Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диэлектрическая проницаемость влияние на скорость реакци

Рис. 16.1. Влияние диэлектрической Рис. 16.2. Данные для реакции проницаемости на скорость реакций метилиодида с пиридином (о) и иодистого этила с триэтиламином ( ) и этилиодида с триэтиламином ( ). иодистого метила с пиридином (о) при 100 С. Рис. 16.1. <a href="/info/9169">Влияние диэлектрической</a> Рис. 16.2. Данные для <a href="/info/392273">реакции проницаемости</a> на <a href="/info/2823">скорость реакций</a> метилиодида с пиридином (о) и <a href="/info/119772">иодистого этила</a> с триэтиламином ( ) и этилиодида с триэтиламином ( ). <a href="/info/29286">иодистого метила</a> с пиридином (о) при 100 С.

    Влияние диэлектрической проницаемости на скорость реакций. [c.9]

    В случае растворов сильных электролитов, как было показано в главе VI, коэффициенты активности, входящие в уравнение Бренстеда — Бьеррума, определяются прежде всего ионной силой раствора и диэлектрической проницаемостью. Поэтому эти факторы влияют на константы скорости реакций. Расчет показывает, что при взаимодействии ионов одного знака логарифм константы скорости реакции линейно растет, а при взаимодействии ионов разного знака падает с ионной силой раствора. В случае реакции нейтральной м олекулы с ионом сама константа скорости (а не ее логарифм) оказывается линейной функцией ионной силы. Излонсенные соотношения хорошо подтверждаются обширным экспериментальным материалом. Изменение константы скорости реакции под влиянием изменений ионной силы называется первичным солевым эффектом. [c.268]

    Из-за сложного характера взаимодействий между растворенными веществами и растворителями очень трудно оценить влияние растворителя на скорости реакций и коррелировать это влияние свойствами растворителей. Тем не менее многие исследователи пытались найти эмпирические или теоретические корреляции между константами скоростей реакций или энергией Гиббса активации реакций и такими параметрами растворителя, как диэлектрическая проницаемость т, дипольный момент ц, показатель преломления п, параметр растворимости 6, эмпирические параметры полярности растворителя и т. п., например  [c.192]

    Состояние теории в настоящее время таково, что возможно чисто качественное рассмотрение влияния среды, в которой реакция протекает, на ее скорость. Применительно к кислотному катализу жидкими кислотами в процессах, используемых в переработке нефти, можно указать на следующее. В принципе кислотный катализ может осуществляться как в кислотной фазе при растворении в ней углеводородов, так и в углеводородной при растворении в ней кислоты. Так как диэлектрическая постоянная углеводородов мала ( 2), то ионы в углеводородной фазе могут существовать только в виде ионных пар. В кислотной фазе, имеющей высокую диэлектрическую проницаемость, идет диссоциация на независимые друг от друга ионы, реагирующие со скоростью, на несколько порядков большей, чем ионы в ионных парах. Поэтому реакция всегда идет в кислотной фазе. [c.164]


    В этом уравнении к — удельная константа скорости для реакции, происходящей в среде с диэлектрической проницаемостью О ко удельная константа скорости в стандартной среде с диэлектрической проницаемостью Оо /а, /в и /х — коэффициенты активности соответствующих частиц. В этих рассуждениях принимают, что Од равна единице. Подстановка соответствующих коэффициентов активности из уравнения (2.72) в уравнение (2.73) приводит к выражению, описывающему влияние диэлектрической проницаемости на скорость реакции [c.57]

    Влияние диэлектрической проницаемости среды. 1. Ионы — точечные заряды 2а и гв, сближающиеся на расстоянии гдб, среда — бесструктурный диэлектрик с диэлектрической постоянной е, влияние ионной атмосферы не учитывается, т. е. х = О, к — константа скорости бимолекулярной реакции между А и В Каъ как сомножитель входит в к). За принимают е=1 или е = оо п к=Лп к - -/ I [c.95]

    Для реакции между ионами влияние диэлектрической проницаемости на скорость реакции описывается уравнением [c.300]

    Из данных табл. 22 видно, что влияние растворителя на скорость реакции является сложным и ни в коей мере не определяется полярностью среды. Так, метанол, ацетонитрил и ДМФ имеют практически одинаковые диэлектрические проницаемости, а скорости реакций в этих средах различаются в несколько раз ДМФ и этанол имеют, наоборот, существенно различные е, а скорости реакции в них довольно близки. Более того, полярность растворителя неоднозначно влияет на реакцию. Так, в случае ДМФ и ДМСО скорость реакции с увеличением е падает, а в ряду спиртов — возрастает. [c.159]

    Написав аналогичное выражение для активированного комплекса X, образующегося по реакции можно воспользоваться уравнением (ХУ.5.2) для оценки влияния изменений диэлектрической проницаемости на константу скорости реакции  [c.456]

    Влияние перехода от протонного к полярному апротонному растворителю на скорость реакции в общем случае одинаково для 8 2 и 5 Аг реакций диполь-ионного и ион-ионного взаимодействия [12], но реакции 8 2 диполь-дипольного взаимодействия (например, пиридин или диметилсульфид с алкилгалогенидами) гораздо менее чувствительны к изменению структуры растворителя, если только при этом не изменяется заметно диэлектрическая проницаемость и ионная сила [68, 69]. Эти данные подтверждают, что раз- [c.13]

    Какое влияние на скорость приведенных реакций окажет повышение а) диэлектрической проницаемости б) ионной силы раствора в) гидростатического давления  [c.349]

    Количественные обобщения и влияние растворителя на скорость химических реакций распространяются прежде всего на те три основных типа взаимодействий в растворах, которые перечислялись на с. 33—34. Поскольку энергия всех этих взаимодействий в первом приближении обусловлена электростатическими взаимодействиями, то разумеется, и здесь влияние диэлектрической проницаемости выступает на первый план. [c.79]

    Так же как и при рассмотрении равновесных процессов, при выводе уравнений, связывающих скорость процесса с диэлектрической проницаемостью, предполагалось, что растворитель — химически индифферентная среда. Однако химические (специфические) взаимодействия растворенного вещества с растворителем оказывают громадное влияние на скорость химической реакции. Влияние ЭТО часто бывает настолько велико, что диэлектрическая проницаемость растворителя отходит на второй план, а то и вовсе не сказывается. Здесь для иллюстрации этого положения можно обойтись одним, зато достаточно выразительным, примером. Реакция дегидробромирования пентабромэтана пиридином [c.81]

    Компенсационный эффект отсутствует для газофазных реакций атомов и радикалов с молекулами, не наблюдается он и для радикальных реакций в растворах, когда один из двух реагентов - неполярная частица. Один из источников этого эффекта - влияние среды на элементарный акт полярных частиц. Константа скорости бимолекулярной реакции в растворе зависит от константы ассоциации частиц АХв, амплитуды колебания частиц а V p и диэлектрической проницаемости е. Все [c.234]

    Лейдлер отмечал [11, 242], что уравнение (5.88) имеет лишь полуколичественный характер и позволяет только весьма грубо оценить влияние диэлектрической проницаемости среды на скорость реакции с участием биполярных реагентов. Это справедливо и по отношению к уравнениям (5.87) и (5.90). Тем не менее во многих случаях экспериментально была обнаружена удовлетворительная корреляция между константой скорости реакции и функцией диэлектрической проницаемости растворителя примером может служить реакция Меншуткина между триалкил-аминами и галогеналканами, приводящая к четвертичным солям тетраалкиламмония [2, 56, 58, 60, 61, 64, 65, 245—247]. [c.284]

    Другим наглядным примером ускорения 8ы1-реакций под влиянием электрофильного эффекта протонных растворителей (или сорастворителей) или образования водородных связей с ними может служить ацетолиз 2-бром-2-метилпропана, скорость которого возрастает при добавлении фенола к раствору реагента в смеси тетрахлорметана с уксусной кислотой [582] в работе [582] приведены и другие примеры. Окамото [582] подчеркивал ценность фенола как растворителя для 8к1-реакций сольволиза, в частности фенолиза 1-галоген-2-фенилэтанов. Несмотря на низкую диэлектрическую проницаемость (ел = 9,78 при 60 °С), небольшой дипольный момент ( х = 4,8-10 Кл-м или 1,45 Д) и невысокую нуклеофильность, фенол благодаря своей электро- [c.300]


    Влияние диэлектрической проницаемости среды на константу скорости реакции между двумя ионами можно проанализировать в рамках уравнения (3.5). Электростатическая свободная энергия сближения двух ионов с расстояния бесконечного удаления до равновесного расстояния в активированном комплексе (г ) равна [c.46]

    Амис [19] предположил, что в случае диполь-дипольных взаимодействий влияние диэлектрической проницаемости на скорость реакции описывается следующими уравнениями, в которых от-брощены все члены, содержащие в знаменателе степени расстояния между центрами зарядов в дипольной молекуле выще третьей. Для дипольных реагентов энергия кулоновского взаимодействия Ес равна [c.73]

    Катияр [61] нашел, что влияние диэлектрической проницаемости на скорость реакции малахитового зеленого с кислотами количественно описывается уравнением Брёнстеда — Христнан-сена — Скэтчарда, [c.315]

    Поскольку среда может влиять на скорость и состав продуктов окисления, было исследовано влияние диэлектрической проницаемости среды на реакцию. Величину диэлектрической проницаемости среды меняли, изменяя содержание метилового спирта в растворе. Скорость окисления хинолфосфата, как оказалось, растет с увеличением полярности среды. Анализ температурной зависимости констант скоростей при различных е показал, что величина энергии активации и предэкспоненциальный множитель являются функциями диэлектрической проницаемости среды, причем они одновременно растут с увеличением е, т. е. наблюдается компенсационный эффект. [c.265]

    Несмотря на то что силы электростатического взаимодействия между дипольными молекулами меньше по величине, нежели между ионами или между ионами и дипольными молекулами, они тем не менее значительны и должны быть учтены при любом рассмотрении факторов, определяюших скорость реакций между электрически несимметричными молекулами. Поскольку диполь-дипольные взаимодействия существуют, растворитель будет оказывать влияние на силы, с которыми молекулы действуют друг на друга, а значит от этого будет зависеть возможность сближения молекул и химического взаимодействия между ними. Это влияние определяется диэлектрической проницаемостью растворителя. В данной главе рассмотрены различные способы теоретической трактовки подобного влияния растворителя на скорости реакции между дипольными молекулами. Вследствие относительно малой величины эффекта влияние диэлектрической проницаемости на электростатику реакций между дипольными молекулами легко маскируется специфическим влиянием растворителя или структурными эффектами. Сами же по себе структурные эффекты, по-видимому, трудно или даже невозможно обнаружить. [c.67]

    Свободные радикалы являются незаряженными частицами. Следовательно, можно ожидать, что изменение полярности растворителя не будет существенным образом сказываться на сольватации реагентов и на скоростях процесса. Однако, как мы видели ранее, переходное состояние многих реакций замещения характеризуется некоторым разделением зарядов, т. е. является более полярным, чем исходные реагенты. Это должно приводить к тому, что при изменении диэлектрической проницаемости среды селективность реакций будет изменяться. Чем выше диэлектрическая проницаемость, тем в большей степени полярное переходное состояние стабилизировано за счет сольватации, и тем в меньшей степени внутренние факторы, т. е. влияние строения субстрата, будут сказываться на скорости процесса. Закономерности такого рода были обнаружены при изучении зависимости величин р при галогенировании замещенных толуолов. Так, для реакций бромирования замещенных толуолов найдена корреляция между (е—1)/(2е- -1) и р, причем абсолютное значение р уменьшается с ростом диэлектрической прс/ницаемостн [25, 1977, т. 237, с. 340]. Отмечалось существенное влияние диэлектрической проницаемости [c.468]

    Рассмотрим отдельные стадии реакции. Для реакции обрыва, состоящей во взаимодействии внутри ионной пары, с увеличением диэлектрической ироницаемости Ео будет расти, а ко уменьшаться. Для реакции роста состояние реагирующих веществ и продуктов электрически идентично реакция включает взаимодействие ионов или ионных пар с малыми диполями или наведенными диполями, так что можно ожидать только небольшого влияния диэлектрической проницаемости. Взаимосвязь диэлектрической проницаемости и нельзя рассмотреть в общем виде. Если каталитический комплекс не является ионным в его исходном состоянии, как, например, гидратированный димер хлоруксусной кислоты, то увеличение диэлектрической проницаемости будет значительно увеличивать скорость инициирования. Если, с другой стороны, катализатор в основном имеет ионный характер, как в случае органических фтороборатов, влияние диэлектрической проницаемости может быть незначительным. В большинстве случаев изменения и ко происходят в одном направлении и приводят к увеличению скорости в растворителях с высокой диэлектрической проницаемостью. Влияние диэлектрической проницаемости на СП сравнительно мало и должно быть связано в основном с влиянием на процессы обрыва и передачи цепи. Диэлектрическая проницаемость не оказывает заметного влияния на радикальную полимеризацию, но ее диагностическое значение при исследовании ионных механизмов оправдывает это подробное рассмотрение. [c.115]

    Определенное влияние на скорость реакции оказывают диэлектрическая проницаемость и дипольный момент растворителя. Так, диметилформамид и диметнлсульфоксид, имеющие высокие диэлектрическую проницаемость и дипольный момент, в большей степени ускоряют реакцию натриймалонового эфира с алкилгалогенидами, чем диоксан, ацетон, ацетонитрил и нитрометан. Иногда, впрочем, растворители с приблизительно рав- [c.123]

    Другим подходом к расчету влияния электростатических эффектов растворителей на скорости реакций между биполярными молекулами воспользовался Амис [12, 21, 244]. Он применил устанавливаемую известным уравнением Аррениуса зависимость между константой скорости реакции и энергией активации k= = Л-ехр(—EalRT). Согласно Амису, влияние диэлектрической проницаемости среды на скорость реакции можно описать уравнением. [c.283]

    При подстановке этого выражения в основное уравнение теории переходного состояния (XVn.28) получается уравнение Бренстеда — Христиансена — Скэт-чарда, описывающее совместное влияние ионной силы и диэлектрической проницаемости среды на константу скорости бимолекулярной ионной реакции  [c.262]

    Теоретическое исследование кинетики и механизма химических реакций в растворах — намного более сложная задача по сравнению с исследованием газовых реакций, поскольку р растворах реагирующие вещества могут взаимодействовать с растворителем (следует учитывать влияние диэлектрической проницаемости растворителя, степень гидратации, присутствие посторонних компонентов и т. д.). Существует много различных типов реакций в растворах для некоторых из них влиянием растворителя мож но пренебречь (особенно в тех случаях, когда используются неполярные растворители). При некоторых условиях участники реакции взаимодействуют с такой же скоростью, как и в газах, как, например, при разложении N205. Существенным фактором является число столкновений между молекулами реагирующих веществ в растворе (включая растворитель). Дебай и Рабинович провели оценку числа столкновений в растворе, согласно которой оно примерно в три раза больше, чем в газовой фазе. Это согласуется с экспериментальными данными, также подтверждающими, что фактор столкновений для реакций в растворах увеличивается примерно в три раза. Так как энергия активации практически не меняется, скорость реакций в растворе также увеличивается в три раза по сравнению с газовыми реакциями. Для реакций в растворе характерна также небольшая подвижность реагирующих частиц (по сравнению с реакциями в газовой фазе). Для цепных и других реакций, в которых появляются Б качестве промежуточных частиц радика- [c.183]

    Влияние диэлектрической проницаемости среды на скорость реакции прослелсивается на примерах течения одной и той лее реакции в различных растворителях. Диэлектрическая проницаемость входит в величину энергии взаимодействия ионов и в зависимости от типа реакции может оказывать влия- [c.268]

    Прежде чем выдвигать с какой-либо определенностью химический механизм действия карбогидраз, необходимо выяснить два обстоятельства во-первых, какая именно связь в молекуле субстрата расщепляется под действием фермента и, во-вторых, сопровождается ли расщепление сохранением илн инверсией конфигурации превращаемой связи. Ясно, что только этих сведений недостаточно для выявления полной картины действия фермента на уровне перестройки электронных структур в ходе катализа для этого обычно необходимы исследования скоростей реакций в тяжелой воде, изучение влияния индукционных, стерических и гидрофобных факторов на эффективность реакций, pH, температуры, ионной силы, диэлектрической проницаемости, давления и т. д. и, наконец, создание по возможности адекватных неферментативных моделей аналогичных процессов. [c.169]

    Большинство органических реакций проводится в растворе н поэтому важно выявить некоторые общие возможности влияния растворителя иа направление и скорость реакции. Некоторые из наиболее обычных органических ] >астворителей можно в общих чертах классифицировать на основаинн их структуры и диэлектрической протицаемостн так, как это показано в табл. 4.4. Существует важное различие между протонными растворителями — растворителями, которые содержат относительно подвижные протоны, нааример протоны, связанные с кислородом, азотом или серой, — н апротонными растворителями. Сходным образом полярные растворители, обладающие., высокой диэлектрической проницаемостью, оказывают на скорость реакции влияние, отличное от такового для неполярных растворителей. [c.145]

    Для реакций нуклеофильного замещения, механизм которых связан с распределением зарядов в реагирующей молекуле в момент активации, скорость реакции повышается с ростом диэлектрической проницаемости растворителя, что способствует ионизации связи. Так, в реакциях сольволиза грет-бутилхлорида (СНз)зСС1, являющегося излюбленным объектом в исследованиях влияния среды на кинетику химических процессов, протекание процесса связано с промежуточным образованием ионный пары (СНз)зС" "С1 , вследствие чего в ряду растворителей этиловый спирт (ДП = 24,3) — метиловый спирт (ДП = 32,6) —формамид (ДП= 109,5) соотношение скорости реакций равно 1 9 430. Интересно, что в воде, которая из-за своей исключительно высокой сольватирующей способности обеспечивает ионизацию, скорость реакции в 335 000 раз выше, чем в этаноле. [c.78]

    Скорость, с которой происходят столкновения между частиц ми реагента, зависит от ряда факторов. К ним относятся, безусловно, концентрации реагентов. Поскольку это влияние в явном ввде учитывается кинетяческим уравнением, целесообразнее уделить внимание другим важным факторам — температуре, диэлектрической проницаемости растворителя и ионной силе электролитов, присутствующих в реакционной среде. Скорость реакции может меняться (увеличиваться или уменьшаться) в присутствии веществ, уско-ряюшдос (катализаторы) или замедляющих (ингибиторы) реакцию. Катализ представляет собой явление, требующее отдельного подробного рассмотрения (разд. 6.3). [c.330]

    Исследовано влияние природы растворителя на эффективную константу скорости расходования диоксида хлора в реакции с 2-шопропил-1,3-диоксоланом. Установлено, что замена неполярного растворителя СС 8=2.2) на полярный СН3ОН 8=32.7) незначительно изменяет эффективные константы скорости, что свидетельствует о малой полярности переходного состояния 8 - диэлектрическая проницаемость среды). [c.17]

    Особое внимание следует обратить на очень большое снижение величин g k ko) в среде протонных растворителей (спиртов) по сравнению с величинами, рассчитанными на основе их диэлектрической проницаемости (рис. 5.12). Отмечалось, что образование водородных связей между спиртами и триалкилами-нами, обусловливающее уменьшение энергии Гиббса реагентов, не единственная причина снижения g k/ko) [64]. Аномальное влияние алифатических спиртов на скорость реакции Меншуткина связано также с тем, что соответствующий активированный комплекс по своим свойствам напоминает относительно неполярные реагенты. По структуре такой активированный комплекс занимает промежуточное положение между реагентами и ионной нарой (вероятно, ближе к реагентам) биполярные растворители-НДВС могут стабилизировать такой активированный комплекс за счет неспецифических взаимодействий [64], а алифатические спирты, напротив, его дестабилизируют. В среде алифатических спиртов при переходе от метанола к октанолу скорость реакции между бромэтаном и Ы,Ы-диметиланилином [c.288]

    И снова при описании общих эффектов природы ионных реагентов и диэлектрической проницаемости растворителя оказывается полезной электростатическая теория. Более того, простую электростатическую модель впервые применили для расчета влияния диэлектрической проницаемости и ионной силы среды на скорости именно ионных реакций. В соответствии с уравнением (5.96) изменение. чнергии Гиббса, сопровождающее образование ионной пары из ионов А и В в стандартной среде с диэлектрической проницаемостью ег, равно электростатической энерпии сближения двух точечных зарядов г в и на расстояние Гдв (Л А — число Авогадро). [c.294]

    Реакция ионов гидроксония с фторид-ионами протекает несколько быстрее, чем реакция ионов гидроксония с гидросульфид-ионами. Небольшое различие в наблюдаемых скоростях в этом случае может быть обусловлено действием чисто статистических факторов, поскольку фторид-ион располагает четырьмя парами электронов, способными присоединять протон, тогда как в гидросульфид-ионе таких пар только три. Электростатические взаимодействия оказывают лишь слабое влияние на константу скорости, что, по-видимому, связано с высокой диэлектрической проницаемостью воды, выполняющей здесь роль растворителя. В грубом приближении можно считать, что константа скорости переноса протона от иона гидроксония уменьшается в два раза при введении в молекулу каждого дополнительного положительного заряда, если размер молекулы при этом не изменяется. Так, например, реакции иона гидроксония с комплексами ионов металлов различного заряда характеризуются следующими значениями константы скорости [л/(моль-с)] для Н0Си(Н20)5+ 10 , для НОСо(ЫНз)5 + 5-10 и для НМНР1(еп)2 + l,9 10 . [c.26]

    Растворитель может оказывать очень сильное влияние на константы скорости реакций между ионами и органическими молекулами, будь то нуклеофилы или основания. Например,, при переходе от воды к ацетону константа скорости второго порядка реакции между хлорид-ионом и метилиодидом возрастает приблизительно в 10 раз. Другой пример — рацемизация оптически активного 2-метил-З-фенилпропионитрила под действием метоксид-иона. Скорость этой реакции в диметилсульфоксиде в 10 раз больше, чем в метаноле [8]. Эти эффекты ускорения могут быть отчасти обусловлены влиянием диэлектрической проницаемости среды, однако в основном они определяются специфическим действием растворителя. Как указывалось выше, наибольшие различия замечены между протонными и апротонными растворителями. Переход от протонного растворителя к апротонному может приводить к последствиям двоякого рода с одной стороны, к смещению равновесия между ионными парами и свободными ионами, а с другой — к изменению специфической сольватации ионов, которая обычно является более сильной в среде протонного растворителя. Важнуку роль процесса ассоциации ионов в определении кажущейся нуклеофильности можно проиллюстрировать на примере галогенидов лития и тетра- -бутиламмония. В реакции с -бутил-п-бромбензолсульфонатом в ацетоновом растворе эти соли соотносятся по реакционной способности следующим образом (все соли берутся в концентрации 0,04 моль/л)  [c.49]

    Природа растворителя оказывает очень сильное влияние на. скорость катализируемой метоксид-ионами рацемизации 2-метил-З-фенилпропионитрила, протекающей в смеси метанол — диметилсульфоксид (рис. 3.6) [8]. При переходе от чистого метанола к 98,5%-ному раствору диметилсульфоксида в метаноле скорость этой реакции увеличивается в 5-10 раз. Константа скорости в 100%-ном диметилсульфоксиде, найденная экстраполяцией кривой на рис. 3.6, превышает значение для метанола в 10 раз. По величине диэлектрической проницаемости эти два растворителя различаются не очень сильно (34 у метанола и 49 у диметилсульфоксида). Судя по имеющимся данным, растворенные в них алкоксиды металлов прп низкой концентрации существуют в диссоциированном виде. Большое различие в активности метоксид-аниона вызвано тем, что в [c.51]


Смотреть страницы где упоминается термин Диэлектрическая проницаемость влияние на скорость реакци: [c.47]    [c.195]    [c.109]    [c.130]    [c.469]    [c.457]    [c.266]    [c.40]    [c.170]   
Равновесие и кинетика реакций в растворах (1975) -- [ c.169 , c.250 , c.380 ]




ПОИСК





Смотрите так же термины и статьи:

Диэлектрическая проницаемость



© 2025 chem21.info Реклама на сайте