Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Марганец — водород

    За н ми следуют титан, фосфор, водород, марганец. Состав других элем( нтов меньше 0,6 масс, доли, %. [c.231]

    Метод каталитического обезвреживания газообразных отходов заключается в проведении окислительно-восстановительных процессов при температуре 75—500°С на поверхности катализаторов. В качестве носителей металлов, используемых как катализаторы (платина, палладий, осмий, медь, никель, кобальт, цинк, хром, ванадий, марганец), применяются асбест, керамика, силикагель, пемза, оксид алюминия и др. На эффективность процесса оказывает влияние начальная концентрация обезвреживаемого соединения, степень запыленности газов, температура, время контакта и качество катализатора. Наиболее целесообразное использование метода— при обезвреживании газов с концентрацией соединений не более 10—50 г/м . На низкотемпературных катализаторах при избытке кислорода и температуре 200—300°С окисление ряда низко-кипящих органических соединений (метан, этан, пропилен, этилен, ацетилен, бутан и др.) протекает нацело до СО2, N2 и Н2О. В то же время обезвреживание высококипящих или высокомолекулярных органических соединений данным методом осуществить невозможно из-за неполного окисления и забивки этими соединениями поверхности катализатора. Так же невозможно применение катализаторов для обезвреживания элементорганических соединений из-за отравления катализатора НС1, НР, 502 и др. Метод используется для очистки газов от N0 -f N02 с применением в качестве восстановителей метана, водорода, аммиака, угарного газа. Срок службы катализаторов 1—3 года. Несмотря на большие преимущества перед другими способами очистки газов метод каталитического обезвреживания имеет ограниченное применение [5.52, 5 54 5.62] [c.500]


    Из элементов подгруппы марганца наибольшее практическое значение имеет сам марганец. Рений, открытый в 1925 г.,— редкий элемент, однако, благодаря ряду ценных свойств, находит применение в технике. Технеций в земной коре не встречается. Он был получен в 1937 г. искусственно, бомбардировкой ядер атомов молибдена ядрами тяжелого изотопа водорода — дейтронами (см. стр. 111). Технеций был первым элементом, полученным искусственным, техническим путем, что и послужило основанием для его названия. [c.662]

    Соединения. Марганец, технеций и рений с водородом хн мически не взаимодействуют. [c.546]

    Марганец энергично реагирует с водными, даже разбавленными, растворами кислот, вытесняя водород, ири действии азотной кислоты окисляется, образуя марганец (И)-ионы  [c.291]

    Азот Алюминии Барий Сор Ванадий Водород Железо Калий Кальций Кислород Кремний, Магний Марганец [c.591]

    Предлагалось использовать окисление в среде полярного растворителя в присутствии кобальт-марганец-бромидного катализатора, озонолиз с последующим фотохимическим окислением образующегося диальдегида, окисление пероксидом водорода или надуксусной кислотой. Перспективным процессом может быть совмещение окисления ацетальдегида и фенантрена с получением уксусной и дифеновой кислот [128, с. 154—156]. При окислении ацетальдегида кислородом воздуха в присутствии ко-бальта образуются уксусная и надуксусная кислоты последняя окисляет фенантрен (в присутствии гексаметафосфата натрия), давая уксусную и дифеновую кислоты  [c.105]

    Из этих элементов углерод, водород и кислород образуют около 90% массы сухого вещества растения, 8—9% составляют азот, фосфор, сера, магний, кальций и калий. На долю остальных элементов, в том числе таких жизненно важных как бор, железо, медь, марганец и другие приходится не более 1—2%.  [c.240]

    Содержание в земной коре приведенных в таблице 2 элементов составляет около 94,5 мол. доли, %, или 98,5 масс, доли, %. За ними следуют титан, фосфор, водород, марганец. [c.10]

    Установлено, что при увеличении содержания углерода прочность и твердость железа увеличиваются, то есть несмотря на то, что в стали содержится большое количество металлических и неметаллических элементов марганец, кремний, фосфор, сера, хром, никель, медь, азот, кислород или водород, решающую роль в превращении железа в сталь играет именно углерод [14]. Например, для стали У7А (содержание углерода 0,63- 0.73 %) предел прочности при растяжении 650 МПа, относительное удлинение 18 %. в отожженном состоянии НВ 180 [13]. [c.18]


    Электрохимические свойства марганца и электродные реакции. По электрохимическим свойствам марганец относится к той же группе металлов, что и цинк и кадмий, т. е. к металлам с малым перенапряжением и высоким тюком обмена (см. табл. IX-1), поэтому марганец склонен к образованию крупнозернистых осадков, к дендритообразованию. Достаточно высокое перенапряжение водорода на марганце все же не обеспечивает отрицательного потенциала выделения водорода и только при pH = 2 и более марганец удается выделить на катоде  [c.280]

    При высоком pH электролита основное количество водорода образуется при разложении воды и восстановлении иона аммония. В результате последней реакции получается аммиак, с которым марганец дает растворимые комплексы типа Мп(ЫНз)п-504. Аммонийные соли и аммиак затрудняют образование твердой фазы. [c.281]

    Выделение водорода ведет к повышению pH приэлектродного слоя. Поэтому, так же как и марганец, хром получают из сильно [c.285]

    В соответствии с особенностями строения электронных оболочек атомов элементы VII группы подразделяются на три подгруппы типические элементы (водород, фтор, хлор), элементы подгруппы брома (бром, иод, астат) и элементы подгруппы марганца (марганец, технеций, рений). [c.287]

    Химическая активность простых веществ в ряду Мп—Тс—Ке понижается. Так, в ряду напряжений Мп располагается до водорода, а Тс и Ке — после него. Марганец довольно активно взаимодействует с [c.326]

    Многие металлы в твердом состоянии растворяют водород. К ним в первую очередь принадлежат палладий, платина, железо, никель, кобальт, хром л марганец. [c.45]

    Получаемый марганец имеет серебристо-желтоватый цвет. Его состав >99,8% Мп, <0,1% С, <0,1% S, Р — нет. Содержание серы можно снизить переплавкой под шлаком из буры. Полного освобождения от серы и углерода можно достигнуть обработкой чистым водородом при 800—900° в течение 100—200 час. [c.512]

    Для металлов, не восстанавливаемых ни углем, ни оксидом углерода (И), применяются более сильные восстановители водород, магний, алюминий, кремний. Восстановление металла из его оксида с помощью другого металла называется металлотермией. Если, в частности, в качестве восстановителя применяется алюминий, то процесс носит название алюминотермии. Такие металлы, как хром, марганец, получают главным образом алюминотермией, а также восстановлением кремнием. Если мы подсчитаем АС° реакции [c.335]

    О, 4, 8 и 12%. Выдержка образцов при комнатной температуре показала, что количество свободного водорода в шве увеличивается с содержанием ферросилиция в обмазке. При этом в шве возрастает также содержание кремния и марганца. Следовало бы ожидать, что и при нагреве в вакууме будет наблюдаться такая же картина. Однако, как видно из графика, количество водорода при нагреве в этом случае не только не повышается, а имеет резкую тенденцию к понижению. В то же время метод, плавки в вакууме показывает наличие резкого повышения водорода по мере увеличения в обмазке количества ферросилиция, а вместе с тем и повышающегося содержания кремния и марганца в металле шва. Следовательно, наличие марганца в стали мешает определению водорода методом нагрева в вакууд1е, что подтверждают исследования Ю. А. Клячко и Т. А. Измановой [3], согласно которым в сталях, содержащих марганец, водород следует определять только методом вакуум-плавления. [c.169]

    Карбен является реакцио нноспособной частицей о его стабилизации при координации говорилось выше (см. с. 119). Координированный карбен также вступает в реакции внедрения. Например, бис (трифторметил) карбен, образующийся из диазосоединения, внедряется при комнатной температуре по связи марганец — водород с образованием алкильного комплекса [515]  [c.193]

    Античные ученые, как известно, описали десять элементов, средневековые алхимики — четыре (см. гл. 4). В XVIII столетии были открыты такие газообразные элементы, как азот, водород, кислород и хлор, и такие металлы, как кобальт, платина, никель, марганец, вольфрам, молибден, уран, титан и хром. [c.92]

    Химическая активность простых веществ в ряду Мп—Тс—Re понижается. Так, в ряду напряжений Мп располагается до водорода, а Тс и Re — после него. Марганец довольно активно взаимодействует с разбавленной НС1 и H2SO4, а технеций и рений реагируют лишь с HNO3. В соответствии с устойчивыми степенями окисления взаимодействие марганца с разбавленными кислотами приводит к образованию катионного аквокомплекса [Мп (ОН 2) [c.570]

    В состав этой подгруппы входят элементы побочной подгруппы седьмой группы марганец, технеций и рзний. Отношение между ними и элементами главной подгруппы седьмой группы — галогенами— приблизительно такое же, как и между элементами главной и побочной подгрупп шестой группы. Имея в наружном электронном слое атома всего два электрона, марганец и его аналоги не способны присоединять электроны и, в отличие от галогенов, соединений с водородом не образуют. Однако высшие кислородные соединения этих элементов до некоторой степени сходны с соответствующими соединениями галогенов, так как в образовании связей с кислородом у них, как и у галогенов, могут участвовать семь электронов. Поэтому их высшая степень окисленности равна - -7. [c.662]


    С кислотами марганец медленно реагирует с выделением водорода и образованием соли Мп+ . Технеций и рений реагируют с НЫОз с образованием НТСО4 и НКе04. [c.546]

    Пирофорными называются металлы, способные к самовозгоранию на воздухе. Некоторые металлы (железо, никель, кобальт, марганец и др.), если их получить в очень высокодисперсном состоянии, обычно путем восстановления водородом из окислов или путем термического разложения нх карбонилов или оксалатов, обладают (в особгнипсти в свежевосстановленном состоянии) высокой химической активностью и, в частности, пирофорными свойствами. [c.358]

    Марганец образует несколько полиморфных видоизменении до 717 С существует а-Мп выше этой температуры — р-ЛАп, переходящий при 1091°С в у-Мп, а при 1135°С в б-Мп, устойчивый до температуры плавления. Механические свойства марганца и репия сильно изменяются от присутствия примесей азота, водорода, углерода, серы и ([юсфора. [c.290]

    Марганец и репий хорошо растворяют водород, по-виднмому, без химического взаимодействия с ним. Растворимость водорода в марганце возрастает с повышени.ем температуры. С углеродом марганец взаимодействует в расплавленном состоянии с образованием карбидов, чаще всего МпзС. Рений также образует с углеродом карбиды, которые изучены еще недостаточно. Марганец и ре-нн 1 взаимодействуют также с бором и кремнием. [c.291]

    При обычных условиях поверхностная оксидная пленка защи-ш,ает компактный марганец от действия воды. Порошкообразный марганец при нагревании разлагает воду с выделением водорода  [c.291]

    Для получения чистого марганца (с содержанием марганца 99,97о) осуществляется электролиз хлорида или сульфата марганца (И) в и1елочном растворе в ирисутствии сульфата аммония осаждающийся иа катоде марганец, значительно насыщенный водородом, очищают переплавлением в вакууме. Марганец, полученный восстановлением его диоксида алюминотермическим способом, используется при изготовлении силавов цветных металлов. Основная масса вырабатываемого марганца получается при совместном восстановлепнн же/1езных и марганцовых руд в виде ферромарганца— сплава железа с марганцем с содержанием последнего до 80%. Ферромарганец иснользуется в черной металлургии при получении сталей и чугунов. [c.296]

    Вышли следующие тома т. 1, 1956 (общие сведения, воздух, вода, водород, дей-теряй, тритий, гелий и инертные газы, радон) т. 3, 1957 (главная подгруппа I группы, побочная подгруппа I группы) т. 4, 1958 (бериллий, магний, кальсий, стронций, барий) т. 7, 1959 (скандий — иттрий, редкие земли) т. 10. 1956 (азот, фосфор) т. И, 1958 (мышьяк, сурьма, висмут) т. 12, 1958 (ванадий, ниобий, тантал, протактиний) т. 14, 1959 (хром, молибден, вольфрам) т. 15, 1960 (уран и трансурановые элементы) т. 16. 19(Ю (фтор, хлор, бром, марганец) т. 18, 1959 (комплексные соединения железа, кобальта. никеля) т. 19, 1958 (рутений, осмнй, родий, иридий, палладий, платина). [c.127]

    Фотометрия пламени — вид эмиссионного спектрального анализа, в котором источниками возбул<дения спектров являются пламена различных видов ацетилен — воздух, ацетилен — кислород, пропан — воздух, пропан — кислород, водород — воздух и др. Вследствие невысокой температуры в пламенах излучают легко и среднеионизующиеся элементы щелочные и щелочноземельные металлы, галлий, индий, магний, марганец, кобальт, медь, серебро и ряд других, причем их число растет с увеличением температуры пламени. В наиболее холодных пламенах, таких как, например, пропан — воздух, светильный газ — воздух излучают только атомы щелочных и щелочноземельных металлов. Вследствие невысокой температуры спектры, излучае-МЕле пламенами, состоят из небольшого числа спектральных линий, главным образом резонансных, что позволяет выделять характеристическое излучение элементов при помощи светофильтров и использовать простые и имеющие невысокую стоимость спектральные приборы — пламенные фотометры. Кроме атомных спектральных линий в спектрах пламен присутствуют полосы ряда в основном двухатомных молекул и радикалов С2, СиС1, СаОН и др. Некоторые из них используют в аналитических целях. Так, в случае элементов, образующих термически устойчивые оксиды, которые практически не диссоциируют в пламенах с образованием свободных атомов, молекулярные спектры являются единственным источником аналитического сигнала. Практически не атомизируются в низкотемпературных пламенах оксиды скандия, титана, лантана и других элементов, ирлеющих относительно невысокие потенциалы ионизации. Наиболее часто фотометрию пламени применяют для определения щелочных и щелочноземельных металлов. [c.35]

    Как упоминалось выше, в катодный металл переходит водород углерод, фосфор и кремний попадают в металл в результате катафоретического переноса. Исследования совместного разряда ионов показали, что марганец переходит в осадок в тех случаях, когда осаждение производится из раствора 1-н. Ре304 -М—2-н. Мп304, содержание его достигает 10—13%- [c.407]

    В электролите обычно содержатся прлмеси, попадающие в раствор из руды. Установлено, что примеси металлов, более отрицательных, чем марганец, могут быть допущены в больших количествах (20 г/л Ма, 10 г/л К, 40 г/л M.g). Примеси, более положительные, чем марганец, будут подвергаться совместному разряду на катоде и вызывать его растворение. На большинстве металлов примесей (Ре, N1, Со, Си и др.) перенапряжение водорода незначительно, поэтому весьма малые количества этих примесей в катодном осадке влекут за собой увеличение скорости разряда ионов водорода и, как следствие, попадание основных солей в катодный металл, падение выхода по току. Например, присутствие в электролите 0,005 г/л Со и 0,004 г/л Аз снижает выход по току на 20%. [c.505]

    Биологические системы состоят главным образом из водорода, кислорода, углерода и азота. Действительно, более 99% атомов из числа необходимых биологическим клеткам приходится на долю этих четырех элементов. Тем не менее, как известно, биологические системы нуждаются во многих других элементах. На рис. 23.5 показаны необходимые для биологических систем элементы. К их числу относятся шесть переходных металлов-железо, медь, цинк, марганец, кобальт и молибден. Роль этих элементов в биологических системах обусловлена главным образом их способностью образовывать комплексы с разнообразными электронно-донорньши группами. Многие ферменты, выполняющие в организме роль катализаторов, функционируют благодаря наличию в них ионов металлов. Принцип действия ферментов будет рассмотрен подробнее в гл. 25. [c.375]

    Приборы и реактивы. Штатив с кольцом. Сетка асбестированная. Фарфоровый тигель. Фарфоровый треугольник. Пинцет. Пипетка для растворов. Лучина. Фильтровальная бумага. Марганец твердый нли порошок. Палочки стеклянные. Едкий натр. Нитрат калия (или натрия). Перманганат калия. Сульфит натрия. Соль Мора. Висмутат натрия. Диоксид марганца. Диоксид свинца. Пероксодисульфат гммония. Лакмусовая бумажка (синяя). Спирт этиловый. Растворы бромной воды, хлорной воды, едкого натра (2 н.), хлороводородной кислоты (2 н., плотность 1,19 г/см ), серной кислоты (2 н., плотность 1,84 г/см ), азотной кислоты (2 н.), уксусной кислоты (2 н.), сульфата марганца (0,5 н.), хромата калия (0,5 и.), карбоната аммония (0,5 н.), сульфида аммония (0,5 н.), иодида калия (0,1 п.), перманганата калия (0,5 н.), пероксида водорода (10%-иый), нитрата серебра (0,1 н.), перрената аммония (насыщенный), хлорида калия (0,5 н.). [c.221]

    Схемы соответствующих процессов (в зяектронно-ионяом виде) и примеры приведены также в Справочной части, в разделах Особые свойства серной кислоты (раздел Сера ), Особые свойства азотной кислоты и Термичесюе разложение нитратов (раздел Азот ), Перекись водорода (раздел Водород ), Соединения хрома (VI) (раздел Хром ), Перманганат калия (раздел Марганец ), [c.97]

    Разложение пероксида водорода ускоряется катализаторами. Если, например, в раствор пероксида водорода бросить немного диоксида марганца МпОз, то происходит бурная реакция и выделяется кислород. К катализаторам, способствующим разложению пероксида водорода, принадлежат медь, железо, марганец, а также ионы этих металлов. Уже следы этих металлов могут вызвать распад Н2О2. [c.474]


Смотреть страницы где упоминается термин Марганец — водород: [c.112]    [c.119]    [c.154]    [c.329]    [c.310]    [c.347]    [c.274]    [c.125]    [c.355]    [c.534]    [c.69]    [c.52]   
Смотреть главы в:

Гидриды переходных металлов -> Марганец — водород




ПОИСК







© 2025 chem21.info Реклама на сайте