Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакционная способность мономеров и свободных радикалов в реакциях роста цепи

    Присутствие в молекуле мономера заместителей с положительным индуктивным эффектом также уменьшает реакционную способность радикала из-за частичного спаривания свободного электрона. Эффекты сопряжения больше влияют на активность радикала, чем на реакционную способность мономера. Поэтому скорость реакции роста цепи при радикальной полимеризации, по-видимому, зависит главным образом от активности свободного радикала. [c.40]


    Скорость реакции роста цепи при радикальной полимеризации зависит как от реакционной способности мономера, так и от активности свободного радикала. Поляризованная молекула мономера будет легче реагировать со свободным радикалом. [c.106]

    Представляет интерес рассмотреть влияние заместителей в фенильном радикале на эти константы. Как известно, скорость реакции роста цепи определяется в основном активностью полимерного радикала, а не мономера. Обобществление я-электронов в системе, т. е. появление сопряжения винильной связи с какими-либо группами, в большей степени снижает реакционную способность радикала, чем мономера. В молекулах метакриламидов наличие заместителей в бензольном кольце, связанном с азотом ЫН-группы, обладающим свободной парой электронов, смещает электронное облако в сторону сопряженной карбонильной группы, чем в определенной мере повышает электронную плотность на двойной связи С = С. Этим самым повышается реакционная способность радикала, обусловливающая скорость гомополимеризации. Таким образом, за счет наличия групп, отталкивающих электроны в направлении СО-группы, повышается реакционная способность полимерных радикалов и возрастает скорость полимеризации. При введении в бензольное кольцо электронофильных заместителей свободная пара электронов оттягивается в сторону фенильного радикала тем самым облегчается взаимодействие неспаренных электронов с карбонильной группой. За счет этого увеличивается степень делокализации электронов в радикале, что, в свою очередь, снижает реакционную способность такого радикала, а следовательно, и скорость гомополимеризации (см. табл. 21). Так как в реакции электровосстановления принимает участие двойная связь С = С, то полярографические характеристики также зависят от величины электронной плотности на этой группе. [c.188]

    Так как неспаренный электрон в растущем радикале находится в фрагменте, образованном присоединенной молекулой мономера, то строение и реакционная способность частиц, участвующих в реакции роста цепи, взаимосвязаны. Известно, что полимеризация простых виниловых соединений, как правило, приводит к регулярному построению полимерной цепи типа голова к хвосту . При таком способе роста цепи из малоактивного мономера образуются наиболее реакционноспособные радикалы и, наоборот, реакционноспособным мономерам соответствуют малоактивные радикалы. Это справедливо для диенов, стирола и его производных, виниловых мономеров с полярными заместителями. Решающее значение в большинстве случаев имеет активность свободного радикала [24, с. 172]. Однако в случае веществ со средней реакционной способностью ситуация менее ясна [13, с. 142]. Если рассматривать широкий круг реакций полимеризации, становится ясной неоднозначность взаимосвязи реакционной способности радикалов и мономеров. Это подтверждают данные, полученные при определении относительной реакционной способности полистироль  [c.53]


    Передача цепи. Для процессов полимеризации, протекающих в среде растворителя, а также для полимеризации мономеров, в молекулах которых имеются подвижные атомы или группы, характерны реакции передачи цепи. В этом случае насыщение макрорадикала происходит вследствие присоединения атомов или групп, отщепляющихся от других молекул (мономера, полимера, растворителя и др.). В результате образуются валентно-насы-щенная макромолекула полимера и свободный радикал, начинающий новую молекулярную цепь. Таким образом, при передаче цепи прекращение роста макромолекулы не приводит к уничтожению кинетической цепи. Если реакционная способность новых радикалов, образующихся при передаче цепи, мало отличается от активности начальных радикалов, инициирующих образование кинетических цепей, то передача цепи заметно ие изменяет скорость полимеризации, но приводит к образованию полимера с пониженным средним молекулярным весом. Протекание реакций передачи цепи может быть обнаружено из сопоставления молекулярного веса и скорости полимеризации при различных концентрациях веществ, на молекулы которых передаются цепи. [c.125]

    Строго говоря, присоединение каждого нового остатка мономера к цепи полимера представляет собой новую химическую реакцию п образование молекулы полимера происходит в результате большого числа последовательных стадий. Система дифференциальных уравнений, описывающая кинетику такого процесса, содержит большое число уравнений и не может быть строго проинтегрирована. Это же относится и к обратным процессам превраш,ения полимера в мономер или другие низкомолекулярные соединения (деструкция полимеров). Однако, как правило, можно считать, что увеличение или уменьшение длины полимерной частицы (молекулы или свободного радикала) не меняет существенно реакционной способности этой частицы. Это дает возможность рассматривать в первом приближении образование полимерной молекулы не как последовательность большого числа различных стадий, а как многократное повторение одной и той же реакции. Тем самым становится возможным рассматривать рост или деструкцию полимера как сравнительно простой процесс, состоящий, в зависимости от механизма реакции, из одной или нескольких элементарных стадий. [c.354]

    Исходный полимер не обязательно должен быть ненасыщенным, так как прививка может осуществляться и в результате реакции передачи цепи через полимер, от которого отрывается атом водорода. Образующийся радикал со свободной валентностью на полимерной цепи может расти за счет добавленного мономера, что приводит к появлению разветвлений. Вполне вероятно, что реакции прививки на полидиенах, например на каучуке, скорее идут именно по такому механизму, чем путем присоединения к остаточным двойным связям, как было принято выше это подтверждается различием в результатах, полученных в опытах по прививке на каучуке, инициированной перекисью бензоила и динитрилом азодиизомасляной кислоты [79]. Прививка идет только при применении первого инициатора, что указывает на значительное различие в относительных реакционных способностях первичных радикалов при реакциях передачи и роста цепи. [c.227]

    Свободный радикал, возникший при распаде инициатора, присоединяется к двойной связи мономера, образуя продукт присоединения, который также является свободным радикалом. Этот полимерный радикал, в свою очередь, взаимодействует с другой молекулой мономера, удлиняя цепь, причем снова образуется концевой свободный радикал. Скорость реакции роста определяется, очевидно, реакционной способностью мономера и образующегося из него радикала. [c.331]

    Число образующихся в системе активных центров —свободных радикалов — весьма мало, однако они обладают высокой реакционной способностью и, реагируя с молекулами мономера, вызывают превращение большого числа этих молекул, подобно детонатору, вызывающему взрыв большого количества взрывчатого вещества. Один свобод-лый радикал может вызывать превращение многих тысяч молекул мономера, причем все они связываются в линейную макромолекулу, превращаясь в ее элементарные звенья. Скорость реакции роста цепи весьма велика. [c.349]

    Возникший радикал В-, если он достаточно реакционно способен, может инициировать образование новой молекулярной цепи с одновременным возникновением нового свободного радикала, т. е. происходит реакция передачи цепи. Или же новый радикал В-, не способный взаимодействовать с мономером (инициировать новую цепь), соединяется лишь с полимерным радикалом и останавливает рост цепи. Соединение АВ называется ингибитором — замедлителем цепной реакции. [c.159]

    Первое означает, что реакционная способность радикала винилфенило-вого эфира существенно более высока в реакциях перекрестного роста по сравнению с радикалом малеинового ангидрида. Этот факт соответствует сложившимся представлениям об идеальной реакционной способности мономеров и радикалов, согласно которым, л-л-сопряжение в последних снижает их реакционную способность. Из второго отношения следует, что к радикалу роста малеинового ангидрида преимущественно присоединяются комплексы мономеров, а к радикалу роста винилфенилового эфира - свободный малеиновый ангидрид. Таким образом, в данном случае представлены все виды перекрестных реакций роста (т. е. приводящих к образованию чередующегося сополимера) - с участием свободных радикалов и комплексов мономеров. Такой механизм чередующейся сополимеризации называется смешанным. Он также характерен для чередующейся сополимеризации малеинового ангидрида с аллиловыми мономерами. При чередующейся сополимеризации некоторых мономеров эффект сдвига максимума отсутствует. Это свидетельствует о том, что вклад реакций роста с участием комплексов мономеров в формирование цепи чередующегося сополимера край- [c.316]


    Как отмечалось выше, свободно-радикальная полимериза--ция виниловых соединений отличается от классической цепной реакции тем, что реакционноспособные промежуточные продукты радикальной природы хотя и являются соединениями одного и того же типа (все они представляют собой органические радикалы, построенные из одних и тех же структурных единиц), но содержат различное количество этих единиц в зависимости от числа актов роста, в которых участвовал данный первичный радикал. При кинетической обработке необходимо учитывать реакции радикалов всех размеров было сделано допущение, что реакционная способность радикала данного типа не зависит от длины цепи, поэтому, например, одна константа скорости может характеризовать все акты роста, происходящие при полимеризации данного мономера. Очевидно, что принятие этого допущения значительно упрош,ает расчеты. Вопрос о справедливости этого предположения был предметом многих теоретических работ уже в то время, когда методы кинетической трактовки полимеризации только начинали разрабатывагься окончательным подтверждением правильности этого допущения является хорошее совпадение уравнений, выведенных на его основе, с экспериментальными данными. (Как будет показано, некоторые уравнения могут быть выведены без учета этого допущения, по они, как правило, не могут быть проверены экспериментально.) Были сделаны попытки проверить эту гипотезу экспериментально другими методами [15—17], но не все эти попытки привели к однозначным результатам. [c.22]

    Существует еще один вид реакций ограничения растущих цепей, который происходит путем передачи цепи . При реакциях обрыва по механизму рекомбинации или диспропорционирования образуются цепи неактивные или мертвые, и поэтому их дальнейщий рост останавливается. Однако при реакции передачи цепи одна растущая цепь прекращает свой рост, но одновременно с этим образуется новый свободный радикал, способный инициировать рост новой полимерной цепочки. Эта реакция протекает обьмно за счет отрьша атома водорода или любого другого подвижного атома от молекул инициатора, мономера или мертвых полимерных цепей либо любых молекул, присутствующих в реакционных системах, включая растворитель и любые примесные молекулы. Эту реакцию можно схема тически представить так  [c.34]


Смотреть страницы где упоминается термин Реакционная способность мономеров и свободных радикалов в реакциях роста цепи: [c.115]   
Смотреть главы в:

Радикальная полимеризация  -> Реакционная способность мономеров и свободных радикалов в реакциях роста цепи




ПОИСК





Смотрите так же термины и статьи:

Реакции радикалов

Реакционная мономеров

Реакционная способность радикало

Рост цепи

Свободные радикалы

Свободные радикалы ион-радикалы

Свободные радикалы реакции

реакции реакционная способность



© 2025 chem21.info Реклама на сайте