Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеризация в производстве нефтехимических продуктов

    Между производством топливных и химических продуктов из нефтяного сырья существует глубокая связь — одни и те же продукты необходимы и для топлива, и для производства химических продуктов. Так, присутствие моноциклических ароматических углеводородов необходимо в бензине для обеспечения требуемого октанового числа с другой стороны, они являются важнейшим видом сырья для производства широкого ассортимента нефтехимических продуктов. Бутан-бутиленовая фракция используется для получения алкилатов, но, кроме того, она широко применяется для переработки в бутадиены. Пропан-пропиленовая фракция, получаемая при переработке нефти, используется для полимеризации в полимербензин кроме того, пропилен является сырьем для получения широкого ассортимента химических продуктов. Следовательно, правильно выбрать схему производства [c.232]


    Полимеризация при повышенной температуре [38]. По второму способу полимеризация проводится с горячей кислотой. Этим способом, при котором, кроме изобутенов присутствует также н-бутен (сополимеризация), получают неоднородную смесь олефинов, используемую в дальнейшем для производства карбюраторного горючего. Применять метод для получения нефтехимических продуктов нецелесообразно. [c.65]

    Полимеризация в производстве нефтехимических продуктов [c.247]

    Одной из первостепенных задач является разработка методов управления реакцией полимеризации, позволяющих превращать одни и те же мономеры, в том числе самые простые, в различные продукты нефтехимического синтеза — пластмассы, волокна, смолы, каучук и др. Все это позволит значительно расширить объем производства нефтехимических продуктов широкого потребления. Начатые в этой области исследования могут произвести целую революцию в химии и технологии высокомолекулярных соединений. [c.246]

    Олефины Сд и С4 в свою очередь, имеют большую склонность к реакциям алкилирования и полимеризации, что еще более повышает выходы автомобильного и авиационного бензинов. При каталитическом крекинге получаются также высокие выходы к-бутенов, являющихся сырьем для производства бутадиена и других нефтехимических продуктов. Дальнейшее более детальное сравнение термического и каталитического крекингов было произведено на индивидуальных соединениях [9]. Несмотря на то, что данные по составу бензинов не приведены, более высокое октановое число бензина каталитического крекинга свидетельствует, безусловно, [c.143]

    Трудно бывает решить, является ли то или другое химическое вещ,ество нефтехимическим продуктом, поскольку, как уже отмечалось выше, любое органическое соединение можно синтезировать, исходя из метана. Кроме того, возможность получения бензола, толуола, нафталина и других соединений из нефти означает, что все синтетические вещества ароматического ряда, в том числе красители, лекарственные и взрывчатые вещества и т. п., можно рассматривать как продукты нефтяного происхождения. К выбору объектов для описания приходилось подходить очень продуманно, чтобы не увеличить чрезмерно объем книги. Из трех основных типов органических соединений — алифатических, ароматических и гетероциклических — в химии производных нефти рассматриваются главным образом алифатические соединения. Производство ароматических углеводородов из нефти обсуждается в книге еще довольно подробно, но вопросы дальнейшей их химической переработки ограничиваются только последними достижениями в этой области. Аналогичным образом описывается производство полупродуктов для получения высокополимеров из сырья нефтяного происхождения, но процессы полимеризации опускаются. Вопросы химии и технологии нефтеперерабатывающей промышленности, которая занимается главным образом производством топлив и смазочных масел из сырой нефти, освещены лишь в той степени, в какой они имеют отношение к химической переработке нефти. В книге не упоминается о производстве сажи, базирующемся почти исключительно на нефтяном сырье, но не приводящем к получению синтетических органических продуктов. [c.12]


    В химических и нефтехимических производствах насосные установки являются одним из основных видов оборудования, надежная работа которого обеспечивает непрерывность технологического процесса. Насосное оборудование используют для перекачивания жидкостей с разными физико-химическими свойствами (кислот и щелочей в широком диапазоне концентраций, органических продуктов, сжиженных газов и т. п.) при различных температурах. Перекачиваемые жидкости характеризуются различными температурой кристаллизации, взрывоопасностью, токсичностью, склонностью к полимеризации и налипанию, содержанием растворенных газов и т. д. [c.5]

    Основное производство нефтеперерабатывающего предприя тия объединяет подразделения, осуществляющие все технологические процессы по изготовлению целевой продукции. Сюда относятся подготовка и первичная переработка нефти, термический и каталитический крекинг, коксование, гидроочистка, де-парафинизация, газофракционирование, алкнлирование, полимеризация, производство масел, нефтехимических полуфабрикатов и продуктов и др. [c.21]

    Полимеризацию ППФ осуществляют в двух вариантах 1) получение полимербензина 2) производство тримеров и тетрамеров пропилена как сырья для нефтехимического синтеза. При выработке полимербензина получают следующие продукты 1) полимербензин — компонент автомобильного бензина (обладает низкой [c.128]

    Указанные теплоносители, особенно дифенильная смесь, заняли прочное место уже во многих отраслях химической промышленности — при получении и переработке пластмасс и их исходных продуктов, в области нефтехимического синтеза, в промышленности синтетических волокон, в производствах фармацевтических продуктов, при дистилляции фталевого ангидрида и жирных кислот, в производстве лаков и полимеризации масел, а также во многих других производствах, связанных с процессами, протекающими при высоких температурах. [c.3]

    Первая реакция наряду с полимеризацией пропилена и бутиленов (или их смесей) представляет собой промышленный метод производства ряда олефинов, а также полимербензина — высокооктанового компонента бензинов, сырья для нефтехимического синтеза, присадок к маслам, смазочных масел, поверхностно-активных веществ, покрытий, лаков и пр. При втором процессе получаются ценные полимерные материалы, из которых особенно важны полиэтилен, полипропилен, полиизобутилен и синтетические каучуки. В настоящее время полимеризация пропилена и бутиленов для получения высокооктановых компонентов потеряла свое значение в связи с широким применением продуктов каталитического риформинга. Однако полимеризация этих и других олефинов для получения нефтехимических продуктов сохраняет исключительно большое значение. Полимеризацию применяют также для получения полиакрилонитрила (волокно нитрон), полиметакрилата (органическое стекло) и других синтетических полимеров. [c.219]

    Наиболее быстрыми темпами роста производства отличаются продукты полимеризации. До 1960 г. основным видом полимеризационных пластиков являлся поливинилхлорид, производившийся на базе карбидного и нефтехимического ацетилена. В последние годы резко возросла выработка полиолефинов и полистирола. Соотношение между этими тремя видами пластмасс изменилось с 71,22 и 7% в 1955 г. до 46,23 и 31 % в 1963 г. [c.162]

    За сравнительно короткий исторический период полиэтилен превратился в наиболее массовый конечный нефтехимический продукт, получив широкое распространение во всем мире. Долгое время бытовало золотое правило (не потерявшее актуальности и теперь), которое формулируется так если хотите, чтобы нефтехимический комплекс работал эффективно, включите в его состав производство полиэтилена. В настояш,ее время в мире производится три основных вида полиэтилена - полиэтилен высокой плотности, полиэтилен низкой плотности и линейный полиэтилен низкой плотности каждый из видов полиэтилена насчитывает десятки марок. Свойства полимеров определяются молекулярно-массовым распределением цепей полимера, наличием в нем сомономеров, спецификой применяемого катализатора, изменением условий реакции полимеризации, типом используемого оборудования. Ряд производителей ориентируются на выпуск относительно узкой номенклатуры марок полиэтилена (универсальные марки), но большинство все же стараются расширить номенклатурный ряд выпускаемой продукции, производя специализированные марки полиэтилена, рассчитанные на строго определенного потребителя. [c.192]

    К важнейшим продуктам нефтехимической промышленности относится бутадиен. При совместной полимеризации со стиролом бутадиен дает синтетический каучук Буна GR-S или S. Общее производство бутадиена составило, например, в США в 1956 г. 650 тыс. т. [c.84]

    Теплообменная аппаратура в нефтехимических производствах подвергается постепенной забивке. В одних случаях это происходит вследствие полимеризации диеновых углеводородов и конденсации смолообразующих продуктов, в других — из-за оседания по поверхности теплообменников механических включений и биологических обрастаний, содержащихся в охлаждающей воде. Независимо от причины загрязнения нарушается нормальный технологический режим процесса (завышается давление, температура), чаще приходится выполнять трудоемкую и вредную работу по очистке теплообменников. [c.94]


    В нефтехимических производствах в качестве исходного сырья и полупродуктов широко применяются непредельные углеводороды. В присутствии катализаторов они полимеризуются, образуя полимеры. Однако частичные полимеризация и поликонденсация углеводородов могут протекать и без катализаторов под воздействием температуры и других факторов. При осуществлении некоторых процессов образуются высококипящие продукты, которые при дальнейшей переработке осмо-ляются. [c.121]

    На разных предприятиях применяются различные методы очистки сточных вод. На нефтехимических комбинатах (при производстве синтетического спирта, фенола, ацетона, синтетических жирных кислот, каучука и др.) основными местами образования загрязненных сточных вод являются цехи пиролиза углеводородов, гидратации этилена и ректификации спирта. Сточные воды цеха пиролиза углеводородов содержат этилен, пропилен, бутан, изобутан, бензол, толуол, ксилол, нафталин. В сточных водах цеха гидратации этилена и ректификации спирта присутствуют спирты, ацетальдегид, продукты полимеризации, смола. При применении биологических методов очистки содержание органических веществ (бензола, толуола, ксилола, нафталина и др.) в сточных водах значительно снижается. [c.16]

    Полимеризация применительно к нефтепереработке является процессом превращения пропилена и бутиленов в жидкие олигомерные продукты, используемые реже в качестве компонентов автомобильных бензинов и чаще —в качестве сырья для нефтехимических процессов, в том числе и для производства присадок к маслам. В зависимости от вида сырья, катализатора и технологического режима выход продуктов может изменяться в широких пределах. [c.10]

    Окисление углеводородов является одним из основных направлений современного нефтехимического синтеза [1, 2], роль которого в развитии органической химии трудно переоценить. В настоящее время в промышленности осуществляется каталитическое жидкофазное окисление высших парафиновых углеводородов в высшие алифатические спирты и кислоты [3]. В последние годы большой интерес проявляют исследователи к жидкофазному автоокислению углеводородов кислородом воздуха в гидроперекиси При этом особое внимание привлекает автоокисление алкилароматических углеводородов и некоторых их производных в гидроперекиси. Это объясняется легкостью синтеза алкилароматических углеводородов на основе реакции алкилирования, как показано в главе И, легкостью окисления многих из них в гидроперекиси и широким применением последних в качестве инициаторов процессов полимеризации и исходного сырья в производстве мономеров для получения синтетических каучуков, пластических масс, синтетических волокон и других продуктов, важных для народного хозяйства. [c.244]

    Развитие производства полиолефинов — несомненно основное достижение промышленности пластмасс за последние годы. Как отмечалось уже в других главах, расширение нефтехимической промышленности привело к увеличению производства олефиновых углеводородов, способных при взаимодействии с другими химическими соединениями давать множество различных продуктов. Однако их полимеризация — единственный процесс, не связанный с расходом эквивалентных количеств других веществ и приводящий к образованию товарных продуктов с тем же химическим составом, что и исходный мономер. [c.76]

    В соответствии с решением майского Пленума ЦК КПСС в течение ближайшего семилетия выпуск пластмасс, в том числе выпуск полимеров, получаемых полимеризацией, будет значительно увеличен. Особенно быстрое развитие должно получить производство полиэтилена, полипропилена, поливиниловых смол. Решающее значение для обеспечения такого быстрого развития промышленности полимеризационных смол приобретает синтез мономеров, преимущественно получаемых из продуктов нефтехимического производства. Для обеспечения плана выпуска пластмасс в 1975 г. необходимо подвергнуть переработке десятки миллионов тонн нефти. Производство виниловых производных (основных типов мономеров) основано на использовании этилена, пропилена, ацетилена и бензола. Основным источником получения бензола становится процесс ароматизации нефти. На схеме XII.1 показаны направления использования продуктов нефтехимического синтеза в производстве основных типов полимеров, получаемых полимеризацией (за исключением производства синтетических каучуков). [c.758]

    Решетчатые тарелки широко применяют в аппаратах нефтехимических производств, предназначенных для особо коррозийных сред в этих случаях для изготовления тарелок используют специальное стекло или другие неметаллические материалы, устойчивые против коррозии. Одной из разновидностей решетчатых тарелок являются трубчато-решетчатые тарелки, у которых решетка собирается из навитых в плоскую спираль труб диаметром 16/22 мм, по которым можно осуществлять подвод или отвод тепла. К решетчатым же тарелкам относятся волнистые дырчатые тарелки, выполняемые из гофрированного (синусоидальным профилем) металлического листа с отверстиями. Такие тарелки применяют для ректификации продуктов, склонных к полимеризации. [c.229]

    С б являются регуляторами радикальных процессов полимеризации в производстве латексов, каучуков, пластмасс. Среди регуляторов полимеризации наибольшее значение имеют третичный до-децилмеркаптан и нормальный додецилмеркаптан. Меркаптаны применяют для синтеза флотореагентов, фотоматериалов, красителей специального назначения, в фармакологии, косметике и многих других областях. Сульфиды служат компонентами при синтезе красителей, продукты их окисления - сульфоксиды, сульфоны и сульфокислоты - используют как эффективные экстрагенты редких металлов и флотореагенты полиметаллических руд, пластификаторы и биологически активные вещества. Перспективно применение сульфидов и их производных в качестве компонентов ракетных топлив, инсектицидов, фунгицидов, гербицидов, пластификаторов, комплексообразователей и т.д. За последние годы резко возрастает применение полифениленсульфидных полимеров. Они характеризуются хорошей термической стабильностью, способностью сохранять отличные механические характеристики при высоких температурах, великолепной химической стойкостью и совместимостью с самыми различными наполнителями. Твердые покрытия из полифенилсульфида легко наносятся на металл, обеспечивая надежную защиту его от коррозии, что уже подхвачено зарубежной нефтехимической промышленностью, где наблюдается поли-фенилсульфидный бум . Важно еще подчеркнуть, что в этом полимере почти одна треть массы состоит из серы. [c.83]

    Производство индивидуальных нормальных парафиновых углеводородов Сщ — С20 методом синтеза из водорода и окиси углерода (кога--зин I и II) удовлетворяет в настоящее время лишь незначительную долю общей потребности. Дополнительные количества получают полимеризацией газообразных олефинов, образующихся как побочный продукт в процессах нефтепереработки. Вместе с тем потребность в парафиновых углеводородах как сырье для нефтехимической промышленности быстро растет, вследствие чего непосредственное выделение парафиновых углеводородов с заданной длиной цепи, например С ,, — С,8 или С15 — 35, из соответствующих фракций представляло бы чрезвычайно большой промышленный интерес. [c.269]

    Пропан-пропиленовая фракция применяется для получения полимер-бензнна на установках каталитической полимеризации, производства изопропилбензола, сульфонола, а также может быть использована в виде сжиженного газа как топливо для карбюраторных двигателей. Часть пропан-пропиленовой фракции подвергают пиролизу с целью получения этилена и на базе его ряда нефтехимических продуктов. [c.172]

    Углеводородный газ содержит 80—90% фракции Сз—С. и используется после разделения в процесса алкилирования, полимеризации, для производства этилена, пртпнлена, бутадиена, изопрена, полиизобутилена, ПАВ н других нефтехимических продуктов. [c.251]

    Обострение конкуренции, необходимость дальнейшего повышения октановых чисел бензинов и производства других высококачественных продуктов привели к резкому увеличению значения каталитических процессов в нефтепереработке. Разработка процесса каталитической полимеризации в начале 30-х годов пробудила большой интерес к потенциальным возможностям новых в тот период каталитических методов. Промышленное внедрение каталитического крекинга в начале 40-х годов явилось важнейшим поворотным пунктом, особенно после использования в этом процессе техники нсевдо-ожиженного слоя. В связи со второй мировой войной ускорились разработка и внедрение ряда каталитических процессов нефтепереработки, связанных с производством авиационного бензина, синтетического каучука и многочисленных нефтехимических продуктов. [c.194]

    Углеводородный газ содержит 75—90 % фракции Сз—С4. Его используют после разделения в процессах алкилирования, полимеризации, для производства этилена, пропилена, бутадиена, изопрена, полиизобутилена, ПАВ и других нефтехимических продуктов. Бензиновую фракцию (к. к. 195 °С) применяют как базовый компонент автомобильного бензина. Она содержит аренов 25—40, алкенов 15—30, циклоалканов 2—10 и алканов., преимущественно изостроения, 35—60 % (масс.). Октановое число фракции составляет 78—85 (по моторному методу). [c.344]

    Одним из ведущих направлений современной полимерной химии является синтез полимеров на основе этилена С2Н4, пропилена СзНа, бутилена С4Н8 и других непредельных углеводородов (олефинов) — продуктов переработки нефти и газов при высоких температурах. К процессам производства нефтехимического сырья относятся пиролиз, крекинг и риформинг нефтяных фракций и газов, дегидрирование и гидрирование, алкилирование, циклизация, полимеризация и конденсация, а также каталитический крекинг нефтяных фракций, коксование тяжелых нефтяных остатков и др. [c.6]

    В настоящее время полимеризация с целью получения полимербензина практически не применяется. Однако она сохранила значение для производства некоторых нефтехимических продуктов, особенно присадок к маслам. Все возрастает роль полимеризации олефинов для получения полиолефинов, в том числе полиэтилена и полипропилена, производство которых иногда осуществляется на нефтеперерабатывающих заводах, но в основном сосредоточено йа опедналыплх нефтехимич ских предприятиях, [c.390]

    На основании разработанной промышленной технологии производства тетрамеров пропилена и учитывая проведенную во ВНИИ НП исследовательскую работу, можно рекомендовать эту технологию также для преимущественного производства тримеров пропилена, что является весьма важным для обеспечения сырьем отечественной нефтехимической промышленности. В этом варианте полимеризации пропилена рециркулирующий продукт должен со-< тоять только из головной фракции (н. к. — 125° С) полимеров про пилена. [c.87]

    В 1997 г институтом ВНИИОС совместно с НИИграфит по заданию Минатома РФ были разработаны исходные данные ддя ТЭО установки мощностью 2,5 тыс.т/год по получению кокса марки КНПС на Томском нефтехимическом комбинате на основе новых технических решений из альтернативного сырья - смеси фракций газового конденсата Уренгойского месторождения с добавкой керосино-газойлевой фракции малосернистой нефти. Установка базировалась на процессе пиролиза этиленового производства с получением тяжелых смол пиролиза бензиновой и дизельной фракции, а также фракции, выкипающей выше 200 С, с их дальнейшим коксованием с получением коксов марок КНГ, КЗК с направлением на пиролиз дистиллата коксования. В дальнейшем по традиционной схеме осуществляется двухстадийный процесс пиролиз-коксование в кубах. В процессе пиролиза протекает пиролитическая ароматизация исходного сырья с получением смолы, направляемой на коксование. В состав установки пиролиза входит печь пиролиза, реакционная камера, гидравлик и система выделения отдельных фракций, таких как легкое масло и зеленое масло. В пиролизной печи происходит разложение углеводородного сырья при 690-710 С с образованием пирогаза, содержащего низшие олефины и диеновые углеводороды, жидких продуктов, состав которых характеризуется высоким содержанием ароматических, алкенил- ароматических и конденсированных соединений. В реакционной камере происходит полимеризация, конденсация и уплотнение продукгов первичного распада сырья с образованием компонентов целевой смолы для процесса коксования, таких как полициклические ароматические соединения, асфальтены и карбоиды. Время пребывания потока в реакционной камере составляет 20-30 сек. За счет протекания экзотермических реакций уплотнения температура в [c.143]

    Значительный вклад в науку и практику новой отрасли нефтехимического синтеза и технологии внесли отечественные специалисты. Так, производство вязкостных присадок основано на классических работах А. Н. Бутлерова, впервые получившего высокомолекулярные продукты полимеризацией изобутилена. Эти исследования продолжены С. В. Лебедевым, С. Н. Наметкиным, А. И. Динцесом и дру- ими учеными. Синтезирован нолиизобутилен с молекулярной массой 23 ООО (суперол) и установлена его высокая эффективность как присадки, повышающей индекс вязкости. Осуществлен синтез вязкостных присадок на основе виниловых эфиров. [c.8]

    Различные производства применяют разные методы очистки сточных вод. На нефтехимических производствах (синтетического спирта, фенола, ацетона, синтетических жирных кислот, синтетического каучука и др.) используется биологическая очистка в аэротенках стоков, загрязненных органическими веществами [44]. Основными местами загрязнения являются цехи пиролиза углеводородов, гидратации этилена и ректификации спирта. В цехе пиролиза углеводородов сточные воды содержат этилен, пропилен, бутан, изобутан, бензол, толуол, ксилол, нафталин. В цехе гидратации этилена и ректификации спирта стоки содержат диэтиловый эфир, этиловый и изопропиловый спирты, ацетальдегид, продукты полимеризации, смолу. Применяемая на этих производствах биологическая очистка значительно снижает содержание в сточных водах бензола, толуола, ксилола, нафталина, ослабляет запах. По данным [0-27], на нефтеперерабатывающем заводе биохимическая очистка стоков снижает содержание нефтепродуктов на 40%, нерастворенных веществ на 96%, уменьшает БПКб на 50% и ХПК на 70%. По данным [45], на нефтеперерабатывающем заводе в результате применения новейшей конструкции деэмульгаторов содержание нефти в сточны.х водах уменьшилось в 4—5 раз. На заводе химического волокна флотационная очистка снижает содержание нерастворенных веществ на 70—80% [0-27]. [c.8]

    Наблюдается резкое снил ение цен на относительно новые продукты полимеризации, особенно на полиэтилен и полипропилен. Вырабатываемые в больших количествах из дешевого нефтехимического сырья эти полимеры должны были пробивать себе дорогу к потребителю в конкурентной борьбе с такими полимерами, как поливинилхлорид и полистирол, которые уже завоевали широкий рынок сбыта. Монополии-производители полиэтилена и полипропилена по мере освоения и расширения производства добивались уменьшения издержек производства, а следовательно получали возможность снижать и цены. Например, цена на полиэтилен низкой плотности для литья под давлением упала за 1963—1970 гг. с 474 до 287 долл1т. За этот же период цена на поливинилхлорид понизилась всего с 353 до 309 долл1т. Таким образом, если в 1963 г. цена на полиэтилен была на 121 долл. выше, то в 1970 г. она была уже на 22 долл. ниже цены поливинилхлорида. [c.216]


Смотреть страницы где упоминается термин Полимеризация в производстве нефтехимических продуктов: [c.89]    [c.143]    [c.67]    [c.15]    [c.4]    [c.355]    [c.233]    [c.4]   
Смотреть главы в:

Катализ. Некоторые вопросы теории и технологии органических реакций -> Полимеризация в производстве нефтехимических продуктов

Катализ новые физические методы исследования 1959 -> Полимеризация в производстве нефтехимических продуктов




ПОИСК





Смотрите так же термины и статьи:

Нефтехимические продукты



© 2024 chem21.info Реклама на сайте