится до 100000 молекул родопсина. Биомембраны фиксируют на особой подложке, которая должна обладать всеми свойствами, необходимыми для обеспечения тока протонов, а не других ионов. В частности, для этих целей вполне пригодны пористые подложки, пропитанные липидами, которые, сливаясь с мембраной, сплощным слоем покрывают поверхность фильтра. Мембранные фрагменты можно смещивать и с акриламидом с образованием геля. Вместо создания плотных слоев молекул бактериородопсин и липиды могут создавать протеолипосомы, которые встраивают в структуры, обеспечивающие эффективное перекачивание протонов. [c.27]

    Клеточная мембрана — это не просто мешок. Она регулирует перенос низкомолекулярных веществ в клетку и из клетки. У бактерий с внутренней поверхностью мембраны связаны ферменты, катализирующие процессы окисления. Нередко бактериальные мембраны образуют складчатые участки, имеющие в разрезе вид многослойных структур это так называемые мезосомы (рис. 1-1 и 1-2, Г). Предполагается, что в мезосомах протекают специализированные процессы обмена веществ и репликация ДНК. В клетках Е. oli мезосомы выявляются не всегда, и все же, видимо, репликация ДНК у этого организма происходит на определенных участках поверхности мембраны и регулируется связанными с мембраной ферментами. Образование новой мембраны (перегородки) между делящимися клетками происходит синхронно с синтезом ДНК. [c.21]

    Виды Streptomy es продуцируют семейство макротетролидных антибиотиков, называемых нактинами (152), в основе структуры которых лежит 32-членный цикл, включающий 4 тетрагидрофура-новых фрагмента. С помощью этих соединений осуществляется транспорт ионов калия через клеточные мембраны, они существен- [c.152]

    Все клетки отграничены друг от друга и от окружающей среды с помощью спещгальной оболочки—клеточной мембраны. Со времен К. Негели, описавшего в 1855 г. структуру мембран, окружающих живые клетки, представления об устройстве и функциях мембран существенно обогатились. 1Слеточная мембрана во многом определяет свойства, поведение и даже форму клетки. Мембраны прокариот и эукариот различаются между собой по составу и свойствам. Растительные и животные клетки также отличаются друг от друга как по набору органелл, так и по свойствам мембран (рис. 9.1). [c.298]

    Электронномикроскопические исследования показывают, что в основе клеточных и внутриклеточных мембран лежит структура единичной мембраны толщиной 75—95 А, состоящая из двух слоев липида и двух слоев нелипидного материала . В настоящее время имеются данные, указывающие на присутствие углеводсодержащих биополимеров во внешнем слое клеточной мембраны . При биохимическом исследовании субклеточных частиц из клеток печени крыс было обнаружено высокое содержание гексозаминов и сиаловых кислот — специфических компонентов смешанных углеводсодержащих биополимеров во фракции гладких микро-сом , возникающих из гладкой эндоплазматической сети . Экспериментально доказано присутствие гликолипидов в клеточной мембране Mi ro o us lysodeikti us и других грамположительных бактерий . [c.600]

    Ионы щелочноземельных металлов Са MawMg встречаются в основном внутри клеточной мембраны, Са " " - в осдавном снаружи. В число биологических функций этих ионов входят поддержание химического потенциала, посылка и передача нервных сигналов кроме того, путем комплексообразования они усиливают такие функции лигандов, как активация ферментов и поддержание структуры тканей. Это усиливающая способность есть результат сильного взаимодействия Mg и Са с присущими биоло- [c.269]

    В одной из гипотез термофилии постулируется термостабильность структурных компонентов клетки термофилов. Оказалось, что клеточная стенка, мембраны, рибосомы термофилов значительно более термостабильны, чем соответствующие структуры мезофилов. Особенно большое внимание в этом плане привлекают клеточные мембраны. [c.136]

    В дополнение к вынужденному принесению в жертву части источников углерода высокие концентрации О2 вызывают в клетке обратимые изменения структуры нитрогеназы, делающие чувствительные к молекулярному кислороду участки менее доступными для него. Высказываются разные предположения относительно того, как осуществляется конформационная защита. Возможно, при этом происходит изменение взаимного расположения двух нитрогеназных белков. Не исключено участие в защите такого типа клеточной мембраны. Определенная стабилизация нитрогеназы в условиях высокой концентрации О2 происходит при добавлении к ферментному комплексу двухвалентных катионов. Наконец, обнаружены специальные защитные белки, образующие комплексы с нитрогеназными белками и приводящие к повыщению их стабильности в присутствии О2. Никаких других функций, кроме защитной, у этих белков пока не найдено. [c.342]

    Рибосомы, как и РНК-полимеразы, являются точками приложения действия ряда антибиотиков, в том числе таких широко используемых в медицинской практике как стрептомицин, хлорамфеникол и тетрациклин, структуры которых приведены в 2.5, Бактерицидное действие первых двух связано с их способностью специфично взаимодействовать только с прокариотическими рибосомами. Стрептомицин связывается с малой субъединицей, хлорамфеникол - с большой субъединицей вблизи пептидилтрансферазного центра рибосомы, подавляя тем самым биосинтез белков у бактерий и- не затрагивая биосинтез зараженного человека или животного. Тетрациклин обладает способностью взаимодействовать с малыми субъединицами в А-участках как прокариотических, так и эукариотических рибосом. Этим он препятствует отбору аминоацил-тРНК в А-участке и блокирует белковый синтез. Однако клеточные мембраны животных для него непроницаемы, и при введении его в живой организм избирательно подавляется именно биосинтез у бактерий. [c.193]

    Трехслойная структура наблюдалась на фиксированных срезах многих биологических мембран. Основываясь на этом морфологическом сходстве, Дж. Д. Робертсон в 1959 г. предположил, что все клеточные мембраны — как плазматические, так и внутриклеточные — построены по единому принципу, и высказал концепцию унитарной (или единообразной) мембраны. В целом модель, предложенная Дж. Д. Робертсоном в 1960 г. (рис. 314), во многом сходна с классической моделью Дж. Даниелли основу мембраны составляет липидный бислой, а ее нелипидные компоненты (прежде всего бе.юк) в полностью развернутой конформации лежат на поверхности бислоя, связываясь с липидами электростатически и за счет гидрофобных взаимодействий. Однако в модели Робертсона нашла отражение еще одна важная структурная особенность мембраны — ее асимметрия. [c.582]

    Рассмотрим сначала биологические полимеры, образующие истинные мезофазы. Благодаря своим парафиновым цепям жирные кислоты — это небольшие полимерные молекулы. Они входят в состав некоторых наиболее важных биологических жидких кристаллов [13—16]. В частности, клеточные мембраны и их основные производные содержат фосфолипиды, образующие бислойные структуры, подобные смектическим фазам, уменьшенным до двух молекулярных слоев. Такая структура обусловлена дифильным характером этих молекул и относительно постоянной длиной парафиновых цепей. Структурные формулы основных из этих соединений хорошо известны и могут быть найдены в статье Луззати [17]. Многие жидкокристаллические включения наблюдаются в эндокринных тканях, таких, как кора надпочечников и желтое те- [c.277]

    На рис. 1 показана обобщенная модель структуры клеточной мембраны. Фосфолипиды образуют двойной слой с обращенными наружу гидрофильными концами. Парафиновые цепи расположены совершенно неупорядоченно ( -тип структуры, согласно классификации Луззати [ 17]). Молекулы холестерина распределены ло [c.282]

    Внешняя клеточная стенка Е. oli покрыта чехлом, или капсулой, из слизистого вещества. Через чехол проходят наружу короткие, похожие на волоски структуры, называемые пилями, функция которых пока не совсем понятна. Штаммы Е. oli и других бактерий, способных к передвижению, имеют также один или несколько длинных жгутиков, играющих роль пропеллеров при перемещении бактерий в водной среде. Жгутики бактерий представляют собой тонкие, жесткие, изогнутые стерженьки с поперечным сечением 10-20 нм. Они прикрепляются к расположенной на внутренней стороне мембраны структуре, напоминающей автоматическую трансмиссию, которая обеспечивает вращение жгутиков. Мембрана клетки-это очень тонкий двойной слой (бислой) липидных молекул, прони- [c.31]


Смотреть страницы где упоминается термин Клеточная мембрана структура: [c.190]    [c.70]    [c.353]    [c.88]    [c.415]    [c.355]    [c.156]    [c.156]    [c.65]    [c.266]    [c.101]    [c.129]    [c.553]    [c.738]    [c.34]    [c.84]    [c.26]   
Жизнь зеленого растения (1983) -- [ c.66 , c.69 , c.147 , c.281 ]




ПОИСК





Смотрите так же термины и статьи:

Липиды центральной нервной системы н структура клеточных мембран

Мембрана клеточная



© 2025 chem21.info Реклама на сайте