Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тема 10. Биосинтез витаминов

    Некоторые бактерии (особенно прихотливые или мутанты с наследственными дефектами) могут расти только в среде, дополненной определенными компонентами, которые сами микроорганизмы синтезировать не могут. Эти компоненты известны как ростовые факторы, к ним относят — витамины, пурины и пиримидины (пути биосинтеза указанных соединений рассмотрены в теме 10 Витамины и теме 14 Метаболизм нуклеотидов и нуклеозидов, их производных и флавинов ). Факторы роста не используются в качестве пластического или энергетического материала, но обеспечивают регуляцию метаболизма. [c.449]


    Согласно авторитетным утверждениям, много миллионов лет назад произошла делеция в гене, что и предопределило неспособность современного человека к биосинтезу витамина С в отличие от большинства млекопитающих. Зависимость от поступлений витамина С с пищей выглядит досадным неудобством. Тем не менее приводились доводы в пользу того, что этот генетический дефект в виде серповидно-клеточной анемии может приносить некоторую выгоду, хотя подобные аргументы могли возникнуть только под давлением обстоятельств. [c.132]

    Аскорбиновая кислота, или витамин С — это противоцинготный витамин, имеющийся у, всех высших растений и животных только человек и микробы не синтезируют ее, но людям она неотложно необходима, а микробы не нуждаются в ней. И, тем не менее, определенные виды уксуснокислых бактерий причастны к биосинтезу полупродукта этой кислоты — L-сорбозы. Таким образом, весь процесс получения аскорбиновой кислоты является смешанным, то есть химико-ферментативным. [c.453]

    Оказалось, что эта кислота в большей степени, чем другие витамины группы В, необходима для роста микроорганизмов. Физиологические исследования показали, что она важна и для нормальных функций человеческого организма. Вероятно это связано с тем, что л-аминобензойная кислота необходима для биосинтеза крайне важного антианемического фактора — витамина Вс. [c.404]

    Биологическая роль витамина многогранна. Основной точкой его при-. ложения является прямое или косвенное участие в биосинтезе белка, нуклеиновых кислот, в образовании и переносе метильных групп при превращении гомоцистеина в метионин. Недавно выделен метилкобаламин, при посредстве которого осуществляется этот процесс. Витамин В участвует в реакции ацетилирования, способствует восстановлению сульфгидрильных групп кофермента А, ускоряя тем самым процесс окисления пировиноградной кис-Коферментную функцию в ряде реакций выполняет не [c.148]

    Целесообразно распространить описанную выше аэрозольную технологию и для предпосевной обработки семян с целью повышения их качества и урожайности растений. К посеву обычно готовятся семена с высокими посевными свойствами, как правило, районированных сортов. До появления ростка корешки и стебелёк развиваются за счёт питательных веществ самого семени набора аминокислот, ДНК, РНК, витаминов различных групп /80/, Чем больше этих веществ при оптимальных количествах влаги, кислорода, при достаточной температуре, тем мощнее формируется корневая система, быстрее протекают все стадии развития растений. Семена, в частности овощных культур, до начала прорастания должны быть обогащены важнейшими микроэлементами меди, марганца, бора, железа, цинка и т.д., которые служат катализаторами биосинтеза белка, а в конечном итоге, являются важнейшим фактором повышения урожайности растений. [c.164]


    Наиболее отработаны технологические схемы получения липидов с помощью дрожжей на гидролизатах верхового торфа малой степени разложения и углеводородах нефти. Эти схемы различаются тем, что при получении липидов на гидролизатах торфа дрожжевой жир является основным продуктом, а при использовании углеводородов дрожжевой жир — побочный продукт, появляющийся в результате очистки дрожжевой биомассы от остаточных углеводородов. В связи с этим и фракционный состав получаемых этими путями липидов весьма различен доминирующая фракция углеводородных дрожжей — фосфолипиды, основная фракция при получении липидов на гидролизатах торфа—триацилглицерины. В нашей стране процесс получения дрожжевых липидов в условиях специализированной установки осуществлен иа Кстовском опытно-промышленном заводе белково-витаминных концентратов, вырабатывающем сотни тонн этого продукта биосинтеза. В ближайшие годы планируется ввод в строй нескольких установок по получению липидов из дрожжей способом, аналогичным кстовскому. [c.387]

    Повышение продуктивности культур растительных клеток. Растительные клетки в культуре проводят биосинтез (или биотрансформацию) важных для медицины и ряда отраслей промышленности веществ. Одним из требований рентабельности производства на основе растительных клеток является возможность культивирования на простых по составу питательных средах. Между тем культуры растительных клеток требуют присутствия в среде витаминов, фитогормонов, аминокислот, сахарозы и других веществ (см. гл. 1). [c.53]

    Симптомы пеллагры чаше наблюдаются у лиц с недостатком белка в диете. Объясняется это тем, что животные белки содержат оптимальное количество аминокислоты триптофана, витамина В и некоторых других, необходимых для биосинтеза ниацина. [c.29]

    Доказано, что в более высоких дозах витамин способствует улучшению липидного обмена в организме. Вследствие этого предотвращается отложение холестерина на стенках артерий и снижается риск коронарной недостаточности. При коронарной недостаточности уровень аскорбиновой кислоты в плазме и лейкоцитах снижается, и что здесь является причиной, а что следствием, пока не ясно. Тем не менее полагают, что витамин С способствует профилактике атеросклероза, так как поддерживает целостность стенок артерий (за счет надлежащего уровня гидроксипролина, необходимого для биосинтеза коллагена), снижает уровень в крови холестерина (способствуя биосинтезу желчной кислоты) и триглицеридов (активируя липазу плазмы). Витамин С полезен для здорового обмена еще и тем, что уменьшает агрегацию тромбоцитов и повышает фибринолитическую активность в крови. У некоторых цинготных больных, добровольно участвовавших в медицинских экспериментах, были обнаружены сердечно-сосудистые расстройства. Явления атеросклероза наблюдались также у грызунов и поросят, находившихся на искусственном рационе, лишенном витамина С. Однажды его окрестили даже сердечным витамином . Хотя и можно проследить взаимосвязь между случаями ишемической болезни сердца (ИБС) и низким уровнем аскорбиновой кислоты в плазме, скорее последнее является следствием первого, а не наоборот. Тем не менее фактором риска при ИБС по мнению некоторых специалистов является наличие различных агрессивных форм кислорода, например, супероксидного радикала, существование которого находится под контролем витамин С-зависимой. супероксиддисмутазы.  [c.122]

    По данной теме за период 1999-2002 гг. Проведено получение биологически активных соединений из классов порфиринов, пептидов, витаминов, полиненасыщенных жирных кислот. Изучено их взаимодействие в форме молекулярных ансамблей для выявления их биологического действия. Разработаны методы синтеза карборансодержащих порфиринов для исследования в борнейтронзахватной терапии рака, усовершенствован метод биосинтеза полиненасыщенных жирных кислот, необходимых в медицине и косметологии. Получены соединения для изучения фундаментальных биологических процессов (фотосинтез, биологическое окисление, биорегуляция). [c.12]

    Соотношение между липофильной углеводородной частью и гидрофильной ионной группировкой в амидных солях типа I таково, что эти соли являются поверхностно-активными агентами, способными в водной среде переводить липиды в коллоидные дисперсии. Желчь, поступающая в кишечник, Эмульгирует нейтральные -жиры и липоидные витамины пищи и тем самым облегчает их проникновение через стенки кишечника в кровь. Исследования, проведенные с использованием изотопной метки, показали, что холестерин яв1яется предшественником в биосинтезе желчных кислот и стероидных гормонов, однако желчь в нормальном организме содержит лишь следы свободного холестерина. В организме человека, а также некоторых животных, запас желчи накапливается в желчном пузыре, связанном с печенью (человек, овцы, крупный рогатый скот) или расположенном внутри печени (акула). [c.639]

    Как отмечалось, витаминные свойства парааминобензойной кислоты связаны, по-видимому, с тем, что она входит в состав молекулы фолиевой кислоты. Парааминобензойная кислота представляет собой кристаллическое вещество, плохо растворимое в воде, хорошо —в спирте и эфире. Химически стойкая, она не разрушается при автоклавировании, выдерживает кипячение в кислой и щелочной средах. В парааминобензойной кислоте нуждаются, кроме микроорганизмов (хотя некоторые из них, например микобактерии туберкулеза, способны сами синтезировать ее), также животные. Доказано, что парааминобензойная кислота необходима для нормального процесса пигментации волос, шерсти, перьев и кожи. Показано также активирующее влияние этого витамина на действие тиро-зиназы—ключевого фермента при биосинтезе меланинов кожи, определяющих ее нормальную окраску. [c.241]


    Микробиологическая селекция отличается от сельскохозяйственной тем, что обращает внимание только на отдельные и.ли немногие виды продуктивности одного аптпбиотнка, одного фермента, одного витамина, реже антибиотика и витамина. Промышленность биосинтеза расширяет задачи лишь при производстве белков. Но даже узко специализированные отрасли микробиологической промышленности интересны д.ля общей селекции тем, что впервые показали возможность поднять интенсивность синтеза отдельных веществ при воздействии мутагенов в тысячи и десятмг тысяч раз после ряда повторных обработок. [c.8]

    Настоящий справочник отличается от имеющихся тем, что в нем не только описана химическая структура и биологическая роль основных биохимических компонентов живой клетки, но и охарактеризованы пути метаболизма данных компонентов в живом организме. Он состоит из семи разделов, в каждом из которых в алфавитном порядке дана соответствующая тepминoлorиЯi В разделах Белки , Нуклеиновые кислоты , Углеводы , Липиды приведены структурные формулы и показана биологическая роль биохимических компонентов клетки, описаны и проиллюстрированы схемами основные пути распада и синтеза важнейших биологически активных молекул. В разделе Ферменты содержатся сведения о типах ферментативного катализа, скорости ферментативных реакций, единицах измерения ферментативных реакций, о принципах классификации ферментов, регуляции биосинтеза и активности ферментов. Раздел Витамины включает характеристику отдельных представителей водо- и жирорастворимых витаминов. Особое внимание уделено ферментным реакциям, в которых участвуют витамины, приведены данные о содержании витаминов в продуктах питания, о суточной потребности человека в витаминах, о применении витаминов и витаминных препаратов в медицинской практике, сельском хозяйстве и т. д. В разделе Гормоны -освещены достижения по биохимии пептидных, белковых и стероидных гормонов. Рассмотрены вопросы биосинтеза, механизм действия гормонов на молекулярном уровне, взаимодействие гормонов с [c.3]

    Биологическое действие. Аскорбиновая кислота участвует в создании окислительно-восстановительного потенциала ( д) в клетке и тем самым влияет на активность ряда ферментов. EQ системы аскорбиновая кислота дегидроаскорбиновая кислота равен 0,08 В, поэтому аскорбиновая кислота может участвовать в восстановлении цитохромов с и а, кислорода, нитратов. Витамин С защищает гемоглобин, препятствуя его окислению принимает участие в синтезе коллагена на этапе гидроксилирования пролина и лизина в оксипролин и оксилизин (это повышает прочность коллагеновых волокон) способствует биосинтезу хондроитинсульфатов соединительной ткани участвует в обмене тирозина (участвует в биосинтезе адреналина на этапе гидроксилирования дофамина и предохраняет адреналин от окисления участвует в обмене тирозина на этапе окисления й-оксифенилпировиноградной кислоты в гомогентизиновую кислоту и ее окислении) участвует в образовании желчных кислот на этапе 7а-гид-роксилирования предшественника участвует в синтезе фолиевой кислоты и через нее влияет на обмен нуклеиновых кислот и превращения рибозы в дезоксирибозу, косвенно активирует кроветворение и регенераторные процессы, увеличивает всасывание железа. В коре надпочечников содержится много аскорбиновой кислоты, которая используется в биосинтезе кортикостероидных гормонов. Этот процесс усиливается кортикотропином. Витамин С действует как главный водорастворимый антиоксидант и может ингибировать образование нитрозаминов (канцерогены) при приеме пищи. [c.344]

    Вместе с тем установлено, что биосинтез аминокислот у растений находится в большой зависимости от обеспеченности растений витаминами группы В. Подкармливая растения кукурузы витаминами В2 и Ве, установили, что содержание их в пасоке увеличивалось в 13—15 раз по сравнению с контрольными растениями, не получавшими витаминной подкормки . Одновременно отмечалось более активное поступление в растение азота и более интенсивный синтез аминокислот. Такой эффект наблюдался, однако, только на фоне питания растений нитратами, на аммонийном же фоне эффект был нередко отрицательным. Усиленный синтез аминокислот шел, главным образом, за счет образования аланина и глутамина. Последний, по работам Кре-товича, обладает значительно большей химической и физиологической активностью, чем аспарагин. [c.452]

    Биосинтез аскорбиновой кислоты осуществляется у всех видов животных, кроме морской свинки, нескольких видов птиц и приматов, включая человека. Возникает вопрос если аскорбиновая кислота так важна для здоровья человека, то почему она не синтезируется в его организме Предположение о происхождении такой биологической несправедливости сделал Л. Полинг — вьщающийся американский биохимик (1902— 1994 гг.). Он предположил, что 25 млн лет назад общий предок человека и приматов жил в местности, где фрукты и овощи были особенно богаты витамином С. В этих условиях мутация, лишившая предка человека возможности синтезировать витамин С (предположительно в результате утраты соответствующего фермента), не оказалась фатальной. В пище было достаточно витамина С, чтобы восполнить его потерю. Фактически эта утрата могла даже оказаться выгодной энергию, затрачиваемую на синтез витамина С, организм предка человека мог использовать для других, более важных целей. Однако когда приматы (и, соответственно, предки человека) покинули свою тропическую долину, их здоровье ухудшилось из-за сокращения потребления витамина С. Поступление витамина с пищей было недостаточным для удовлетворения потребностей организма по сравнению с тем его количеством, который когда-то в нем синтезировался. Именно поэтому, считал Полинг, современным людям необходимо постоянно получать витамин С с пищей. [c.162]

    Вместе с тем данные показывают, что витамин В 2 стимулирует процесс биосинтеза ряда веществ, содержащих метильную фуп-пу. Витамин В12В сочетании с метионином способствует повы-щению выхода стрептомицина культурой S. griseus (щтамм ЛС-1) до 25% (табл. 52). [c.237]

    Все рассмотренные выше методы селекции продуцентов биологически активных веществ сегодня, в период интенсивного развития методов генной инженерии, называют традиционными методами. Эти методы в прошедшие 30 лет в огромной мере содействовали созданию микробиологической промышленности антибиотиков, аминокислот, ферментов, витаминов и других практически важных веществ. Исчерпали ли традиционные методы свои возможности Нам кажется, думать так преждевременно, как и надеяться на то, что генная инженерия в ближайшее время сможет быть применена для создания и улучшения обширного круга принадлежащих к разным таксономическим группам продуцентов, которыми располагает сейчас микробиологическая промышленность. Даже более реальная возможность использовать иа основе генноинженерных методов в качестве продуцентов микроорганизмы, для которых эти методы наиболее отработаны, например E sheri hia oli, едва ли удовлетворит промышленность числом продуктов микробного синтеза. В связи с этим очень важно для старых перспективных в промышленном отношении микроорганизмов, помимо совершенствования методов отбора нужного типа мутантов, развивать методы генетического обмена на основе слияния протопластов, трансдукции, трансформации хромосомной и плазмидной ДНК, которые расширяют возможности традиционных методов селекции. Вместе с тем у промышленных микроорганизмов все шире проводится поиск плазмид и предпринимаются попытки их использования в качестве векторов при переносе генетического материала, его клонировании и амплификации. Эти исследования важны для понимания генетического контроля сложных процессов синтеза, таких, иапример, как синтез антибиотиков, для выявления узких мест в биосинтезе многих других продуктов. Одновременно они приближают промышленные микроорганизмы к объектам генной инженерии. Методология генной инженерии постоянно совершенствуется и расширяет свои возможности. В таком успешном встречном развитии разных методов и их слиянии на все большем числе продуцентов можно представить себе ближайшее будущее селекции микроорганизмов, призванной обеспечить промышленность высокопродуктивными штаммами. [c.95]

    Интенсивно используя традиционные генно-инженерные подходы, можно добиться повышения качественных и потребительских свойств сельскохозяйственной продукции. Ведутся работы и получены обнадеживающие результаты по созданию кофе без кофеина, табака без никотина, арахиса, не содержащего характерных для него аллергенов. Большой резонанс в обществе вызвала разработка швейцарских ученых, посвященная созданию так называемого золотого риса. Им удалось пол) ить и перенести в растения риса генетическую конструкцию, содержащую сразу три гена от разных организмов, необходимых для биосинтеза каротина (провитамина А) гены фитоендеса-туразы и ликопин р-циклазы от нарцисса и ген каротиндесатуразы от бактерий. В результате растения риса приобрели способность синтезировать каротин, концентрация которого в зерне достигала 1,6—2 микрограммов на грамм сырой массы. Конечно, этого недостаточно, чтобы в полной мере решить проблему ослабленного зрения детей Юго-Восточной Азии, вызванную дефицитом витамина А в продуктах питания. Для этого детям 4 — 6 лет необходимо ежедневно съедать порядка 1,2 килограмма золотого риса , что нереально. Тем не менее первый шаг в этом направлении сделан, и полученные результаты действительно открывают широкие перспективы в решении данной проблемы. [c.56]


Смотреть страницы где упоминается термин Тема 10. Биосинтез витаминов: [c.680]    [c.529]    [c.675]    [c.171]    [c.230]    [c.98]   
Смотреть главы в:

Теоретические основы биотехнологии -> Тема 10. Биосинтез витаминов




ПОИСК





Смотрите так же термины и статьи:

Хай-Темя



© 2025 chem21.info Реклама на сайте