Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение серебра молибдена

    Серебро, свинец, висмут и цинк в тех количествах, в которых они встречаются в медных рудах, не мешают определению. Определению мешают молибден, ванадий, селен и большое количество кальция, образующего,со фтором малорастворимый фторид, вместе с которым соосаждается немного меди . [c.241]

    Определению молибдена роданидным методом не мешают ионы алюминия, кобальта, урана, тантала, натрия, калия, кремния, кальция, магния, титана, ванадия, хрома, марганца, никеля, цинка, мышьяка, серебра, олова, сурьмы и ртути. Соединения железа (III) и меди усиливают интенсивность окраски, вероятно, вследствие образования много-ядерных комплексов, содержащих молибден, железо (или медь) и роданид. Мешающее влияние вольфрама устраняют введением винной кислоты, препятствующей образованию роданидных комплексов вольфрама. [c.379]


    Купферон реагирует со многими катионами, образуя труднорастворимые комплексы. Растворимость купферона-тов металлов зависит от кислотности растворов регулируя кислотность, можно провести разделение катионов. Например, в сильнокислом растворе (5—10 %-ной соляной или серной) купфероном осаждаются железо, галлий, гафний, ниобий, палладий, полоний, олово, тантал и титан частично осаждаются висмут, молибден, сурьма, вольфрам. В слабокислом растворе осаждаются висмут, медь, ртуть, молибден, олово, торий, вольфрам. В нейтральной среде осаждаются (в присутствии ацетатного буфера) серебро, алюминий, бериллий, кобальт, хром, марганец, никель, свинец, РЗЭ, таллий и цинк. Купферон дает возможность отделить железо, титан, ванадий и цирконий от алюминия, кобальта, меди, арсенита и фосфата. Его часто используют для отделения мешающих катионов, например железа при определении алюминия, а также железа и ванадия при определении фосфора в феррованадии. [c.165]

    Тиогликолевая кислота образует с тяжелыми металлами внутрикомплексные окрашенные соединения. В кислой среде золото, серебро и медь дают устойчивые желтые комплексы. В аммиачной или слабокислой среде образуют комплексы молибден (VI), вольфрам (VI), уран (VI), никель (II), кобальт (II), висмут (III), железо (III) и марганец (II). Применяется для фотометрического определения железа (III) как добавка при определении олова (II) с дитиолом, а также для определения молибдена (VI) и рения (VII). [c.208]

    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]


    Из рассмотренных примеров фотохимического комплексонометрического титрования отдельных катионов и их смесей видно, что фотохимическое титрование можно применять для определения катионов, которые сами не способны восстанавливаться под действием света. Это значит, что можно определять очень многие элементы, как те, которые могут фотохимически восстанавливаться или окисляться (элементы с переменной валентностью), например железо, медь, серебро, уран, молибден, вольфрам, рений, таллий, золото, ртуть, ванадий, хром, мышьяк и другие, так и элементы с постоянной валентностью, способные образовывать комплексные соединения и оказывать при этом ингибирующее или сенсибилизирующее действие на фотохимические реакции. К последней группе принадлежат практически все металлы, образующие двух-, трех- или четырехзарядные катионы. [c.40]

    Видно, что определению натрия, калия, рубидия, цезия, меди, кальция, стронция, алюминия, галлия, индия, скандия, лантана, европия, самария, иттербия, титана, сурьмы, ванадия, вольфрама, хрома, хлора, иода, марганца, железа, кобальта, практически не мешают другие элементы. Такие элементы, как серебро, магний, барий, кадмий, ртуть, золото, олово, мышьяк, селен, молибден, бром, никель, можно определять (с учетом вклада мешающего изотопа) по другим его гамма-липиям или другим гамма-линиям определяемых элементов. Серьезными конкурентами являются евроний, скандий нри определении цинка галлий — для кремния рубидий, золото — для германия бром, серебро — для мышьяка  [c.95]

    Применение. Гетероциклические соединения широко применяются в аналитической химии. В качестве примеров можно привести а,а-дипиридил — реактив на серебро, кадмий, молибден, двухвалентное железо, а также реактив для определения витамина Е нитрон — реактив на азотную кислоту 1,2,3-бензотриазол — реактив на медь хинальдиновая кислота используется для определения кадмия, меди, урана, цинка и колориметрического определения железа пиперидин и пиррол — реактивы на альдегиды  [c.47]

    Мешающие ионы. В кислой среде вместе с кобальтом осаждаются железо (П1), медь, уран (VI), хром (III), цирконий, серебро, висмут, титан, ванадий (V), олово (IV), вольфрам, молибден, палладий (П). Остаются в растворе никель, цинк, алюминий, марганец, фосфор (V), аммоний, бериллий и щелочноземельные элементы. Мещают определению нитрат-ионы. [c.835]

    Некоторые ионы мещают определению железа и поэтому должны отсутствовать. В основном это окращенные ионы, а также ионы серебра и висмута, образующие осадки с реагентом. Ионы кадмия, ртути и цинка образуют с реагентом бесцветные растворимые комплексы, понижающие интенсивность окраски. В некоторых условиях мещают также молибден, вольфрам, медь, кобальт, никель и олово [И]. [c.395]

    ИСО 11885 устанавливает метод определения растворенных и нерастворенных элементов, а также их общего количества в питьевой воде и в природных и сточных водах атомно-эмиссионной спектроскопией. Данным методом можно определять алюминий, барий, бериллий, бор, ванадий, висмут, вольфрам, железо, кадмий, калий, кальций, кобальт, кремний, литий, магний, марганец, медь, молибден, мышьяк, натрий, никель, олово, свинец, селен, серебро, серу, стронций, сурьму, титан, фосфор, хром, цинк, цирконий. [c.334]

    При изучении извлечения теллура из солянокислого раствора в присутствии родамина С было показано , что наибольшая полнота извлечения достигается из 5—7% -ной соляной кислоты смесью бензола с эфиром в соотношении 2 1. Чувствительность реакции равна 0,5 мкг в 1 мл экстракта. В условиях, выбранных для определения теллура, галлий флуоресцирует сильнее теллура сурьма (III) и олово (II)—почти так же, как и теллур молибден, олово (IV) и рений—примерно в 10 раз слабее, а индий, таллий, ртуть и серебро—еш,е слабее. Некоторое свечение при содержании в. 5—10 -иг обнаруживают также свинец, селен, торий и цинк. Гашение флуоресценции теллура вызывают железо и ионы-окисли-тели—церий (IV), золото, ванадат и хромат. [c.364]

    Препятствующие анализу вещества. Свинец, олово, медь, кадмий, никель, кобальт, серебро, сурьма, мышьяк, железо, хром, алюминий, магний, золото, марганец и молибден (VI) мешают определению ртути. [c.307]

    Растворы соединений других элементов взаимодействуют со всеми производными дитиофосфорной кислоты следующим образом. Белый осадок вольфрамовой кислоты, образующийся при добавлении соляной кислоты к раствору вольфрамата натрия, медленно восстанавливается всеми реагентами до вольфрамовой сини, а желтый солянокислый раствор ванадата аммония довольно быстро переходит в зеленый. Соли уранила и титана не дают реакций окрашивания. Серебро, двухвалентная ртуть, свинец, одновалентный таллий, кадмий, мышьяк выделяются в виде белых, а висмут и олово — желтых аморфных осадков. Сурьма образует осадки желтого или слабо-желтого цвета. Одновалентная ртуть и трехвалентное железо дают черные, а медь желто-зеленые осадки. Соли никеля образуют муть сиреневого цвета, растворимую в этиловом эфире с образованием красно-фиолетового раствора. Соли кобальта образуют соединения грязно-оранжевого цвета, растворимые в эфире с образованием оранжевого раствора. Соли многих других элементов не дают осадков или окрашивания. Таким образом, большинство изученных производных дитиофосфорной кислоты можно считать селективными реагентами на молибден, поскольку при определенных условиях они образуют с молибденом характерное малиновое или красное окрашивание. [c.79]


    Исследования, проведенные по методу определения скорости разложения амальгамы, показали [245], что присутствие в рассоле ионов кальция в количестве 1 г/л способствует значительному возрастанию каталитической активности железа, никеля, марганца и серебра. Кальций является весьма заметным ингибитором по отношению к действию солей ванадия, молибдена, хрома и кобальта. Было показано, что ингибирующее действие кальция по отношению к молибдену и ванадию качественно может быть объяснено повышением перенапряжения водорода на этих металлах в присутствии кальция, а активирование действия серебра — снижением перенапряжения водорода на серебре в присутствии кальция. Усиление влияния примеси железа на кинетику разложения амальгамы натрия в присутствии ионов кальция обусловлено ухудшением смачивания металла амальгамой. Это было доказано опытами по амальгамированию железной проволочки на поверхности амальгамы натрия в рассоле. Оказалось, что при отсутствии кальция в растворе железная проволочка, прикоснувшись к поверхности амальгамы, вызывает бурное выделение водорода, но уже через 1—2 сек проволочка смачивается амальгамой и выделение водорода прекращается. Если же в растворе присутствует более 0,2 г/л ионов кальция, то выделение водорода на ней продолжается более часа, поскольку в течение этого срока не происходит полного смачивания, проволочки амальгамой. [c.40]

    Исследования, проведенные по методу определения скорости разложения амальгамы, показали 18], что присутствие в рассоле 1 г/л ионов кальция способствует значительному увеличению каталитической активности железа, никеля, марганца и серебра. Кальций является ингибитором каталитического действия солей ванадия, молибдена, хрома и кобальта. Ингибирующее действие кальция на молибден и ванадий качественно может быть объяснено повышением перенапряжения водорода на этих металлах в присутствии кальция, а активирование действия серебра — снижением перенапряжения водорода на серебре в присутствии кальция. Усиление влияния примеси железа на кинетику разложения амальгамы натрия в присутствии ионов кальция обус- [c.30]

    Для определения серебра в покрытиях на молибдене 0,5 мг посеребренной проволоки растворяют в 5 мл конц. HNO3. Раствор выпаривают почти досуха, добавляют в качестве фона раствор, 0,01 М по аммиаку и 0,0001 М по NH4NO3, переносят в мерную колбу емкостью 100 мл, устанавливают pH 9 добавлением раствора аммиака и доводят до метки раствором фона. Переносят раствор в электролизер и удаляют кислород током азота. Электрод из графитовой пасты подвергают анодной поляризации в течение 5 мин. при потенциале - -0,5 в по отношению к выносному меркур-сульфатному электроду. Затем проводят электролиз перемешиваемого раствора в течение 10 мин. при потенциале —0,4 е. Прекращают перемешивание и регистрируют дифференциальную анодную кривую. Концентрацию серебра находят методом добавок. [c.190]

    Определение серебра в гальванических покрытиях . Для определения серебра в покрытиях на молибдене навеску посеребренной проволоки 0,5 мг, взвешенную на микровесах с точностью до шестого знака, растворяют в Ь мл концентрированной азотной кислоты в кварцевой чашке. Раствор выпаривают почти досуха, добавляют в качестве фона раствор 0,01 М по ЫН40Н и 0,0001 М по ЫН ЫОз, переносят в мерную колбу емкостью 100 мл, устанавливают pH = 9 и доводят до метки раствором-фоном. Анализ продолжают, как указано в предыдущей методике. [c.47]

    Серебро осаждается висмутиолом в слабоаммиачном растворе в виде желтого, хорошо отделяющегося фильтрованием осадка, имеющего состав Ag( gH5N2Sз) с теоретическим содержанием серебра 32,38 %. Комплексон совершенно не оказывает влияния на осаждение серебра. По Малинеку [46], можно этим простым способом отделить серебро от других катионов. Сурьма, олово, титан и бериллий следует замаскировать добавлением винной или лимонной кислоты. Ион уранила маскируют тироном, который, однако, в большом избытке приводит к неполному осаждению серебра. Мышьяк, вольфрам и молибден не мешают определению даже в отсутствие комплексона. Согласно автору, этот метод весьма пригоден для определения серебра, например в шлаке, остающемся после выработки серебра, когда вследствие большого содержания двуокиси кремния нельзя пользоваться методом купелирования. [c.143]

    Фотометрические методы определения мышьяка в виде мышья-ковомолибдеповой сини находят широкое применение. Они используются для определения мышьяка в его соединениях [529], железе, чугуне и стали [48, 540, 666, 698, 773, 785, 790, 885, 917, 943, 949, 952, 996, 1131-1133, 1147], ферросплавах [217, 702, 703, 1203], меди и медных сплавах [158, 195, 197, 216, 515, 562, 815, 886, 952, 1043, 1133, 1209, 1210], рудах и продуктах медного и свинцово-цинкового производства [21, 81], железных рудах [652, 822, 949, 1108], свинце [158, 264, 627, 695, 886, 926, 952, 990, 1133], серебре и его сплавах [1070], Вольфраме и его рудах [1203], олове [307, 585, 661, 1208], сурьме [91, 197, 198, 264, 284, 837, 886, 894, 952, 956], висмуте [265, 764], цинке [158, 627, 926, 952], ниобии и ванадии [284], галлии [284, 2881, индии [284, 289, 430], таллии [284, 287], кремпии [284, 872], германии ]б99, 700, 872], селене [637, 1016, ИЗО], теллуре [758], хроме и его окислах [198, 216], алюминии [144], кадмии [158], олове [886], молибдене и его окислах [459], никеле [402, 562], боре [893], уране [661, 760, 849, 928], минералах [415, 869, 994], пиритах и пиритных огарках [302, 491], фосфорной [940, 941], азотной [892], серной [939] и соляной [197, 452] кислотах, природных водах [785, 942, 993], дистиллированной воде [452], фосфатах [942] и фосфорсодержащих продуктах [980, 1091], силикатах и силикатных породах [869, 942, 964, [c.61]

    Способностью поглощать водород обладают все металлы. Количество поглощенного водорода и характер связи водорода с металлом значительно отличаются для разных групп металла. Для таких металлов, как железо, никель, кобальт, серебро, медь, алюминий, платина, часто придшняют термин растворение пли окклюзия водорода в металле. Растворению или окклюзии, как уже было сказано, обязательно предшествует процесс активированной адсорбции и диссоциации молекул водорода на атомы. Зависимость окклюзии водорода различными металлами от температуры сложная. В одних металлах растворимость водорода с увеличением температуры возрастает, тогда как в других — снижается. Для ряда металлов (лтр-ганец, молибден) наблюдаются экстремальные точки па кривой растворимости водорода от температуры. Поэтод1у можно полагать, что знак температурного коэффициента растворимости в том или инод металле зависит от определенного интервала температур. [c.248]

    Теплота хемосорбции кислорода на многих металлах очень велика (табл. 14). Кроме того, при ее определении разные исследователи получили сильно отличающиеся величины некоторые примеры, подтверждающие это, приведены в работе [67], где показано, что максимальные теплоты хемосорбции на титане, тантале, алюминии, ниобии, вольфраме, хроме, молибдене, марганце, железе, никеле и кобальте близки к теплотам образования массивных окислов этих металлов и меняются совершенно линейно с атомным радиусом металла. Теплоты хемосорбцни на родии, палладии и платине почти вдвое превышают теплоты образования стабильных окислов и также обнаруживают линейную зависимость от атомных радиусов. Бортнер и Парравано [72] исследовали теплоты хемосорбции кислорода на серебре и палладии и на их сплавах они нашли, что теплоты хемосорбции на серебре значительно превышают теплоты образования [c.206]

    Алимарин и сотр. [59—61] разработали метод субстехиометри-ческого извлечения различных металлов с использованием колонки, заполненной хлороформным раствором диэтилдитиокарбамината цинка 2п(ДДК)2, который нанесен на пористый фторопласт ПФ-4. Метод применен для радиоактивациоиного определения следовых количеств цинка, меди, кадмия, серебра, ртути, марганца и железа в различных материалах — молибдене, иттрии, цирконии. При использовании образцов весом 0,1—1 г, облученных потоком нейтронов 1,2-10 н-см -с , чувствительность определения составляет 10 —10 %. ЫаДДК оказался наиболее удобным реагентом для такого метода (кроме него были изучены дитизон, купферон и 8-меркаптохинолин). Для разработки метода определения цинка изучен гетерогенный изотопный обмен между раствором 2п(ДДК)2 в хлороформе и водным раствором радиоактивного изотопа цинка (pH 6—7) выбраны условия такого изотопного обмена. [c.410]

    Наилучшим колориметрическим методом определения малых количеств оло1 а, по-видимому, является метод, основанный на реакции его с дитиолом (1-метил-3,4-димеркаптобензолом). Этот реактив образует с оловом (II) розово-красный осадок, а при малых количествах олова— коллоидный раствор, для стабилизации которого прибавляют агар-агар. Мешают висмут, медь, серебро, ртуть, молибден, ванадий, теллур, мышьяк, сурьма, германий, большие количества хрома, никеля и кобальта. Доп. ред.  [c.344]

    Молибден можно взвешивать также в виде молибдата серебра после осаждения нитратом серебра в слабокислом растворе и последующего прокаливания осадка нри 250° С [L.. W. М с С а у, J. Аш. hem. So ., 56, 2548 (1934)]. Этот метод не более специфичен, чем мет,цд определения в виде молибдата свинца. [c.367]

    Перекись водорода и перекись натрия препятствуют полному осаждению циркония на холоду при кипячении в их присутствии цирконий полностью осаждается. При осаждении гидроокиси циркония щелочами отделяются следующие элементы мюминий, галлий, цинк, молибден, вольфрам, ванадий, бериллий, мышьяк и Сурьма. В присутствии карбонатов отделяется уран. Для этой цели к щелочи прибавляют I—2 г Na Og. Прибавление перекиси водорода улучшает отделение. В осадке с цирконием находятся железо, титан, марганец, хром, кобальт, никель, медь, кадмий, серебро, индий, таллий, торий и редкоземельные элементы. Магний и щелочноземельные металлы при достаточном содержании карбонатов также полностью осаждаются. Этот метод может иметь некоторое значение для отделения циркония от молибдена, вольфрама, ванадия, алюминия и бериллия. По данным Руффа [700], бериллий не отделяется щелочью количественно, так же как и алюминий, особенно в присутствии больших количеств аммонийных солей. Осаждение гидроокиси циркония аммиаком может применяться при гравиметрическом определении циркония. Но этот метод используется лишь в случае отсутствия примесей, осаждаемых аммиаком. [c.53]

    Мешающие вещества. Реакция с дифенилкарбазидом почти специфична для хрома. Молибден(У1) и ртуть(П) образуют с ди" фенилкарбазидом окрашенные соединения, но при том значении pH, при котором определяют хром, оба эти элемента допустимы в концентрациях до 200 мг/л. Ванадий мешает, но его присутствие Допустимо в количествах, превышающих содержание хрома в 10 раз. Железо в условиях проведения определения не мешает, Марганец при большом его содержании в пробе и при отсутствий катализатора нитрата серебра может выпасть в осадок в вида гидрата диоксида марганца осадок тогда отделяют фильтрова- нием через стеклянную пористую пластинку или через стеклян- ную вату. [c.152]

    В качестве коллекторов применяют сульфид меди для соосаждения цинка, молибдена, свинца и других металлов сульфид кадмия, и висмута — для соосаждения меди, цинка, свинца, никеля, кобальта, серебра, ртути, молибдена и др. гидроокись алюминия— для железа, свинца, хрома, висмута, кобальта, олова и др. двуокись марганца — для кобальта [22, 23] фосфоромолибдат аммония как коллектор предложен для концентрирования вольфрама [24], ниобия и тантала при определении этих примесей в молибдене [25] и для соосаждения микроколичеств германия [26]. Было установлено, что с фосфоромолнбдатом соосаждаются элементы V/, ЫЬ, Та, Т1, Ре, Са, Се, 1п, Сз, Аи, 81, Mg, Са, 5г, Ва, Оу, 2г, 5п, V, Сг, Аз, Мп, Со, N1. [c.172]

    При анализе сложных смесей целесообразно сочетать катионо-и анионообменные разделения. В более полных схемах разделения используют дополнительные методы, например экстракцию селективными растворителями и выпаривание. В качестве примера подобного комплексного подхода может служить работа Аренса с сотр. [651 по разделению и спектроскопическому определению тридцати элементов в силикатных породах. Так как конечные определения были выполнены методом эмиссионной спектроскопии, полного выделения индивидуальных элементов из смеси не требовалось. С другой стороны, в породах содержится много примесей, концентрация которых ниже предела чувствительности спектрального определения примерами служат серебро, висмут, молибден, олово и цинк. Их вообще нельзя определить без концентрирозания, а для количественного определения необходимы дополнительное концентрирование и разделение. [c.214]

    Для большинства металлов расположение атомов на поверхности соответствует их расположению в объеме, но с двумерной периодичностью. Для металлов с гранецентрированной решеткой (алюминий, никель, медь, серебро) и поверхностной плоскостью (100) можно не только определить конфигурацию атомов на поверхности, но и с достаточной точностью (2,5 — 5%) установить расстояние до следующего слоя. Расстояние между слоями А1(110) и Ni(llO), как показывают результаты определений, уменьшаются для А1 (110) это уменьшение составляет 5 - 15%. Расстояние между слоями А1(111), наоборот, несколько увеличивается. Аналогичные данные получены и для объем-ноцентрированных решеток. Нап ммер, расстояние между плоскостями (100) в молибдене при "релаксационном" смещении уменьшается на 11 - 12%. Для 5с -металлов с гранецентрированной структурой, расположенных в периодической таблице элементов по соседству (индий, платина, золото), измерения обнаружиж "перестройку" плоскостей (100) с образованием структур (5 х 1) или (5 х 20). Перестроенные структуры можно рассматривать как искаженные гексагональные. Относительно неплотная структура плоскости (100), показанная на рис. 2.9, преобразуется в более плотную, близкую к термодинамически стабильной структуре плоскость (111). [c.24]

    При восстановлении малых количеств мышьяка гипофосфитом натрия образуются окрашенные коллоидные растворы — б Большинство элементов, как, например, медь, железо, олово, висмут, алюминий, марганец, цинк, свинец, щелочные и щелочноземельные металлы, не мешают колориметрическому определению мышьяка гипофосфитным методом. Однако ряд элементов в этих же условиях или восстанавливаются до металла (серебро, ртуть и др.) или цр низших степеней окисления (молибден), или образуют окрашенные растворы (кобальт, никель, хром), в результате чего непосредственное колориметрическое определение мышьяка в присутствии таких элементов невозможно. В этом случае для отделения мышьяка от примесей применяют метод отгонки в виде А5С1д. [c.270]

    ЭДТА и другие комплексоны этого типа продолжают играть важную роль в амперометрическом определении меди [39—45]. Есть рекомендации для определения меди в присутствии магния [45] цинка [46], серебра и таллия [47]. Определение меди при помощи комплексонов в присутствии других элементов описано в соответствующих разделах ( Висмут , Железо , Индий , Лантан , Кадмий , Палладий , Ртуть , Молибден , Серебро ). [c.207]

    Исключением из только что сказанного является применение электролиза для отделения составных частей, присутствующих в больших количествах. Электролиз ведут обычно со ртутным катодом, так что этот случай, строго говоря, не совсем точно соответствует заголовку этого параграфа. В разбавленном сернокислом растворе многие металлы, как например, железо, хром, никель, кобальт, цинк, кадмий, галлий, медь, олово, молибден, висмут и серебро, выделяются на ртути, в то время как алюминий, титан, цирконий, фосфор, ванадий и уран количественно остаются в растворе 33. Метод ценен главным образом для определения этих последних элементов в металлургических продуктах. Так, электролиз со ртутным катодом является иревосходным методом для отделения мешающего железа при определении алюминия в стали (стр. 137). [c.41]

    Атомно-абсорбциснными методами с повышенной чувствительностью определяют серебро, магний, кадмий, таллий, свинец, марганец, железо, кобальт, никель, родий и, кро-ме того, трудноопределяемые эмиссионными методами золото, ртуть, молибден, палладий, платину, цинк, сурьму, висмут, олово. Чувствительность определений элементов пламеннофотометрическими методами представлена в табл. 1. [c.310]


Смотреть страницы где упоминается термин Определение серебра молибдена: [c.26]    [c.287]    [c.20]    [c.172]    [c.248]    [c.590]    [c.690]    [c.137]    [c.669]    [c.451]    [c.351]    [c.206]    [c.132]    [c.221]   
Аналитическая химия серебра (1975) -- [ c.201 ]




ПОИСК





Смотрите так же термины и статьи:

Определение молибденита



© 2024 chem21.info Реклама на сайте