Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Открытие элементов в органических соединениях

    Таким образом, для открытия отдельных элементов органического соединения необходимо. предварительно его разрушить путем полного сжигания, или окисления, или сплавления с металлическим натрием для того, чтобы превратить углерод, водород, азот и другие элементы в простые вещества, удобные для качественного открытия. [c.29]

    Углерод и водород всегда рассматривались как два основных элемента органических соединений. Однако недавние открытия в области каркасных систем заставляют дополнить семейство изучаемых органической химией замкнутых оболочечных систем соединениями, построенными из чистого углерода (С ). [c.392]


    В истории развития органической и неорганической химии XIX столетия наблюдается любопытная параллель. В первые десятилетия число вновь открытых органических соединений, а также элементов увеличивалось ошеломляюще быстро. В третьей четверти столетия органические соединения были в определенной степени систематизированы благодаря введению структурных формул. До некоторой степени упорядочены были и элементы отчасти этому способствовали итоги Международного химического конгресса, который состоялся в начале сентября 1860 г. в г. Карлсруэ. [c.92]

    В предыдущих разделах книги были описаны органические соединения с открытой цепью углеродных атомов — ациклические соединения, а также соединения карбоциклические, молекулы которых содержат циклы, построенные только из углеродных атомов. Следуя общей классификации органических соединений, теперь будут рассмотрены циклические соединения, у которых циклы образованы не только углеродными атомами, но и атомами других элементов— гетероатомами (О, 5, Ы). Циклические соединения, содержащие в кольце как углеродные, так и гетероатомы, называются гетероциклическими. [c.350]

    Постепенно в результате ряда научных открытий идеалистическому учению виталистов был нанесен серьезный удар. Однако появились новые трудности — на основании теорий, разработанных для неорганических веществ, нельзя было раскрыть закономерности строения органических соединений, объяснить валентность входящих в их состав элементов (прежде всего углерода). Например, углерод мог иметь различную валентность, даже дробную. Так, в СгН валентность его рав- [c.288]

    Указанные выше основные классы органических соединений, в свою очередь, подразделяются на более дробные классы. Так, алифатические соединения подразделяются на карбоцепные, если открытые цепи образованы только углеродными атомами, и гетероцепные, если в состав открытых цепей кроме углеродных входят атомы других многовалентных элементов — кислорода, серы, азота, фосфора, кремния. Карбоциклические соединения подразделяются на алициклические, скелетом которых являются замкнутые циклы из разного числа (начиная с трех) углеродных атомов, и ароматические, в основе которых лежит особая циклическая группировка из шести углеродных атомов — так называемое бензольное кольцо. [c.74]

    Химическая теория строения органических соединений и органический синтез, периодический закон Д. И. Менделеева и открытие новых химических элементов, развитие стереохимии и открытие новых комплексных соединений, создание учения о растворах и электролитической диссоциации, законы термодинамики и учение о химическом процессе сделали химию наукой-лидером среди других естественных наук и оказали решающее влияние на последующие успехи химической технологии и промышленности, с одной стороны, и развитие таких смежных иаук, как геология и геохимия, биология и биохимия—о другой. - [c.184]


    Выше уже было указано (стр. 12), что к 50—бО-м годам прошлого столетия органическая химия достигла бурного развития. К этому времени было получено большое число органических соединений и достаточно подробно изучены их свойства. Были сделаны важные открытия, имевшие большое теоретическое значение. Так, было доказано, что при превращениях органических веществ в реакциях, некоторые группы атомов переходят без изменения из одних соединений в другие. Такие группы атомов получили название радикалов (Л. Гей-Люссак, 1815 Ю. Либих и Ф. Велер, 1823). Несколько позднее была открыта валентность элементов (Э. Франкланд, 1853) в частности, было установлено, что содержащийся во всех органических соединениях углерод, как правило, является четырехвалентным. (А. Кекуле, 1857). В этот период было открыто и другое существенное свойство углерода, а именно способность его атомов соединяться друг с другом, образуя цепи (А. Кекуле А. Купер, 1858). [c.18]

    Открытие Ж. Дюма не было признано сразу. Большинство химиков, следуя за Я. Берцелиусом, считали, что замещение водорода хлором в органических соединениях невозможно. Согласно Я. Берцелиусу, нельзя было допустить, чтобы водород и хлор, столь удаленные в электрохимическом ряду элементы, могли замещать друг друга, а тем более образовывать соединения, сходные по своим физическим и химическим свойствам. Он изменил этому представлению только один раз, когда с восторгом принял радикал бензоил, а вместе с ним и хлористый бензоил, в котором, как предполагали Ю. Либих и Ф. Велер, хлор занял место водорода. [c.160]

    Простейший метод разложения проб с окислением — прокаливание на воздухе в открытых чашках или тиглях при 500—600 °С. Такой способ используют при определении неорганических компонентов в органических материалах, например примесей металлов в биомассах и пищевых продуктах. При определении элементов в виде летучих продуктов окисления, особенно при элементном анализе органических соединений, сжигают пробу в токе кислорода или воздуха. Очищенный, сухой кислород смешивают при этом с инертным газом-носителем (азот, гелий и т.д.). [c.75]

    Методы обычного качественного анализа не пригодны непосредственно для элементарного анализа органических соединений. Для открытия элементов, входящих в состав органических соединений, их необходимо перевести предварительно в неорганические соединения, которые далее исследуются обычным путем. [c.19]

    Особое значение приобретает формирование убеждений в познаваемости мира. Химия предоставляет богатый материал, который при правильном его использовании показывает, как объективность отражения мира человеческим сознанием в понятиях и теориях создает условия для его преобразования. Так, например, изучение химических процессов, происходящих при электролизе, их правильное понимание позволили использовать электролиз для получения едких щелочей, чистых металлов, изготовления гальванических покрытий. На основе периодического закона были предсказаны еще не открытые элементы. Знание закономерностей строения органических соединений позволило синтезировать вещества с заранее запланированными свойствами, например, синтетический каучук из бутадиена, высокомолекулярные соединения разного назначения и др. [c.43]

    В признание достижений в области развития органической химии и химической промышленности, а также за пионерскую работу по алициклическим соединениям В признание выдающейся деятельности в области развития химии за открытие элементов радия и полония, за выяснение природы радия и выделение его в металлическом виде и за исследование соединений этого замечательного элемента За открытие реакции Гриньяра — метода, который стал весьма плодотворным инструментом в развитии органической химии за последние несколько лет За метод гидрогенизации органических соединений в присутствии мелкодисперсных ме- [c.701]

    Органические производные для большинства переходных металлов, несмотря на многократные попытки, до последнего времени получить не удавалось. Трудность получения органических соединений переходных элементов объясняется малой прочностью ковалентной связи между металлом и органическим радикалом [ИЗ, 114]. Однако, несмотря на значительную трудность получения подобного рода соединений, многие ученые не оставляли попыток выделить различные типы органических производных переходных металлов. Особенно большой прогресс в развитии органической химии переходных металлов был достигнут в начале 50-х годов. Этому способствовал, с одной стороны, открытый в 1951 г. своеобразный и по структуре и по свойствам класс металлорганических [c.85]

    С точки зрения систематики структура органических соединений характеризуется двумя важнейшими особенностями строением углеродного скелета и природой, числом и положением функциональных групп. Исходя из строения углеродного скелета всевозможные органические соединения можно разбить на определенные группы, охватывающие соединения с аналогичной структурой. Так, все органические соединения можно разделить на соединения с открытой углеродной цепью алифатические, или ациклические ) и на циклические. Последние в свою очередь подразделяются на карбоциклические, в которых циклы состоят только из атомов углерода, и гетероциклические, у которых в состав циклов входят, кроме углерода, атомы других элементов (гетероатомы). С точки зрения классификации соединений нецелесообразно выделять из гетероциклов углеродный скелет. Удобнее рассматривать их как целостные образования. [c.89]


    Различают три основные группы (или ряды) органических соединений I) ациклические — с открытой цепью углеродных атомов 2) карбоциклические — с замкнутой цепью углеродных атомов 3) гетероциклические — с кольцами, содержащими, кроме атомов углерода, атомы других элементов (кислорода, азота, фосфора и др.). В каждом из рядов могут быть различные классы органических соединений с функциональной группой, обусловливающей главные свойства данного класса. [c.155]

    В том случае, если есть уверенность в чистоте органического вещества, проводят его качественный анализ, т. е. исследуют, какие элементы входят в его состав. В органических веществах помимо постоянной составной части — углерода наиболее часто содержатся водород, кислород, азот, сера, фосфор и галогены (С1, Вг, 1). Общий принцип открытия этих элементов в органических соединениях заключается, в том, что элементы переводят в неорганические соединения и затем открывают их методами неорганической и аналитической химии. [c.16]

    Качественный анализ глюкозы. С методами качественного анализа органических соединений учащийся ознакомился уже на практических занятиях в начале курса органической химии. Не останавливаясь поэтому на описании этих методов, отметим коротко, что в процессе качественного анализа в глюкозе могли быть обнаружены только два элемента углерод и водород. Никаких других элементов в составе глюкозы обнаружено не было. Остался открытым лишь вопрос о содержании в глюкозе кислорода, поскольку он решается обычно в процессе проведения количественного анализа вещества. [c.173]

    Из физических методов качественного анализа элементного состава органических соединений, безусловно, значение имеет только один это рентгеноэлектронная спектроскопия (гл. XV, 2). Правда, этот метод непригоден для открытия водорода, но все остальные элементы (еще одно исключение — гелий) могут быть идентифицированы этим методом, если они составляют хотя бы один весовой процент [45]. [c.307]

    Кузнецов В. И. О цветных реакциях на алюминий [с органическими соединениями. Открытие алюминия в присутствии Ве, Ре, редкоземельных элементов, РЬ, 8Ь]. ДАН СССР, 1945, 50, с. 227—231. Библ.  [c.27]

    ОТКРЫТИЕ ЭЛЕМЕНТОВ В ОРГАНИЧЕСКИХ СОЕДИНЕНИЯХ [c.412]

    ГЛАВА XI. ОТКРЫТИЕ ЭЛЕМЕНТОВ В ОРГАНИЧЕСКИХ СОЕДИНЕНИЯХ [c.414]

    В настоящее время почти для всех элементов имеются справочные значения ДЯ для температур от 298 до 3000 К или выше. Однако для многих металлов открытие сложного молекулярного состава их паров (см. 29) может повлечь за собой существенное изменение некоторых из этих значений. Следует думать, что по мере повышения надежности данных о теплотах атомизации простых веществ использование атомарных теплот образования соединений (или теплот атомизации их) будет быстро расширяться . Но пока они применяются преимущественно для органических соединений (см, 43) благодаря небольшому числу элементов, входящих в их состав. Для неорганических же соединений использова- [c.160]

    Таким образом, уже в середине прошлого столетия были известны органические соединения многих элементов мышьяка, цинка, олова, сурьмы, ртути, натрия. Однако дальнейшая судьба открытых к тому времени элементоорганических соединений оказалась различной одни из ннх, сыграв свою роль в теоретических спорах хим 1ков-оргапиков, были затем надолго забыты, другие продолжали пользоваться вниманием, и их свойства были изучены подробнее. К числу последних относятся в первую очередь цинкорга-нические соединения. [c.243]

    Эти открытия возбудили повышенный интерес к стереохими-ческим проблемам . В 1860-х годах высказывались различные гипотезы и предлагались модели для истолкования строенпя органических соединений, обладающих оптической активностью. Так, В. В. Марковников в 1865 г. говорил о том, что при одинаковости химического строения физическая группировка атомов может быть различна , А. Кекуле уже использовал модель атома углерода, в которой четыре единицы сродства этого элемента расположены в направлении гексаэдрических осей, оканчивающихся в плоскостях тетраэдра . [c.215]

    В выпускаемых и широко используемых АЭД-приборах анализируемое вещество из хроматографической колонки вводится непосредственно в плазму конец хроматографической колонки вставляют непосредственно в разрядную трубку, в которой находится плазма (рис. 14.2-10). Поскольку стабильная работа плазмы и чувствительное и селективное детектирование различных элементов требует скоростей потока гелия 30-200 мл/мин, в поток вводится дополнительный гелий. Газ-реагент или маскирующий газ (кислород или водород или комбинация обоих газов для детектирования большинства элементов или смесь азота и метана для детектирования кислорода) также добавляется в поток перед введением его в плазму для повышения селективности и чтобы предотвратить образование углеродных отложений на стенках разрядной трубки. Плазма поддерживается микроволновым генератором низкой емкости (60 Вт) в кварцевой разрядной трубке внутренним диаметром около 1 мм, расположенной в центре микроволновой полости. Поскольку плазма не выдерживает введения больших количеств органических соединений, перед входным отверстием в плазму установлено клапанное устройство. При температуре плазмы более 3000 К определяемые соединения полностью атомизованы, возбуждены и испускают характеристическое излучение. Эта элемент-специфичная эмиссия наблюдается через открытый конец разрядной трубки (чтобы предотвратить мещающее влияние отложений на стенках разрядной лампы) и проходит через проводящую оптику на голографическую решетку, диспергирующую полихроматический свет. Расположенная в фокальной плоскости решетки подвижная 211-строчная фотодиодная матрица детектирует элемент-специфичное излучение. Поскольку диодная матрица покрывает лишь 25 нм всего доступного спектра (165-800 нм), одновременно могут детектироваться лишь те элементы, которые имеют эмиссионные линии, находящиеся достаточно близко, чтобы детектироваться при одном положении диодной матрицы. По этой причине, [c.616]

    Серебро образует со многими азотсодержащими органическими соединениями самого разнообразного строения окрашенные комплексные соединения или осадки некоторые из них иригодны для обнаружения серебра в присутствии посторонних ионов, однако большинство может быть применено только для открытия серебра в растворах, не содержащих ионов других элементов. Чувствительность всех этих реакций невелика. [c.53]

    Представленный в данной главе материал позволяет констатировать значительный интерес к разработке новых методов и подходов в синтезе фторсодержащих гетероциклических соединений и широкое использование специфических особенностей перфторированных органических соединений, особенно перфторолефинов и полифторароматических соединений, для создания новых предпосылок развития и углубления наших представлений о возможностях органического синтеза. Причем, что самое важное для перспективы их широкого использования, эти подходы базируются на доступных и дешевых исходных материалах промышленной химии фтора. Бурный рост фторорганической химии в последние годы привел к открытию новых фторсодержащих гетероциклических соединений уникального строения, у многих из которых были обнаружены специфическая биологическая активность и эффективность в качестве медицинских препаратов и пестицидов. Это в значительной степени стимулирует интерес к такого рода соединениям, и можно надеяться на разработку еще более совершенньк оригинальных методов получения гетероциклических структур, что, несомненно, обогатит синтетическую органическую химию арсеналом новых методологий и позволит осуществлять целенаправленный синтез необходимых структур и моделей. Сложной проблемой является высокая стоимость введения фтора в органические молекулы. Учитывая уникальные свойства, придаваемые фтором, которые нельзя достигнуть при введении других элементов, по мере развития химии и технологии фторорганического синтеза и соответствующего снижения стоимости применение фтора в этом направлении будет, безусловно, постепенно расширяться. [c.285]

    Углеводороды - наиболее оростые по составу органические соединения. Их молекулы построены из атомов только двух элементов углерода и водорода Общая формула СпН, . Они рахтичаются по строению углеродного скелета и характеру связей между атомами углерода (схема 1), По первому признаку их делят на ациклические (алифатические) углеводороды, молекулы которых построены из открытых углерод -углеродных цепочек, например, гексан и изогексан  [c.16]

    Органическая химия определялась вначале как химия соединений, которые образуются живой материей. После открытия в 1828 г. Вёлером возможности получения мочевины, считавшейся типичным органическим веществом, при нагревании неорганической соли цианата аммония, это определение утратило силу, и в настоящее время органическую химию правильнее всего рассматривать как химию углеродсодержащих соединений. Однако название органическая все еще сохраняет силу по той причине, что химия соединений углерода более важна для жизни, чем химия любого другого элемента. В приведенном ниже далеко не исчерпывающем перечне представлены основные виды органических соединений, имеющие важное биологическое или промышленное значение  [c.14]

    Качественный элементарный анализ органических веществ. При исследовании качественного состава чистых органических соединений чаще всего приходится встречаться с небольшим числом элементов. Это — углерод, водород, кислород, азот, сера, галоиды и фосфор. Открытие всех этих элементов, кроме водорода и кислорода, основано на переводе их в растворимые в воде ионизирующиеся соединения, анализируемые с применением соответствующих реакций, хорошо известных из неорганической химии. Водород же открывается в виде воды. [c.36]

    Астат-211. Альфа-излучатель At (Т[/2 = 7,2 ч ЭЗ 58,3%, а 41,7% основные 7-кванты с = 92,4 кэВ (2,3%) 687,0 кэВ (0,25%) Еа = = 5,866 МэВ), изотоп пятого, самого тяжёлого элемента в группе галогенов, относится к числу немногих нейтронодефицитных изотопов, применяемых в радиотерапии. У астата нет стабильных изотопов, а радиоактивные изотопы имеют короткие периоды полураспада (самый большой Т1/2 = 8,3 ч у At). Поэтому исследование химических свойств этого элемента происходит на уровне ультрамикроколичеств, что требует исключительной аккуратности в создании определённых экспериментальных условий и их стабильности во времени с учётом того факта, что астат имеет несколько устойчивых валентных состояний, как аналог йода. Всё это привело исследователей к открытию целого ряда новых свойств элемента, на основе которых были разработаны методы выделения ультрамикроколичеств At из сложных смесей продуктов ядерных реакций и синтеза ряда неорганических и органических соединений астата [19]. В последнее время было показано, что перспективными для применения в радиотерапии по своим свойствам могут быть такие препараты с At как метиленовый голубой, моноклональные антитела (МКАТ), коллоидный металлический Те (размер зёрен 3-5 мкм) с сорбированным At [19, 20]. [c.356]

    В HeK0T0j)bix случаях для того чтобы обнаружить те или другие катионы и анионы, нет надобности прибегать к минерализации или частичному разрушению органических веществ. Это относится к отдельным случаям открытия и количественного определения неорганических веществ в жидкостях организма. Само собой разумеется, что элементы, входящие в состав органических соединений без предварительной минерализации, обычными качественными реакциями обнаружены быть не могут. [c.12]

    Влияние парамагнитных ионов на спектры ЯМР было устано влено еще в 1948 г. Блёмберген и сотр. получали при этом настоящие комплексы (А), что не обещало ничего особо нового. О наведенных химических сдвигах в спектрах ПМР органических соединений впервые сообщили в 1957 г. Филлипс, Луни и Икеда, которые наблюдали влияние иона Со " на спектры w-пропанола и к-гекса-нола. В 1960 г. этот же ион применялся в ЯМР-спектроскопии для разрешения линий 0 при изучении гидратации диамагнитных ионов. В 1963- 1965 гг. в ЯМР-спектроскопии органических соединений испробовали производные двухвалентного никеля, лантана и других редкоземельных элементов. Таким образом, почва была подготовлена к открытию парамагнитных сдвигающих реагентов, что в значительной степени способствовало расширению области применения ЯМР-спектроскопии. Сандерс и Уилямс [123], которые сами внесли значительный вклад в изучение парамагнитных сдвигающих реактивов, прозрачно намекают на то, что их применение выгоднее и эффективнее, чем дорогостоящие попытки внести технические [c.267]


Смотреть страницы где упоминается термин Открытие элементов в органических соединениях: [c.276]    [c.276]    [c.407]    [c.10]    [c.24]    [c.28]    [c.26]    [c.75]    [c.491]    [c.20]    [c.307]   
Смотреть главы в:

Капельный анализ -> Открытие элементов в органических соединениях




ПОИСК





Смотрите так же термины и статьи:

Элементы II соединения



© 2025 chem21.info Реклама на сайте