Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ксилолы физ. свойства

Таблица 18. Свойства /я-ксилола С,Н4(СНз)2 7 = 225,5 Таблица 18. Свойства /я-ксилола С,Н4(СНз)2 7 = 225,5

    Как видно пз табл. 6, бензол, толуол и ксилолы имеют низкую температуру вспышки, что обусловливает их высокую пожароопасность. По своим токсическим свойствам они значительно превосходят углеводороды других классов и являются кровяными ядами, нарушающими систему костномозгового кроветворения. Вследствие этого предельно допустимая концентрация (ПДК) в [c.59]

    Физические свойства изомерных ксилолов и этилбензола [c.66]

    Применение методов прикладной статистики в задачах анализа и прогнозирования свойств катализатора требует корректного учета специфики решаемых задач и возникающих ограничений. Так, в гетерогенном катализе широко распространено явление взаимного влияния катализатора и реакционной среды. Примером такой ситуации может служить гетерогенное окисление бензола и ксилола на ванадиевых катализаторах, когда вследствие разности в восстановительных потенциалах обоих углеводородов меняется стационарный состав катализатора по слою. В работе (291 показано, что дегидратация алифатических спиртов на оксидных катализаторах (оксидах А1, Хг, 31) хорошо описывается уравнением Тафта с литературными значениями а. Однако коэффициент чувствительности а изменяется от оксида к оксиду. Следовательно, мы приходим к необходимости учитывать опосредованное влияние других переменных. Это обстоятельство делает необходимым использовать такие измерители статистической связи, которые были бы очищены от подобного влияния [21. [c.68]

    Полиэтилеи устойчив к действию кислот, щело чей, растворов солей и органических растворителей. Он разрушается только под действием сильных окислителей — концентрированных азотной и серной кислот п хромовой кислоты. При комнатной температуре полиэтилен нерастворим в известных растворителях, а при нагревании выше 70°С растворяется в толуоле, ксилоле, хлорированных углеводородах, декалине, тетралипе. Он устойчив к действию воды. Водопоглощение его за 30 суток при 20 °С не превышает 0,04%. Под влиянием кислорода воздуха, света и тепла полиэтилен теряет эластические свойства и пластичность, становится жестким и хрупким (происходит старение). Для замедления процесса старения в полиэтилен добавляют небольшие количества термостабилизаторов (ароматические амины, фенолы, сернистые соединения) и светостабилизаторов (сажа, графит). [c.10]

    Трименяемые в производстве ацетилен, ксилол и образующиеся в процессе реакции ацетальдегид, моно- и дивинилацетилен характеризуются опасными свойствами. Дивинилацетилен и его растворы окисляются с образованием легко взрывающихся пере-кисных соединений. Поскольку катализатор димеризации содержит медь, возможно образование внутри системы нестойких, разлагающихся со взрывом ацетиленидов меди. [c.62]


    При выборе экстрагента для очистки дифенилолпропана необходимо учитывать, что он должен обладать следующими свойствами хорошо растворять примеси и плохо — дифенилолпропан иметь низкую температуру кипения, что позволит осушать дифенилолпропан при низкой температуре (это особенно важно ввиду невысокой термостойкости дифенилолпропана) быть доступным и недорогим. Кислородсодержащие растворители (этанол, ацетон, уксусная кислота и др.) непригодны для этой цели вследствие высокой растворимости в них дифенилолпропана. Наиболее подходящими растворителями являются парафиновые углеводороды (гептан) " , низкокипящие хлорзамещенные алифатические углеводороды (хлористый метилен, дихлорэтилен) 31 ароматические углеводороды (бензол, толуол, ксилол) и их хлорпроизводные а также ароматические углеводороды с добавкой фенола или крезола " . [c.166]

    Разделение изомерных ксилолов физическими методами. Возможности разделения изомерных ксилолов хорошо видны из их физических свойств, а также физических свойств этилбензола (табл. 14). [c.66]

    Конденсацией льксилола с формальдегидом получают ксилоло-формальдегидные смолы, обладающие високой стойкостью к действию влаги, щелочей и кислот. Их добавляют к синтетическим каучуковым покрытиям для улучшения адгезионных, электроизоляционных и эластических свойств последних. [c.165]

    Если задачей процесса является получение ароматических углеводородов (бензола, толуола, ксилолов), он проводится при температуре 480—510° и давлении от 15 до 30 ати. При работе для новышения детонационных свойств бензинов давление повышают до 50 ати. [c.153]

    Алкиларилсульфонаты с короткими алкильными цепями обладают слабыми моющими свойствами, но являются хорошими смачивающими средствами и иногда хорошими растворителями (так, водные растворы сульфонатов л<-ксилола и тетралина хорошо растворяют углеводороды). Алкиларилсульфонаты с длинными алкильными цепями (10—20 атомов углерода) характеризуются хорошими моющими свойствами. [c.341]

    При понижении температуры эксплуатации двигателей могут произойти нарушения в их нормальной работе, связанные с изменением свойств применяемых бензинов. К таким нарушениям следует отнести прекращение подачи бензина в двигатель при низких температурах вследствие выпадения кристаллов льда или углеводородов и образование ледяных отложений на деталях карбюратора и впускной системы (обледенение карбюратора). Подавляющее большинство углеводородов, входящих в состав бензинов, застывает при очень низких температурах. Отдельные углеводороды с довольно высокими температурами застывания — бензол (5,5 °С), п-ксилол (13,0°С), циклогексан (6,3°С)—содержатся в бензинах обычно в небольших концентрациях и в смеси с другими углеводородами, поэтому не оказывают существенного влияния на температуру застывания. Температура застывания бензинов обычно ниже минус 60 °С, что вполне обеспечивает нормальную эксплуатацию двигателей в любых климатических условиях. Именно поэтому температура застывания автомобильных бензинов в технических условиях не регламентируется. Температура застывания авиационных бензинов в соответствии с ГОСТ должна быть ниже минус 60 °С. [c.33]

    Наиболее распространенный технический источник ароматических углеводородов g — соответствующая фракция каталитического риформинга (см. т. 2, гл. 5). Некоторые физико-химические свойства этих углеводородов, а также их содержание в g-фракции приведены в табл. 5.26. Как следует из данных табл. 5.26, значение Тцп я-ксилола почти на 30 °С превышает Тпп ближайшего по этой величине компонента—о-ксилола. Содержание п-ксилола в сырье составляет 18—20% (масс.). [c.319]

    Выявлена высокая экстракционная способность нефтяных сульфоксидов (т. е. продуктов окисления нефтяных сульфидов) по отношению к солям урана (уранила) и неодима. Эффективные коэффициенты экстракции уранилнитрата нефтяными сульфоксида-мй достигают 3600—4800 [587], причем циклические сульфоксиды обладают лучшими экстракционными свойствами, нежели алифатические. Емкость 50%-ных растворов нефтяных сульфоксидов в л -ксилоле по нитрату неодима достигает 100—120 г/л [588]. [c.81]

    Сырой бензол — это смесь, состоящая из сероуглерода, бензола, толуола, ксилолов, кумарона и других веществ. Выход сырого бензола составляет в среднем 1,1% от количества угля. Выход зависит от состава и свойств исходного угля и температурных условий процесса. При разгонке из сырого бензола получают индивидуальные ароматические углеводороды и смеси углеводородов, служащие сырьем для химической промышленности. [c.39]

    Влияние глубины ионного обмена на каталитические свойства цеолита N3(1 в реакции о-ксилол —> л -ксилол [c.78]

    В промышленности органического синтеза ксилолы потребляются преимущественно в виде индивидуальных изомеров. Однако выделение изомеров ксилола из технической смеси задача сложная, что обуславливается, с одной стороны, высокими требованиями к качеству изомеров, с другой стороны, близостью их физикохимических свойств (см. табл. 1—3) и наличием примесей в исходном сырье. Парафиновые и циклоалкановые углеводороды, содержащиеся в сырье, образуют с ароматическими углеводородами Са азеотропные смеси с температурами кипения, близкими к температурам кипения изомеров ксилола (130—144°С), что дополнительно осложняет процесс разделения. [c.249]


    Размер образующихся кристаллов определяет тип разделительного устройства. Чаще всего кристаллы отделяют от маточного раствора на вакуум-фильтрах или центрифугах. На эффективность разделения и чистоту получаемого продукта помимо типа оборудования влияют и физические свойства суспензии, в частности ее вязкость. Как правило, центрифуги обеспечивают лучшее отделение маточного раствора, чем барабанные вакуум-фильтры. Например, остаточное содержание жидкой фазы в осадке, полученном на вакуум-фильтре, составляет обычно 20—30%, а в осадке, полученном на фильтрующей центрифуге, 3—10%. Содержание п-ксилола в осадке при фильтровании составляет 72—82%, а при центрифугировании— 98%. Поэтому на И ступени разделения при выделении конечного продукта обычно устанавливают центрифуги. В процессах ряда фирм установка центрифуг предусмотрена и после I ступени кристаллизации. [c.253]

    S adonoval— раствор стиролсодержащей синтетической смолы в ксилоле. Свойства содержит 43% твердых веществ кислотное число 3—5 йодное число 2—4 вязкость 10—13 пуаз (20°). Плохо совмещается с цинковыми белилами. [c.206]

    Согласно протонному механизму, указанные комплексы преимущественно образуются за счет С-атомов с минимальным отрицательным зарядом, т. е. вторичных атомов С. В то же время гидрид-ионный механизм характерен для С-атомов с максимальной электронной плотностью, т. е. для первичных атомов. В соответствии с развиваемыми взглядами, изменение направления реакции связано с изменением зарядов металла при увеличении давления водорода и соответственно его адсорбции усиливаются электроноакцепторные свойства металла и его способность вытеснять прогон при образовании моноадсорбированного комплекса. В связи с этим с ростом давления водорода увеличивается доля молекул октана, реагирующих по протонному механизму в реакцию вступают вторичные атомы углерода с последующим образованием дизамещенных циклов — 1-метил-2-этилциклопентана и о-ксилола. [c.235]

    Легкость образования сигма-комплекса зависит от нуклефильной способности ароматического углеводорода их основные свойства увеличиваются с уменьшением замещения, т. е. в порядке бензол << ксилол < мезитилен [603, 604]. В зависимости от условий реакции и от степени алкилированности ароматики реакция [c.135]

    При переходе от бензола к толуолу, ксилолам и триметилбснзолам интерпретация данных псе болес усложняется, и в настоящее время приходится ограничиваться достаточно грубыми приближениями, менее надежной интерпретацией частот и соображениями аналогии с некоторыми свойствами бензола. Принимая во внимание эти трудности, следует отметить, что в этой области все же удалось достигнуть значительного успеха. [c.305]

    Такие масштабы производства требуют обеспечения соответствующих больших и устойчивых источников сырья, т. е. нафталина иди о-ксилола В прежние годы более 90% фталевого ангвдрида производилось из нафталина, но поставки последнего во время второй мировой войны были совершенно недостаточными, а возможность получать его в дальнейшем в количествах, достаточных для удовлетворения проектируемого производства фталевого ангидрида, неясна. Здесь сказываются многие экономические, политические и технологические факторы, которые рассматриваются в других работах и выходят за рамки настоящего труда. Хотя псе сказанное выше справедливо и применительно к о-ксилолу, но это сырье можно получать в больших количествах из нефти при помощи различных процессов ароматизации. Вследствие низких антидетонацион-ных свойств он не применяется для авиационного бензина, поэтому возможности использования о-ксилола для производства фталевого ангидрида будут, по-видимому, весьма велики даже в периоды наибольшего напряжения национальной, экономики. [c.8]

    В книге- рассмотрены современное состояние и тенденцнн производства и потребления основных ароматических углеводородов. Описаны методы анализа и оценки их товарных свойств и обоснованы требования к качеству выпускаемых промышленностью продуктов. Дано описание технологических процессов производства бензола, ксилолов, полиметилбензо-лов, нафталина, антрацена, фенантрена и некоторых других многоядерных ароматических углеводородов, получаемых из каменноугольного и нефтяного сырья. Подробно изложена технология получения специальных сортов бензола и нафталина, используемых для процессов органического синтеза. Освещены научные основы и промышленные способы переработки важнейших ароматических углеводородов. Дана токсикологическая оценка названных соединений и рассмотрены меры по снижению их вредного воздействия на природу и человека. [c.2]

    Бромистый алюминий легко растворяется в ароматических углеводородах с образованием окрашенных растворов. Окраска растворов меняется от слабожелтой для бензола до лимонно-желтой для толуола, желто-оранжевой для л -ксилола и оранжевой для мезитилена [59]. В бензоле и толуоле молекулярный вес соответствует формуле димера, в м-ксилоле U еще больше в мезптилене молекулярный вес ниже величины, соответствующей димеру [126]. Поэтому представляется вероятным, что имеется тенденция возрастания диссоциации димера с увеличением основных свойств ароматического углеводорода. [c.431]

    Наши исследования о взаимодействии фтороводорода с гидроксидом алюминия бемитной модификации указывают также на рост каталитической активности платинированного фторированного у-оксида алюминия в реакции изомеризации и-пентана до массовой доли фтора 5%, из чего следует, что если при больших количествах фтора и образуется фаза AIF3, то она не является каталитически активной в реакций изомеризации парафиновых углеводородов [19]. Количественная оценка усиления изомеризующих свойств у-оксида алюминия при введении в его состав фтора была произведена на примере реакции изомеризации о-ксилола (рис. 2.1) при увеличении содержания фтора в 36 раз скорость реакции возрастала в 65 раз. На примере реакции гидрирования циклогексена было показано, что при введении в оксид алюминия фтора наряду с изо-меризующими возрастали и гидрирующие свойства противоположное действие оказывало введение в оксид алюминия ионов натрия [19]  [c.45]

    При последовательном замещении метильнымп группами водородов ароматического кольца антидетонационные свойства улучшаются. Наиболее сильно это явленне проявляется в тех случаях, когда из бензола образуются толуол, ксилол и мезитилен. Эффект введения метильных групп в нормальный иропил-бензол, бутил- или амилбензол невелик, однако добавление метильных групп к изопропил- или изоамилбензолу заметно снижает склонность к детонации. [c.418]

    Сравнивая антидетонационные свойства различных углеводородов с равным числом углеродных атомов, можно заметить, что для группы 05 нафтены дают эффект, равный толуолу, значительно выпю олефина — пентена — I. Для группы Се— все углеводороды имеют почти одинаковое низкое (около 40) октадювое число, кроме а ромати-ческих, где оно (для ксилолов) лоднимается до 115. [c.141]

    Химические свойства всех изомеров очень разнообразны. В серной кислоте легче всего растворяется мета-ксилол, причем образуется 1,3 ксилол-4-сульфоно-вая кислота. Орто-ксилол растворим только в концентрированной серной кислоте с образованием 1,2 кснлол-4-сульфоловой кислоты, бариевая соль которой растворяется в 33 частях воды. Пара-ксилол растворим в 5% олеуме с образованием [c.407]

    По своим физико-механическим свойствам и химической стойкости асбоБинил приближается к фаолиту. К числу недостатков асбопннила относятся неприятный запах, токсичность (св011ства, связанные с присутствием в массе ксилола), огнеопасность и медленное отверждение при комнатной температуре. Фнзико-механические свойства асбовинила приведены в табл.51. [c.426]

    Методом ультрафиолетовой спектроскопии исследовались три-и полизамещенные гомологи бензола, полученные реакцией алкилирования ксилолов и мезитилена алифатическими и полиметиленовыми олефинами в присутствии хлористого алюминия, а также некоторые гомологи нафталина [56, 59]. Подробно изучено влияние числа и положения заместителей в бензольном кольце (на примере трех- и четырехзамещенных бензола С в—С д) на ультрафиолетовые спек- тры [60]. Свойства исследованных синтетических углеводоро- дов и ультрафиолетовые спектры приведены в табл. 51 и на рис. 44-48. [c.276]

    По своей ценности в качестве исходных веществ для органи-ческогэ сннтеза ароматические углеводороды занимают второе место после олефинов. Из веществ, получаемых из ископаемого сырья, наибольшее значение имеют бензол и ксилолы, производство которых в США достигает соответственно 5,5 и 2,5 млн. т в год. Меньше используются нафталин, толуол, исевдокумол и ду-рол, из которых последние два вещества частично получают и синтетическим путем. Некоторые их свойства приведены в табл. 6. Температуры кипения изомерных ксилолов очень близки, и их можно разделить только частично и то лишь очень четкой ректификацией (это относится и к изомерным три- и тетраметилбензо-лам). п-Ксилол и дурол плавятся выше других изомеров, что исиользуют для их выделения из смесей путем кристаллизации. Этот же HiD 06 применяют для выделения нафталина. [c.59]

    К недостаткам метода следует отнести сравнительно низкую селективность, связанную с захватом кристаллами выделяющегося вещества заметных количеств маточного раствора, необходимость применения специального оборудования (кристаллизаторы, фильтры, центрифуги) и, естественно, неунивер-сальность. Часто метод применяется для выделения из растворов твердых, в обычном состоянии высококипящих веществ, разлагающихся при перегонке (даже при употреблении вакуума). Практическими примерами использования метода могут служить так называемые процессы низкотемпературной депарафинизации нефтепродуктов, выделение таких веществ, как 1, 0-декандикарбоновая кислота, этриол и т. д. Примером технического применения метода для четкого разделения смеси веществ, близких по природе и свойствам, является процесс выделения п-ксилола из смеси ароматических углеводородов g. [c.319]

    Расход о-ксилола на 1 т продукта составляет 0,8 т. Процесс предъявляет повьцценные требования к атикоррозионным свойствам материалов для аппаратов. [c.182]

    На основе ксилолов, главным образом в Японии, производятся ксилолоформальдегидные смолы, обладающие хорошими адгезионными и диэлектрическими свойствами, водостойкостью и дающие прочные покрытия [106]1 Вначале для их производства использовали ж-ксилол высокой степени чистоты, позднее в качестве сырья стали использовать смесь ксилолов. [c.88]


Смотреть страницы где упоминается термин Ксилолы физ. свойства: [c.118]    [c.238]    [c.238]    [c.397]    [c.316]    [c.321]    [c.322]    [c.70]    [c.178]    [c.210]    [c.210]    [c.213]    [c.264]   
Общая органическая химия Т.1 (1981) -- [ c.69 , c.319 , c.320 ]




ПОИСК





Смотрите так же термины и статьи:

ГлаваХ Нитропроизводные ксилола Исходные материалы. 2. Химические свойства изомеров ксилола. 3. Состав каменноугольного ксилола. 4. Состав пирогенетического ксилола. 5. Технические условия на каменноугольный ксилол (ОСТ

Корд полиэфирный, свойства Ксилол

Корд полиэфирный, свойства Ксилол. окисление

Ксилол изомеры свойства III

Ксилол изомеры свойства, характеристика III

Химия процессов получения, свойства и области применения нитропроизводных ксилола



© 2025 chem21.info Реклама на сайте